
Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation

A. Details of existing methods for DRE
In this section, we overview examples of DRE methods in the framework of the density ratio matching under BD.

Least Squares Importance Fitting (LSIF). LSIF minimizes the squared error between a density ratio model r and the
true density ratio r∗ defined as follows (Kanamori et al., 2009):

RLSIF(r) = Ede[(r(X)− r∗(X))2] = Ede[(r∗(X))2]− 2Enu[r(X)] + Ede[(r(X))2].

In the unconstrained LSIF (uLSIF) (Kanamori et al., 2009), we ignore the first term in the above equation and estimate the
density ratio by the following minimization problem:

r̂ = arg min
r∈H

[
1

2
Êde[(r(X))2]− Ênu[r(X)] +R(r)

]
, (6)

whereR is a regularization term. This empirical risk minimization is equal to minimizing the empirical BD defined in (2)
with f(t) = (t− 1)2/2.

Unnormalized Kullback–Leibler (UKL) divergence and KL Importance Estimation Procedure (KLIEP). The KL
importance estimation procedure (KLIEP) is derived from the unnormalized Kullback–Leibler (UKL) divergence objective
(Sugiyama et al., 2008; Nguyen et al., 2010; Tsuboi et al., 2009; Yamada & Sugiyama, 2009; Yamada et al., 2010),
which uses f(t) = t log(t)− t. Ignoring the terms which are irrelevant for the optimization, we obtain the unnormalized
Kullback–Leibler (UKL) divergence objective (Nguyen et al., 2010; Sugiyama et al., 2012) as

BDUKL(r) = Ede [r(X)]− Enu

[
log
(
r(X)

)]
.

Directly minimizing UKL is proposed by Nguyen et al. (2010). The KLIEP also solves the same problem with further
imposing a constraint that the ratio model r(X) is non-negative for all X and is normalized as

Êde [r(X)] = 1.

Then, following is the optimization criterion of KLIEP (Sugiyama et al., 2008):

max
r

Ênu

[
log
(
r(X)

)]
s.t. Êde [r(X)] = 1 and r(X) ≥ 0 for all X.

Logistic Regression (LR). By using f(t) = log(t)− (1 + t) log(1 + t), we obtain the following BD called the binary
Kullback–Leibler (BKL) divergence:

BDBKL(r) = −Ede

[
log

(
1

1 + r(X)

)]
− Enu

[
log

(
r(X)

1 + r(X)

)]
.

This BD is derived from a formulation based on the logistic regression (Hastie et al., 2001; Sugiyama et al., 2011b).

PU Learning with the log loss. Consider a binary classification problem and let X and y ∈ {±1} be the feature and
the label of a sample, respectively. In PU learning, the goal is to train a classifier only using positive data sampled from
p(X | y = +1), and unlabeled data sampled from p(X) in binary classification (Elkan & Noto, 2008). More precisely,
this problem setting of PU learning is called the case-control scenario (Elkan & Noto, 2008; Niu et al., 2016). Let G be
the set of measurable functions from X to [ε, 1 − ε], where ε ∈ (0, 1/2) is a small positive value. For a loss function
` : R× {±1} → R+, du Plessis et al. (2015) showed that the classification risk of g ∈ G in the PU problem setting can be
expressed as

RPU(g) = π

∫ (
`(g(X),+1)− `(g(X),−1)

)
p(X | y = +1)dX +

∫
`(g(X),−1)]p(X)dX. (7)

According to Kato et al. (2019), we can derive the following risk for DRE from the risk for PU learning (7) as follows:

BDPU(g) =
1

R
Enu [− log (g(X)) + log (1− g(X))]− Ede [log (1− g(X))] ,

and Kato et al. (2019) showed that g∗ = arg ming∈G BDPU(g) satisfies the following:
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Proposition 1. It holds almost everywhere that

g∗(X) =


1− ε (X /∈ D2),

C pnu(X)
pde(X) (X ∈ D1 ∩D2),

ε (X /∈ D1),

where C = 1
R

, D1 = {X | Cpnu(X) ≥ εpde(X)}, and D2 = {X|Cpnu(X) ≤ (1− ε)pde(X)}.

Using this result, we define the empirical version of BDPU(g) as follows:

B̂DPU(r∗‖r) := CÊnu

[
− log

(
r(Xi)

)
+ log

(
1− r(Xj)

)]
− Êde

[
log
(
1− r(Xi)

)]
.

To see that this is also a BD minimization method, define f(t) as

f(t) = C log (1− t) + Ct (log (t)− log (1− t)) .

Then, we have

∂f(t) = − C

1− t
+ C(log(t)− log(1− t)) + Ct

(
1

t
+

1

1− t

)
.

Therefore, we have

BDf (r) := Ede

[
∂f
(
r(Xi)

)
r(Xi)− f

(
r(Xi)

)]
− Enu

[
∂f
(
r(Xj)

)]
= Ede

[
− Cr(Xi)

1− r(Xi)
+ Cr(Xi)(log(r(Xi))− log(1− r(Xi))) + Cr2(Xi)

(
1

r(Xi)
+

1

1− r(Xi)

)]
− Ede

[
log (1− r(Xi)) + Cr(Xi) (log (r(Xi))− log (1− r(Xi)))

]
− Enu

[
− C

1− r(Xi)
+ C(log(r(Xi))− log(1− r(Xi))) + Cr(Xi)

(
1

r(Xi)
+

1

1− r(Xi)

)]
= Ede

[
− Cr(Xi)

1− r(Xi)
+ Cr(Xi)(log(r(Xi))− log(1− r(Xi))) +

Cr(Xi)

1− r(Xi)

]
− Ede

[
log (1− r(Xi)) + Cr(Xi) (log (r(Xi))− log (1− r(Xi)))

]
− Enu

[
− C

1− r(Xi)
+ C(log(r(Xi))− log(1− r(Xi))) +

C

1− r(Xi)

]
= Ede

[
log (1− r(Xi))

]
− CEnu

[
log(r(Xi))− log(1− r(Xi))

]
.

Remark 1 (DRE and PU learning). Menon & Ong (2016) showed that minimizing a proper CPE loss is equivalent to
minimizing a BD to the true density ratio, and demonstrated the viability of using existing losses from one problem for the
other for CPE and DRE. Kato et al. (2019) pointed out the relation between the PU learning and density ratio estimation
and leveraged it to solve a sample selection bias problem in PU learning. In this paper, we introduced the BD with
f(t) = log (1− Ct) +Ct (log (Ct)− log (1− Ct)), inspired by the objective function of PU learning with the log loss. In
the terminology of Menon & Ong (2016), this f results in a DRE objective without a link function. In other words, it yields
a direct DRE method.

B. Examples of f̃
Here, we show the examples of f̃ such that ∂f(t) = C

(
∂f(t)t − f(t)

)
+ f̃(t), where f̃(t) is bounded from above, and

∂f(t)t− f(t) +A is non-negative.

First, we consider f(t) = (t− 1)2/2, which results in the LSIF objective. Because ∂f(t) = t− 1, we have

t− 1 = C
(
(t− 1)t− (t− 1)2/2

)
+ f̃(t)

⇔ f̃(t) = −C
(
(t− 1)t− (t− 1)2/2

)
+ t− 1 = −C

2
t2 +

C

2
+ t− 1.
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The function is a concave quadratic function, therefore it is upper bounded.

Second, we consider f(t) = t log(t)− t, which results in the UKL or KLIEP objective. Because ∂f(t) = log(t), we have

log(t) = C
(

log(t)t− t log(t) + t
)

+ f̃(t)

⇔ f̃(t) = −tC + log(t).

We can easily confirm that the function is upper bounded by taking the derivative and finding that t = 1/C gives the
maximum.

Third, we consider f(t) = t log(t)− (1 + t) log(1 + t), which is used for DRE based on LR or BKL. Because ∂f(t) =
log(t)− log(1 + t), we have

log(t)− log(1 + t) = C
(
(log(t)− log(1 + t))t− t log(t) + (1 + t) log(1 + t)

)
+ f̃(t)

⇔ f̃(t) = −C
(

log(1 + t)
)

+ log(t)− log(1 + t) = log

(
C

1 + t

)
+ log

(
t

1 + t

)
.

We can easily confirm that the function is upper bounded as the terms involving t always add up to be negative.

Fourth, we consider DRE based on PULog. By setting f(t) = log (1− t) + Ct (log (t)− log (1− t)), we can obtain the
same risk functional introduced in Kiryo et al. (2017).

C. Train-loss hacking problem in PU classification
Here, we introduce the train-loss hacking discussed in the PU learning literature (Kiryo et al., 2017). In a standard binary
classification problem, we train a classifier ψ by minimizing the following empirical risk:

1

n

n∑
i=1

1[yi = +1]`(ψ(Xi)) +
1

n

n∑
i=1

1[yi = −1]`(−ψ(Xi)), (8)

where yi ∈ {±1} is a binary label, Xi is a feature, and ` is a loss function. On the other hand, in PU learning formulated
by du Plessis et al. (2015), because we only have positive data {(y′i = +1, X ′i)}n

′

i=1 and unlabeled data {(x′′
j )}n′′j=1, we

minimize the following alternative empirical risk:

π

n′

n′∑
i=1

`(ψ(X ′i)−
π

n′

n′∑
i=1

`(−ψ(X ′i))︸ ︷︷ ︸
Cause of train-loss hacking.

+
1

n′′

n′′∑
j=1

`(−ψ(X ′′j )), (9)

where π is a hyperparameter representing p(y = +1). Note that the empirical risk (9) is unbiased to the population binary
classification risk (8) (du Plessis et al., 2015). While the the empirical risk (8) of the standard binary classification is lower
bounded under an appropriate choice of `, the empirical risk (9) of PU learning proposed by du Plessis et al. (2015) is not
lower bounded owing to the existence of the second term. Therefore, if a model is sufficiently flexible, we can significantly
minimize the empirical risk only by minimizing the second term − π

n′

∑n′

i=1 `(−ψ(X ′i)) without increasing the other terms.
Kiryo et al. (2017) proposed non-negative risk correction for avoiding this problem when using neural networks.

D. Network structure used in Sections 5.1 and 6
We explain the structures of neural networks used in the experiments.

D.1. Network structure used in Sections 5.1

In Section 5.1, we used CIFAR-10 datasets. The model was a convolutional net (Springenberg et al., 2015): (32× 32×
3)-C(3× 6, 3)-C(3× 16, 3)-128-84-1, where the input is a 32× 32 RGB image, C(3× 6, 3) indicates that 3 channels of
3× 6 convolutions followed by ReLU is used. This structure has been adopted from the tutorial of Paszke et al. (2019).
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Figure 3. The learning curves of the experiments in Section 5.1. The horizontal axis is epoch. The vertical axes of the top figures indicate
the training losses. The vertical axes of the bottom figures show the AUROC for the test data. The bottom figures are identical to the ones
displayed in Section 5.1.

Figure 4. The results of Section F.1.1. The horizontal axis is epoch, and the vertical axis is AUROC.

D.2. Network structure used in Sections 6

Inlier-based Outlier Detection. We used the same LeNet-type CNNs proposed in Ruff et al. (2020). In the CNNs, each
convolutional module consists of a convolutional layer followed by leaky ReLU activations with leakiness α = 0.1 and
(2×2)-max-pooling. For MNIST, we employ a CNN with two modules: (32×32×3)-C(3×32, 5)-C(32×64, 5)-C(64×
128, 5)-1. For CIFAR-10 we employ the following architecture: (32× 32× 1)-C(1× 8, 5)-C(8× 4, 5)-1 with a batch
normalization (Ioffe & Szegedy, 2015) after each convolutional layer.

The WRN architecture was proposed in Zagoruyko & Komodakis (2016) and it is also used in Golan & El-Yaniv (2018).
This structure improved the performance of image recognition by decreasing the depth and increasing the width of the
residual networks (He et al., 2015). We omit the detailed description of the structure here.

Covariate Shift Adaptation. We used the 5-layer perceptron with ReLU activations. The structure is
10000-1000-1000-1000-1000-1.

E. Existing methods for anomaly detection
This section introduces the existing methods for anomaly detection. DeepSAD is a method for semi-supervised anomaly
detection, which tries to take advantage of labeled anomalies (Ruff et al., 2020). GT proposed by Golan & El-Yaniv (2018)
trains neural networks based on a self-labeled dataset by performing 72 geometric transformations. The anomaly score
based on GT is calculated based on the Dirichlet distribution obtained by maximum likelihood estimation using the softmax
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output from the trained network.

In the problem setting of the DeepSAD, we have access to a small pool of labeled samples, e.g. a subset verified by some
domain expert as being normal or anomalous. In the experimental results shown in Ruff et al. (2020) indicate that, when we
can use such samples, the DeepSAD outperforms the other methods. However, in our experimental results, such samples are
not assumed to be available, hence the method does not perform well. The problem setting of Ruff et al. (2020) and ours are
both termed semi-supervised learning in anomaly detection, but the two settings are different.

F. Details of experiments
The details of experiments are shown in this section. The description of the data is as follows:

MNIST: The MNIST database is one of the most popular benchmark datasets for image classification, which consists of
28× 28 pixel handwritten digits from 0 to 9 with 60, 000 train samples and 10, 000 test samples (LeCun et al., 1998).
See http://yann.lecun.com/exdb/mnist/.

CIFAR-10: The CIFAR-10 dataset consists of 60, 000 color images of size 32 × 32 from 10 classes, each having
6000. There are 50, 000 training images and 10, 000 test images (Krizhevsky et al., 2012). See https://www.cs.
toronto.edu/˜kriz/cifar.html.

fashion-MNIST: The fashion-MNIST dataset consists of 70, 000 grayscale images of size 28× 28 from 10 classes.
There are 60, 000 training images and 10, 000 test images (Xiao et al., 2017). See https://github.com/
zalandoresearch/fashion-mnist.

Amazon Review Dataset: Blitzer et al. (2007) published the text data of Amazon review. The data originally consists
of a rating (0-5 stars) for four different genres of products in the electronic commerce site Amazon.com: books, DVDs,
electronics, and kitchen appliances. Blitzer et al. (2007) also released the pre-processed and balanced data of the
original data. The pre-processed data consists of text data with four labels 1, 2, 4, and 5. We map the text data into
10, 000 dimensional data by the TF-IDF mapping with that vocabulary size. In the experiment, for the pre-processed
data, we solve the regression problem where the text data are the inputs and the ratings 1, 2, 4, and 5 are the outputs.
When evaluating the performance, following Menon & Ong (2016), we calculate PD (=1-AUROUC) by regarding 4
and 5 ratings as positive labels and 1 and 2 ratings as negative labels.

F.1. Experiments with image data

We show the additional results of Section 5.1. In Figure 3, we show the training loss of LSIF-based methods to demonstrate
the train-loss hacking phenomenon caused by the objective function without a lower bound. In Figure 3, even though the
training loss of uLSIF-NN and that of Bounded uLSIF decrease more rapidly than that of nnBD-LSIF, the test AUROC
score (the higher the better) either drops or fails to increase. These graphs are the manifestations of the severe train-loss
hacking in DRE without our proposed device.

F.1.1. COMPARISON WITH VARIOUS ESTIMATORS USING NNBD DIVERGENCE

Let UKL-NN and BKL-NN be DRE method with the UKL and BKL losses with neural networks without non-negative
correction. Finally, we examine the performances of nnBD-LSIF, nnBD-PU, UKL-NN, BKL-NN, nnBD-UKL, and nnBD-
BKL. The learning rate was 1× 10−4, and the other settings were identical to those in the previous experiments. These
results are shown in Figure 4. UKL-NN and BKL-NN also suffer from train-loss hacking although BKL loss seems to be
more robust against the train-loss hacking than the other loss functions. Although nnBD-UKL and nnBD-BKL show better
performance in earlier epochs, nnBD-LSIF and nnBD-PU appear to be more stable.

F.1.2. RESULTS WITHOUT GRADIENT ASCENT

We also show the experimental results without the gradient ascent heuristic. Figure 5 corresponds to the Figure 2 without the
gradient ascent heuristic. Figure 6 corresponds to the Figure 3 without the gradient ascent heuristic. Figure 7 corresponds to
the Figure 4 without the gradient ascent heuristic. As shown in these experiments, although the gradient ascent/descent
heuristic improve the performance, there is no significant difference between empirical performance with and without the
heuristic. Therefore, we recommend practitioners to use the gradient ascent/descent heuristic, but if the reader concerns the

http://yann.lecun.com/exdb/mnist/
 https://www.cs.toronto.edu/~kriz/cifar.html
 https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
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Figure 5. Experimental results of Section 5.1 without gradient ascent/descent heuristic. The horizontal axis is epoch, and the vertical axis
is AUROC. The learning rates of the left and right graphs are 1× 10−4 and 1× 10−5, respectively. The upper graphs show the AUROCs
and the lower graphs show Êde[r̂(X)], which will approach 1 when we successfully estimate the density ratio.

theoretical guarantee, they can use the plain gradient descent algorithm; that is, naively minimize the proposed empirical
nnBD risk.

F.2. Experiments of inlier-based outlier detection

In Table 4, we show the full results of inlier-based outlier detection. In almost all the cases, D3RE for inlier-based outlier
detection outperforms the other methods. As explained in Section E, we consider that DeepSAD does not work well because
the method assumes the availability of the labeled anomaly data, which is not available in our problem setting.

In Table 5, for different 1/C chosen from {1, 3, 5, 10}, we report the AUROCs of nnBD-LSIF with and without gradient
ascent. As shown in the results, loose specification does not significantly decrease the performances. The gradient ascent
technique improves the performances, but plain gradient descent still performs well.

Remark 2 (Benchmark Methods). Although GT is outperformed by our proposed method, the problem setting for the
comparison is not in favor of GT as it does not assume the access to the test data. Recently proposed methods for semi-
supervised anomaly detection by Ruff et al. (2020) did not perform well without using other side information used in Ruff
et al. (2020). On the other hand, there is no other competitive methods in this problem setting, to the best of our knowledge.

F.3. Experiments of covariate shift adaptation

In Table 6, we show the detailed results of experiments of covariate shift adaptation. Even when the training data and the test
data follow the same distribution, the covariate shift adaptation based on D3RE improves the mean PD. We consider that
this is because the importance weighting emphasizes the loss in the empirical higher-density regions of the test examples.

G. Other applications
In this section, we explain other potential applications of the proposed method.

G.1. Covariate shift adaptation by importance weighting

We consider training a model using input distribution different from the test input distribution, which is called covariate shift,
(Bickel et al., 2009). To solve this problem, the density ratio has been used via importance weighting (IW) (Shimodaira,
2000; Yamada et al., 2010; Reddi et al., 2015).

We use a document dataset of Amazon4 (Blitzer et al., 2007) for multi-domain sentiment analysis (Blitzer et al., 2007). This
data consists of text reviews from four different product domains: book, electronics (elec), dvd, and kitchen. Following
Chen et al. (2012) and Menon & Ong (2016), we transform the text data using TF-IDF to map them into the instance

4http://john.blitzer.com/software.html

http://john.blitzer.com/software.html
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Table 4. Average area under the ROC curve (Mean) of anomaly detection methods averaged over 5 trials with the standard deviation (SD).
For all datasets, each model was trained on the single class, and tested against all other classes. The best performing method in each
experiment is in bold. SD: Standard deviation.

MNIST uLSIF-NN nnBD-LSIF nnBD-PU nnBD-LSIF nnBD-PU Deep SAD GT
Network LeNet LeNet LeNet WRN WRN LeNet WRN
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
0 0.999 0.000 0.997 0.000 0.999 0.000 1.000 0.000 1.000 0.000 0.592 0.051 0.963 0.002
1 1.000 0.000 0.999 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.942 0.016 0.517 0.039
2 0.997 0.001 0.994 0.000 0.997 0.001 1.000 0.000 1.000 0.001 0.447 0.027 0.992 0.001
3 0.997 0.000 0.995 0.001 0.998 0.000 1.000 0.000 1.000 0.000 0.562 0.035 0.974 0.001
4 0.998 0.000 0.997 0.001 0.999 0.000 1.000 0.000 1.000 0.000 0.646 0.015 0.989 0.001
5 0.997 0.000 0.996 0.001 0.998 0.000 1.000 0.000 1.000 0.000 0.502 0.046 0.990 0.001
6 0.997 0.001 0.997 0.001 0.999 0.000 1.000 0.000 1.000 0.000 0.671 0.027 0.998 0.000
7 0.996 0.001 0.993 0.001 0.998 0.001 1.000 0.000 1.000 0.001 0.685 0.032 0.927 0.004
8 0.997 0.000 0.994 0.001 0.997 0.000 0.999 0.000 0.999 0.000 0.654 0.026 0.949 0.002
9 0.993 0.002 0.990 0.002 0.994 0.001 0.998 0.001 0.998 0.001 0.786 0.021 0.989 0.001

CIFAR-10 uLSIF-NN nnBD-LSIF nnBD-PU nnBD-LSIF nnBD-PU Deep SAD GT
Network LeNet LeNet LeNet WRN WRN LeNet WRN
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
plane 0.745 0.056 0.934 0.002 0.943 0.001 0.925 0.004 0.923 0.001 0.627 0.066 0.697 0.009
car 0.758 0.078 0.957 0.002 0.968 0.001 0.965 0.002 0.960 0.001 0.606 0.018 0.962 0.003
bird 0.768 0.012 0.850 0.007 0.878 0.004 0.844 0.004 0.858 0.004 0.404 0.006 0.752 0.002
cat 0.745 0.037 0.820 0.003 0.856 0.002 0.810 0.009 0.841 0.002 0.517 0.018 0.727 0.014
deer 0.758 0.036 0.886 0.004 0.909 0.002 0.864 0.008 0.872 0.002 0.704 0.052 0.863 0.014
dog 0.728 0.103 0.875 0.004 0.906 0.002 0.887 0.005 0.896 0.002 0.490 0.025 0.873 0.002
frog 0.750 0.060 0.944 0.003 0.958 0.001 0.948 0.004 0.948 0.001 0.744 0.014 0.879 0.008
horse 0.782 0.048 0.928 0.003 0.948 0.002 0.921 0.007 0.927 0.002 0.519 0.015 0.953 0.001
ship 0.780 0.048 0.958 0.003 0.965 0.001 0.964 0.002 0.957 0.001 0.430 0.062 0.921 0.009
truck 0.708 0.081 0.939 0.003 0.955 0.001 0.952 0.003 0.949 0.001 0.393 0.008 0.911 0.003

FMNIST uLSIF-NN nnBD-LSIF nnBD-PU nnBD-LSIF nnBD-PU Deep SAD GT
Network LeNet LeNet LeNet WRN WRN LeNet WRN
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
T-shirt/top 0.960 0.005 0.981 0.001 0.985 0.000 0.984 0.001 0.982 0.000 0.558 0.031 0.890 0.007
Trouser 0.961 0.010 0.998 0.000 1.000 0.000 0.998 0.000 0.998 0.000 0.758 0.022 0.974 0.004
Pullover 0.944 0.012 0.976 0.001 0.980 0.001 0.983 0.002 0.972 0.001 0.617 0.046 0.902 0.005
Dress 0.973 0.006 0.986 0.001 0.992 0.000 0.991 0.001 0.986 0.000 0.525 0.038 0.843 0.014
Coat 0.958 0.006 0.978 0.001 0.983 0.000 0.981 0.002 0.974 0.000 0.627 0.029 0.885 0.003
Sandal 0.968 0.011 0.997 0.001 0.999 0.000 0.999 0.000 0.999 0.000 0.681 0.023 0.949 0.005
Shirt 0.919 0.005 0.952 0.001 0.958 0.001 0.944 0.005 0.932 0.001 0.618 0.015 0.842 0.004
Sneaker 0.991 0.001 0.994 0.002 0.998 0.000 0.998 0.000 0.998 0.000 0.802 0.054 0.954 0.006
Bag 0.980 0.005 0.994 0.001 0.999 0.000 0.998 0.000 0.999 0.000 0.447 0.034 0.973 0.006
Ankle boot 0.992 0.001 0.985 0.015 0.999 0.000 0.997 0.000 0.996 0.000 0.583 0.023 0.996 0.000

Table 5. We show average area under the ROC curve (Mean) of anomaly detection methods averaged over 5 trials with the standard
deviation (SD) for nnBD-LSIF with LeNet. We choose 1/C, which represents a guessed upper bound, from {1, 3, 5, 10}. Each model is
trained on the single class, and tested against all other classes. We show both results with and without gradient ascent and ◦ denotes the
use of the gradient ascent technique. The best performing method for each inlier class is highlighted in bold. The best performing method
for each 1/C is highlighted in underline.

CIFAR-10 nnBD-LSIF
Network LeNet
1/C (Guessed upper bound) 1 3 5 10
With gradient ascent ◦ ◦ ◦ ◦
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
plane 0.491 0.009 0.642 0.019 0.934 0.002 0.918 0.003 0.920 0.003 0.899 0.002 0.886 0.007 0.839 0.009
car 0.521 0.032 0.644 0.011 0.957 0.002 0.950 0.002 0.951 0.003 0.939 0.004 0.920 0.006 0.894 0.013
bird 0.501 0.013 0.622 0.012 0.850 0.007 0.832 0.004 0.835 0.005 0.812 0.006 0.818 0.004 0.765 0.010
cat 0.491 0.015 0.616 0.014 0.820 0.003 0.807 0.003 0.802 0.007 0.770 0.005 0.773 0.011 0.721 0.006
deer 0.523 0.017 0.658 0.022 0.886 0.004 0.879 0.001 0.873 0.005 0.862 0.004 0.852 0.007 0.820 0.009
dog 0.514 0.018 0.621 0.011 0.875 0.004 0.855 0.005 0.852 0.008 0.820 0.007 0.821 0.009 0.758 0.017
frog 0.496 0.018 0.671 0.018 0.944 0.003 0.932 0.003 0.927 0.003 0.917 0.005 0.886 0.004 0.845 0.014
horse 0.506 0.017 0.631 0.018 0.928 0.003 0.910 0.003 0.916 0.005 0.885 0.003 0.880 0.007 0.823 0.020
ship 0.494 0.027 0.680 0.026 0.958 0.003 0.949 0.001 0.956 0.002 0.942 0.002 0.933 0.004 0.907 0.006
truck 0.506 0.013 0.660 0.016 0.939 0.003 0.930 0.003 0.922 0.003 0.907 0.007 0.885 0.007 0.843 0.018
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Figure 6. The learning curves of the experiments in Section 5.1 without gradient ascent/descent heuristic. The horizontal axis is epoch.
The vertical axes of the top figures indicate the training losses. The vertical axes of the bottom figures show the AUROC for the test data.
The bottom figures are identical to the ones displayed in Section 5.1.

space X = R10000 (Salton & McGill, 1986). Each review is endowed with four labels indicating the positivity of the
review, and our goal is to conduct regression for these labels. To achieve this goal, we perform kernel ridge regression
with the polynomial kernel. We compare regression without IW (w/o IW) with regression using the density ratio estimated
by PU-NN, uLSIF-NN, nnBD-LSIF, nnBD-PU, uLSIF with Gaussian kernels (Kernel uLSIF), and KLIEP with Gaussian
kernels (Kernel KLIEP). We conduct experiments on 2, 000 samples from one domain, and test 2, 000 samples. Following
Menon & Ong (2016), we reduce the dimension into 100 dimensions by principal component analysis when using Kernel
uLSIF, Kernel KLEIP, and regressions. Following Menon & Ong (2016) and Cortes & Mohri (2011), the mean and standard
deviation of the pairwise disagreement (PD), 1−AUROC, is reported. A part of results is in Table 7. The full results are in
Appendix F.3. The methods with D3RE show preferable performance, but the improvement is not significant compared with
the image data. We consider this is owing to the difficulty of the covariate shift problem in this dataset.

f -divergence estimation. f -divergences (Ali & Silvey, 1966; Csiszár, 1967) are the discrepancy measures of probability
densities based on the density ratio, hence the proposed method can be used for their estimation. They include the KL
divergence (Kullback & Leibler, 1951), the Hellinger distance (Hellinger, 1909), and the Pearson divergence (Pearson,
1900), as examples.

Two-sample homogeneity test. The purpose of a homogeneity test is to determine if two or more datasets come from
the same distribution (Loevinger, 1948). For two-sample testing, using a semiparametric f -divergence estimator with
nonparametric density ratio models has been studied (Keziou., 2003; Keziou & Leoni-Aubin, 2005). Kanamori et al. (2010)
and Sugiyama et al. (2011a) employed direct DRE for the nonparametric DRE.

Generative adversarial networks. Generative adversarial networks (GANs) are successful deep generative models,
which learns to generate new data with the same distribution as the training data Goodfellow et al. (2014). Various GAN
methods have been proposed, amongst which Nowozin et al. (2016) proposed f-GAN, which minimizes the variational
estimate of f -divergence. Uehara et al. (2016) extended the idea of Nowozin et al. (2016) to use BD minimization for DRE.
The estimator proposed in this paper also has a potential to improve the method of Uehara et al. (2016).

Average treatment effect estimation and off-policy evaluation. One of the goals in causal inference is to estimate
the expected treatment effect, which is a counterfactual value. Therefore, following the causality formulated by Rubin
(1974), we consider estimating the average treatment effect (ATE). Recently, from machine learning community, off-policy
evaluation (OPE) is also proposed, which is a generalization of ATE (Dudı́k et al., 2011; Imai & Ratkovic, 2014; Wang et al.,
2017; Narita et al., 2019; Bibaut et al., 2019; Kallus & Uehara, 2019; Oberst & Sontag, 2019). OPE has garnered attention
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Figure 7. The detailed experimental results for Section F.1.1. The horizontal axis is epoch, and the vertical axis is AUROC.

in applications such as advertisement design selection, personalized medicine, search engines, and recommendation systems
(Beygelzimer & Langford, 2009; Li et al., 2010; Athey & Wager, 2017).

The problem in ATE estimation and OPE is sample selection bias. For removing the bias, the density ratio has a critical
role. An idea of using the density ratio dates back to (Rosenbaum, 1987), which proposed an inverse probability weighting
(IPW) method (Horvitz & Thompson, 1952) for ATE estimation. In the IPW method, we approximate the parameter of
interest with the sample average with inverse assignment probability of treatment (action), which is also called propensity
score. Here, it is known that using the true assignment probability yields higher variance than the case where we use an
estimated assignment probability even if we know the true value (Hirano et al., 2003; Henmi & Eguchi, 2004; Henmi et al.,
2007). This property can be explained from the viewpoint of semiparametric efficiency (Bickel et al., 1998). While the
asymptotic variance of the IPW estimator with an estimated propensity score can achieve the efficiency bound, that of the
IPW estimator with the true propensity score does not.

By extending the IPW estimator, more robust ATE estimators are proposed by Rosenbaum (1983), which is known as a
doubly robust (DR) estimator. The doubly robust estimator is not only robust to model misspecification but also useful in
showing asymptotic normality. In particular, when using the density ratio and the other nuisance parameters estimated from
the machine learning method, the conventional IPW and DR estimators do not have asymptotic normality (Chernozhukov
et al., 2018). This is because the nuisance estimators do not satisfy Donsker’s condition, which is required for showing the
asymptotic normality of semiparametric models. However, by using the sample splitting method proposed by Klaassen
(1987), Zheng & van der Laan (2011), and Chernozhukov et al. (2018), we can show the asymptotic normality when using
the DR estimator. Note that for the IPW estimator, we cannot show the asymptotic normality even if using sample-splitting.

When using the IPW and DR estimator, we often consider a two-stage approach: in the first stage, we estimate the nuisance
parameters, including the density ratio; in the second stage, we construct a semiparametric ATE estimator including the
first-stage nuisance estimators. This is also called two-step generalized method of moments (GMM). On the other hand,
from the causal inference community, there are also weighting-based covariate balancing methods (Qin & Zhang, 2007; Tan,
2010; Hainmueller, 2012; Imai & Ratkovic, 2014). In particular, Imai & Ratkovic (2014) proposed a covariate balancing
propensity score (CBPS), which simultaneously estimates the density ratio and ATE. The idea of CBPS is to construct
moment conditions, including the density ratios, and estimate the ATE and density ratio via GMM simultaneously. Although
the asymptotic property of the CBPS is the same as other conventional estimators, existing empirical studies report that the
CBPS outperforms them (Wyss et al., 2014).

Readers may feel that the CBPS (Imai & Ratkovic, 2014) has a close relationship with the direct DRE, but we consider that it
is less relevant to the context of the direct DRE. From the DRE perspective, the method of Imai & Ratkovic (2014) boils down
to the method of Gretton et al. (2009), which proposed direct DRE through moment matching. The research motivation of
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Table 6. Average PD (Mean) with standard deviation (SD) over 10 trials with different seeds per method. The best performing method in
terms of the mean PD is specified by bold face.

Domains (Train→ Test) books→ books dvd→ books dvd→ dvd elec→ books elec→ dvd
DRE method Mean SD Mean SD Mean SD Mean SD Mean SD
w/o IW 0.093 0.003 0.128 0.008 0.100 0.005 0.212 0.012 0.187 0.008
Kernel uLSIF 0.089 0.002 0.114 0.006 0.094 0.004 0.200 0.009 0.179 0.006
Kernel KLIEP 0.089 0.002 0.116 0.006 0.094 0.004 0.205 0.011 0.184 0.008
uLSIF-NN 0.093 0.003 0.128 0.008 0.100 0.005 0.212 0.012 0.187 0.008
PU-NN 0.093 0.003 0.128 0.008 0.100 0.005 0.212 0.012 0.187 0.008
nnBD-LSIF 0.086 0.002 0.113 0.005 0.091 0.004 0.199 0.009 0.176 0.005
nnBD-PU 0.090 0.003 0.113 0.006 0.096 0.004 0.199 0.009 0.176 0.006

Domains (Train→ Test) elec→ elec kitchen→ books kitchen→ dvd kitchen→ elec kitchen→ kitchen
DRE method Mean SD Mean SD Mean SD Mean SD Mean SD
w/o IW 0.079 0.005 0.202 0.013 0.185 0.006 0.073 0.004 0.062 0.002
Kernel uLSIF 0.072 0.003 0.192 0.007 0.178 0.008 0.071 0.003 0.060 0.003
Kernel KLIEP 0.072 0.003 0.195 0.005 0.182 0.007 0.072 0.004 0.060 0.002
uLSIF-NN 0.079 0.005 0.202 0.013 0.185 0.006 0.073 0.004 0.062 0.002
PU-NN 0.079 0.005 0.202 0.013 0.185 0.006 0.073 0.004 0.062 0.002
nnBD-LSIF 0.071 0.003 0.189 0.008 0.174 0.008 0.068 0.003 0.058 0.003
nnBD-PU 0.074 0.004 0.190 0.008 0.174 0.008 0.068 0.003 0.062 0.005

Table 7. Average PD (Mean) with standard deviation (SD) over 10 trials with different seeds per method. The best performing method in
terms of the mean PD is specified by bold face.

Domains (Train→ Test) book→ dvd book→ elec book→ kitchen dvd→ elec dvd→ kitchen elec→ kitchen
DRE method Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
w/o IW 0.126 0.008 0.174 0.010 0.166 0.009 0.162 0.006 0.146 0.010 0.074 0.005
Kernel uLSIF 0.122 0.009 0.162 0.009 0.159 0.007 0.153 0.006 0.142 0.007 0.068 0.005
Kernel KLIEP 0.130 0.010 0.164 0.009 0.161 0.007 0.154 0.006 0.143 0.006 0.070 0.005
uLSIF-NN 0.126 0.008 0.174 0.010 0.166 0.009 0.162 0.006 0.146 0.010 0.074 0.005
PU-NN 0.126 0.008 0.174 0.010 0.166 0.009 0.162 0.006 0.146 0.010 0.074 0.005
nnBD-LSIF 0.120 0.008 0.160 0.008 0.157 0.008 0.148 0.006 0.138 0.007 0.066 0.005
nnBD-PU 0.119 0.008 0.160 0.008 0.156 0.007 0.148 0.005 0.138 0.007 0.066 0.005

Imai & Ratkovic (2014) is to estimate the ATE with estimating a nuisance density ratio estimator simultaneously. Therefore,
the density ratio itself is nuisance parameter; that is, they are not interested in the estimation performance of the density
ratio. Under their motivation, they are interested in a density ratio estimator satisfying the moment condition for estimating
the ATE, not in a density ratio estimator predicting the true density ratio well. In addition, while the direct DRE method
adopts linear-in-parameter models and neural networks (our work), it is not appropriate to use those methods with the CBPS
(Chernozhukov et al., 2018). This is because the density ratio estimator does not satisfy Donsker’s condition. Even naive
Ridge and Lasso regression estimators do not satisfy the Donsker’s condition. Therefore, when using machine learning
methods for estimating the density ratio, we cannot show asymptotic normality of an ATE estimator obtained by the CBPS;
therefore, we need to use the sample-splitting method by (Chernozhukov et al., 2018). This means that when using the
CBPS, we can only use a naive parametric linear model without regularization or classic nonparametric kernel regression.
Recently, for GMM with such non-Donsker nuisance estimators, Chernozhukov et al. (2016) also proposed a new GMM
method based on the conventional two-step approach. For these reasons, the CBPS is less relevant to the direct DRE context.

Off-policy evaluation with external validity. By the problem setting of combining causal inference and domain adapta-
tion, Uehara et al. (2020) recently proposed using covariate shift adaptation to solve the external validity problem in OPE,
i.e., the case that the distribution of covariates is the same between the historical and evaluation data (Cole & Stuart, 2010;
Pearl & Bareinboim, 2014).

Change point detection. The methods for change-point detection try to detect abrupt changes in time-series data
(Basseville & Nikiforov, 1993; Brodsky & Darkhovsky, 1993; Gustafsson, 2000; Nguyen et al., 2011). There are two
types of problem settings in change-point detection, namely the real-time detection (Adams, 2007; Garnett et al., 2009;
Paquet, 2007) and the retrospective detection (Basseville & Nikiforov, 1993; Yamanishi & Takeuchi, 2002). In retrospective
detection, which requires longer reaction periods, Liu et al. (2012) proposed using techniques of direct DRE. Whereas the
existing methods rely on linear-in-parameter models, our proposed method enables us to employ more complex models for
change point detection.
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Similarity-based sentiment analysis. Kato (2019) used the density ratio estimated from PU learning for sentiment
analysis of text data based on similarity.

H. Generalization error bound
The generalization error bound can be proved by building upon the proof techniques in Kiryo et al. (2017); Lu et al. (2020).

Notations for the theoretical analysis. We denote the set of real values by R and that of positive integers by N. Let
X ⊂ Rd. Let pnu(x) and pde(x) be probability density functions overX , and assume that the density ratio r∗(x) := pnu(x)

pde(x) is
existent and bounded: R := ‖r∗‖∞ <∞. Assume 0 < C < 1

R
. SinceR ≥ 1 (because 1 =

∫
pde(x)r∗(x)dx ≤ 1 ·‖r∗‖∞),

we have C ∈ (0, 1] and hence pmod := pde − Cpnu > 0.

Problem Setup. Let the hypothesis class of density ratio be H ⊂ {r : RD → (br, Br) =: Ir}, where 0 ≤ br < R <
Br. Let f : Ir → R be a twice continuously-differentiable convex function with a bounded derivative. Define f̃ by
∂f(t) = C(∂f(t)t− f(t)) + f̃(t), where ∂f is the derivative of f continuously extended to 0 and Br. Recall the definitions
`1(t) := ∂f(t)t− f(t) +A, `2(t) := −f̃(t), and

BDf (r) := Ede [∂f(r(X))r(X)− f(r(X)) +A]− Enu [∂f(r(X))]

= EÊmod [∂f(r(X))r(X)− f(r(X)) +A]− Enu

[
f̃(r(X))

]
= EÊmod`1(r(X)) + Enu`2(r(X))

(= (Ede − CEnu)`1(r(X)) + Enu`2(r(X))) ,

n̂nBDf (r) := ρ
(
Êmod`1(r(X))

)
+ Ênu`2(r(X))(

= ρ((Êde − CÊnu)`1(r(X)) + Ênu`2(r(X))
)
,

where we denoted Êmod = Êde − CÊnu and ρ is a consistent correction function with Lipschitz constant Lρ (Definition 1).

Remark 3. The true density ratio r∗ minimizes BDf .

Definition 1 (Consistent correction function (Lu et al., 2020)). A function f : R → R is called a consistent correction
function if it is Lipschitz continuous, non-negative and f(x) = x for all x ≥ 0.

Definition 2 (Rademacher complexity). Given n ∈ N and a distribution p, define the Rademacher complexityRpn(H) of a
function classH as

Rpn(H) := EpEσ

[
sup
r∈H

∣∣∣∣∣ 1n
n∑
i=1

σir(Xi)

∣∣∣∣∣
]
,

where {σi}ni=1 are Rademacher variables (i.e., independent variables following the uniform distribution over {−1,+1}) and
{Xi}ni=1

i.i.d.∼ p.

The theorem in the paper is a special case of Theorem 3 with ρ(·) := max{0, ·} (in which case Lρ = 1) and Theorem 4.

Theorem 3 (Generalization error bound). Assume that B` := supt∈Ir{max{|`1(t)|, |`2(t)|}} < ∞. Assume `1 is L`1-
Lipschitz and `2 is L`2-Lipschitz. Assume that there exists an empirical risk minimizer r̂ ∈ arg minr∈H n̂nBDf (r) and
a population risk minimizer r̄ ∈ arg minr∈H BDf (r). Also assume infr∈H EÊmod`1(r(X)) > 0 and that (ρ − Id) is
(Lρ−Id)-Lipschitz. Then for any δ ∈ (0, 1), with probability at least 1− δ, we have

BDf (r̂)− BDf (r̄) ≤ 8LρL`1Rpde
nde

(H) + 8(LρCL`1 + L`2)Rpnu
nnu

(H)

+ 2Φ(C,f,ρ)(nnu, nde) +B`

√
8

(
L2
ρ

nde
+

(1 + LρC)2

nnu

)
log

1

δ
,

where Φ(C,f,ρ)(nnu, nde) is defined as in Lemma 2.
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Proof. Since r̂ minimizes n̂nBDf , we have

BDf (r̂)− BDf (r̄) = BDf (r̂)− n̂nBDf (r̂) + n̂nBDf (r̂)− BDf (r̄)

≤ BDf (r̂)− n̂nBDf (r̂) + n̂nBDf (r̄)− BDf (r̄)

≤ 2 sup
r∈H
|n̂nBDf (r)− BDf (r)|

≤ 2 sup
r∈H
|n̂nBDf (r)− En̂nBDf (r)|︸ ︷︷ ︸

Maximal deviation

+ 2 sup
r∈H
|En̂nBDf (r)− BDf (r)|︸ ︷︷ ︸

Bias

.

We apply McDiarmid’s inequality (McDiarmid, 1989; Mohri et al., 2018) to the maximal deviation term. The absolute
value of the difference caused by altering one data point in the maximal deviation term is bounded from above by 2B`

Lρ
nde

if

the altered point is a sample from pde and 2B`
1+LρC
nnu

if it is from pnu. Therefore, McDiarmid’s inequality implies, with
probability at least 1− δ, that we have

sup
r∈H
|n̂nBDf (r)− En̂nBDf (r)|

≤ E
[

sup
r∈H
|n̂nBDf (r)− En̂nBDf (r)|

]
︸ ︷︷ ︸

Expected maximal deviation

+B`

√
2

(
L2
ρ

nde
+

(1 + LρC)2

nnu

)
log

1

δ
.

Applying Lemma 1 to the expected maximal deviation term and Lemma 2 to the bias term, we obtain the assertion.

The following lemma generalizes the symmetrization lemmas proved in Kiryo et al. (2017) and Lu et al. (2020).

Lemma 1 (Symmetrization under Lipschitz-continuous modification). Let 0 ≤ a < b, J ∈ N, and {Kj}Jj=1 ⊂ N. Given
i.i.d. samples D(j,k) := {Xi}

n(j,k)

i=1 each from a distribution p(j,k) over X , consider a stochastic process Ŝ indexed by
F ⊂ (a, b)X of the form

Ŝ(f) =

J∑
j=1

ρj

 Kj∑
k=1

Ê(i,j)[`(j,k)(f(X))]

 ,

where each ρj is a Lρj -Lipschitz function on R, `(j,k) is a L`(j,k)
-Lipschitz function on (a, b), and Ê(i,j) denotes the

expectation with respect to the empirical measure of D(j,k). Denote S(f) := EŜ(f) where E is the expectation with respect
to the product measure of {D(j,k)}(j,k). Here, the index j denotes the grouping of terms due to ρj , and k denotes each
sample average term. Then we have

E sup
f∈F
|Ŝ(f)− S(f)| ≤ 4

J∑
j=1

Kj∑
k=1

LρjL`(j,k)
Rn(j,k),p(j,k)

(F).

Proof. First, we consider a continuous extension of `(j,k) defined on (a, b) to [0, b). Since the functions in F take values
only in (a, b), this extension can be performed without affecting the values of Ŝ(f) or S(f). We extend the function
by defining the values for x ∈ [0, a] as `(j,k)(x) := limx′↓a `(j,k)(x

′), where the right-hand side is guaranteed to exist
since `(j,k) is Lipschitz continuous hence uniformly continuous. Then, `(j,k) remains a Lρj -Lipschitz continuous function
on [0, b). Now we perform symmetrization (Vapnik, 1998), deal with ρj’s, and then bound the symmetrized process by
Rademacher complexity. Denoting independent copies of {X(j,k)} by {X(gh)

j,k }(j,k) and the corresponding expectations as
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well as the sample averages with (gh),

E sup
f∈F
|Ŝ(f)− S(f)|

≤
J∑
j=1

E sup
f∈F
|ρj(

Kj∑
k=1

Ê(i,j)`(j,k)(f(X)))− E(gh)ρj(

Kj∑
k=1

Ê(gh)
(j,k)`(j,k)(f(X(gh))))|

≤
J∑
j=1

EE(gh) sup
f∈F
|ρj(

Kj∑
k=1

Ê(i,j)`(j,k)(f(X)))− ρj(
Kj∑
k=1

Ê(gh)
(j,k)`(j,k)(f(X(gh))))|

≤
J∑
j=1

Lρj

Kj∑
k=1

EE(gh) sup
f∈F
|Ê(i,j)`(j,k)(f(X))− Ê(gh)

(j,k)`(j,k)(f(X(gh)))|

=

J∑
j=1

Lρj

Kj∑
k=1

EE(gh) sup
f∈F
|Ê(i,j)(`(j,k)(f(X))− `(j,k)(0))− Ê(gh)

(j,k)(`(j,k)(f(X(gh)))− `(j,k)(0))|

≤
J∑
j=1

Lρj

Kj∑
k=1

(
2Rn(j,k),p(j,k)

({`(j,k) ◦ f − `(j,k)(0) : f ∈ F})
)

≤
J∑
j=1

Lρj

Kj∑
k=1

2 · 2L`(j,k)
Rn(j,k),p(j,k)

(F),

where we applied Talagrand’s contraction lemma for two-sided Rademacher complexity (Ledoux & Talagrand, 1991; Bartlett
& Mendelson, 2001) with respect to (t 7→ `(j,k)(t)− `(j,k)(0)) in the last inequality.

Lemma 2 (Bias due to risk correction). Assume infr∈H EÊmod`1(r(X)) > 0 and that (ρ− Id) is (Lρ−Id)-Lipschitz on R.
There exists α > 0 such that

sup
r∈H
|En̂nBDf (r)− BDf (r)| ≤ (1 + C)B`Lρ−Id exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)
=: Φ(C,f,ρ)(nnu, nde).

Remark 4. Note that we already have pmod ≥ 0 and `1 ≥ 0 and hence infr∈H EÊmod`1(r(X)) ≥ 0. Therefore, the
assumption of Lemma 2 is essentially referring to the strict positivity of the infimum. Here, EÊmod and P (·) denote the
expectation and the probability with respect to the joint distribution of the samples included in Êmod.

Proof. Fix an arbitrary r ∈ H. We have

|En̂nBDf (r)− BDf (r)| = |E[n̂nBDf (r)− B̂Df (r)]|

= |E[ρ(Êmod`1(r(X)))− Êmod`1(r(X))]| ≤ E
[
|ρ(Êmod`1(r(X)))− Êmod`1(r(X))|

]
= E

[
1{ρ(Êmod`1(r(X))) 6= Êmod`1(r(X))} · |ρ(Êmod`1(r(X)))− Êmod`1(r(X))|

]
≤ E

[
1{ρ(Êmod`1(r(X))) 6= Êmod`1(r(X))}

](
sup

s:|s|≤(1+C)B`

|ρ(s)− s|

)

where 1{·} denotes the indicator function, and we used |Êmod`1(r(X))| ≤ (1 + C)B`. Further, we have

sup
s:|s|≤(1+C)B`

|ρ(s)− s| ≤ sup
s:|s|≤(1+C)B`

|(ρ− Id)(s)− (ρ− Id)(0)|+ |(ρ− Id)(0)|

≤ sup
s:|s|≤(1+C)B`

Lρ−Id|s− 0|+ 0 ≤ (1 + C)B`Lρ−Id,
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where Id denotes the identity function. On the other hand, since infr∈H EÊmod`1(r(X)) > 0 is assumed, there exists α > 0

such that for any r ∈ H, EÊmod`1(r(X)) > α. Therefore, denoting the support of a function by supp(·),

E
[
1{ρ(Êmod`1(r(X))) 6= Êmod`1(r(X))}

]
= P

(
Êmod`1(r(X)) ∈ supp(ρ− Id)

)
≤ P

(
Êmod`1(r(X)) < 0

)
≤ P

(
Êmod`1(r(X)) < EÊmod`1(r(X))− α

)
holds. Now we apply McDiarmid’s inequality to the right-most quantity. The absolute difference caused by altering one
data point in Êmod`1(r(X)) is bounded by B`

nde
if the change is in a sample from pde and CB`

nnu
otherwise. Therefore,

McDiarmid’s inequality implies

P
(
Êmod`1(r(X)) < EÊmod`1(r(X))− α

)
≤ exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)
.

Theorem 4 (Generalization error bound). Under Assumption 3, for any δ ∈ (0, 1), with probability at least 1− δ, we have

BDf (r̂)− BDf (r̄) ≤ L`1Rpde
nde

(H) + 8(CL`1 + L`2)Rpnu
nnu

(H) + 2ΦfC(nnu, nde) +B`

√
8
(

1
nde

+ (1+C)2

nnu

)
log 1

δ , where

ΦfC(nnu, nde) := (1 + C)B` exp
(
− 2α2

(B`2/nde)+(C2B`2/nnu)

)
and α > 0 is a constant determined in the proof of Lemma 2

in Appendix H.

Remark 5 (Explicit form of the bound in Theorem 1). Here, we show the explicit form of the bound in Theorem 1 as
follows:

BDf (r̂)− BDf (r̄)

≤ κ1√
nde

+
κ2√
nnu

+ 2ΦfC(nnu, nde) +B`

√
8

(
1

nde
+

(1 + C)2

nnu

)
log

1

δ

= L`1

Bpde

(√
2 log(2)L+ 1

)∏L
j=1BWj

√
nde

+ 8(CL`1 + L`2)
Bpnu

(√
2 log(2)L+ 1

)∏L
j=1BWj

√
nnu

+ 2(1 + C)B` exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)

+B`

√
8

(
1

nde
+

(1 + C)2

nnu

)
log

1

δ
.

I. Rademacher complexity bound
The following lemma provides an upper-bound on the Rademacher complexity for multi-layer perceptron models in terms
of the Frobenius norms of the parameter matrices. Alternatively, other approaches to bound the Rademacher complexity can
be employed. The assertion of the lemma follows immediately from the proof of Theorem 1 of Golowich et al. (2019) after
a slight modification to incorporate the absolute value function in the definition of Rademacher complexity.

Lemma 3 (Rademacher complexity bound (Golowich et al., 2019, Theorem 1)). Assume the distribution p has a bounded
support: Bp := supx∈supp(p) ‖x‖ <∞. LetH be the class of real-valued networks of depth L over the domain X , where
each parameter matrix Wj has Frobenius norm at most BWj

≥ 0, and with 1-Lipschitz activation functions ϕj which are
positive-homogeneous (i.e., ϕj is applied element-wise and ϕj(αt) = αϕj(t) for all α ≥ 0). Then

Rpn(H) ≤
Bp

(√
2 log(2)L+ 1

)∏L
j=1BWj

√
n

.
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Proof. The assertion immediately follows once we modify the beginning of the proof of Theorem 1 by introducing the
absolute value function inside the supremum of the Rademacher complexity as

Eσ

[
sup
r∈H

∣∣∣∣∣
n∑
i=1

σir(xi)

∣∣∣∣∣
]
≤ 1

λ
logEσ sup

r∈H
exp

(
λ

∣∣∣∣∣∑
i=1

σir(xi)

∣∣∣∣∣
)
.

for λ > 0. The rest of the proof is identical to that of Theorem 1 of Golowich et al. (2019).

J. Proof of Theorem 2
We consider relating the L2 error bound to the BD generalization error bound in the following lemma.

Lemma 4 (L2 distance bound). Let H := {r : X → (br, Br) =: Ir|
∫
|r(x)|2dx < ∞} and assume r∗ ∈ H. If

inft∈Ir f
′′(t) > 0, then there exists µ > 0 such that for all r ∈ H,

‖r − r∗‖2L2(pde) ≤
2

µ
(BDf (r)− BDf (r∗))

holds.

Proof. Since µ := inft∈Ir f
′′(t) > 0, the function f is µ-strongly convex. By the definition of strong convexity,

BDf (r)− BDf (r∗) = (BDf (r)− Edef(r∗(X)))− (BDf (r∗) + Edef(r∗(X)))︸ ︷︷ ︸
= 0

= Ede [f(r∗(X))− f(r(X)) + ∂f(r(X))(r∗(X)− r(X))]

≥ Ede

[µ
2

(r∗(X)− r(X))2
]

=
µ

2
‖r∗ − r‖2L2(pde).

Lemma 5 (`2 distance bound). Fix r ∈ H. Given n samples {xi}ni=1 from pde, with probability at least 1− δ, we have

1

n

n∑
i=1

(r(xi)− r∗(xi))2 ≤ E
[
(r − r∗)2(X)

]︸ ︷︷ ︸
= ‖r − r∗‖2

L2(pde)

+(2R)2

√
log 1

δ

2n
.

Proof. The assertion follows from McDiarmid’s inequality after noting that altering one sample results in an absolute change
bounded by 1

n (2R)2.

Thus, a generalization error bound in terms of BDf can be converted to that of an L2 distance when the true density ratio
and the density ratio model are square-integrable and f is strongly convex. However, when using the result of Theorem 1,
the convergence rate shown here is slower than OP

(
(min {nde, nnu})−1/(4)

)
. On the other hand, Kanamori et al. (2012)

derived OP
(
(min {nde, nnu})−1/(2+γ)

)
convergence rate. To derive this bound when using neural network, we need to

restrict the neural network models. In the following part, we prove Theorem 2 for the following hypothesis classH.

Definition 3 (ReLU neural networks; Schmidt-Hieber, 2020). For L ∈ N and p = (p0, . . . , pL+1) ∈ NL+2,

F(L, p) :={f : x 7→WLσvLWL−1σvL−1
· · ·W1σv1

W0x :

Wi ∈ Rpi+1×pi , vi ∈ Rpi(i = 0, . . . , L)},

where σv(y) := σ(y − v), and σ(·) = max{·, 0} is applied in an element-wise manner. Then, for s ∈ N, F ≥ 0, L ∈ N,
and p ∈ NL+2, define

H(L, p, s, F ) := {f ∈ F(L, p) :

L∑
j=0

‖Wj‖0 + ‖vj‖0 ≤ s, ‖f‖∞ ≤ F},
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where ‖ · ‖0 denotes the number of non-zero entries of the matrix or the vector, and ‖ · ‖∞ denotes the supremum norm.
Now, fixing L̄, p̄, s ∈ N as well as F > 0, we define

IndL̄,p̄ := {(L, p) : L ∈ N, L ≤ L̄, p ∈ [p̄]L+2},

and we consider the hypothesis class

H̄ :=
⋃

(L,p)∈IndL̄,p̄

H(L, p, s, F )

H := {r ∈ H̄ : Im(r) ⊂ (br, Br)}.

Moreover, we define I1 : IndL̄,p̄ → R and I : H → [0,∞) by

I1(L, p) := 2|IndL̄,p̄|
1
s+1 (L+ 1)V 2,

I(r) := max

‖r‖∞, min
(L,p)∈IndL̄,p̄

r∈H(L,p,s,F )

I1(L, p)

 ,

where V :=
∏L+1
l=0 (pl + 1), and we define

HM := {r ∈ H : I(r) ≤M}.

Note that the requirement for the hypothesis class of Theorem 1 is not as tight as that of Theorem 2. Then, we prove
Theorem 2 as follows:

Proof. Thanks to the strong convexity, by Lemma 4, we have

µ

2
‖r̂ − r∗‖2L2(pde) ≤ BDf (r̂)− BDf (r∗)

= BDf (r̂)− BDf (r∗)

−B̂Df (r̂) + B̂Df (r̂)︸ ︷︷ ︸
= 0

−n̂nBDf (r̂) + n̂nBDf (r̂)︸ ︷︷ ︸
= 0

−B̂Df (r∗) + B̂Df (r∗)︸ ︷︷ ︸
= 0

≤ BDf (r̂)− B̂Df (r̂) + (B̂Df (r̂)− n̂nBDf (r̂))

+ (n̂nBDf (r∗)− B̂Df (r∗)) + B̂Df (r∗)− BDf (r∗)

≤ (BDf (r̂)− BDf (r∗) + B̂Df (r∗)− B̂Df (r̂))︸ ︷︷ ︸
=: A

+ 2 sup
r∈H
|B̂Df (r)− n̂nBDf (r)|︸ ︷︷ ︸

=: B

,

where we used n̂nBDf (r̂) ≤ n̂nBDf (r∗). To bound A, for ease of notation, let `r1 = `1(r(X)) and `r2 = `2(r(X)). Then,
since

BDf (r) = Ede`1(r(X))− CEnu`1(r(X)) + Enu`2(r(X)),

B̂Df (r) = Êde`1(r(X))− CÊnu`1(r(X)) + Ênu`2(r(X)),

we have

A = BDf (r̂)− BDf (r∗) + B̂Df (r∗)− B̂Df (r̂)

= (Ede − Êde)(`r̂1 − `r
∗

1 )− C(Enu − Ênu)(`r̂1 − `r
∗

1 ) + (Enu − Ênu)(`r̂2 − `r
∗

2 )

≤ |(Ede − Êde)(`r̂1 − `r
∗

1 )|+ C|(Enu − Ênu)(`r̂1 − `r
∗

1 )|+ |(Enu − Ênu)(`r̂2 − `r
∗

2 )|
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By applying Lemma 10, for any 0 < γ < 2, we have

A ≤ OP

max

 ‖r̂ − r
∗‖1−γ/2L2(pde)√

min {nde, nnu}
,

1

(min {nde, nnu})2/(2+γ)


 .

On the other hand, by Lemma 12 and Lemma 7, and the assumption infr∈H EÊmod`1(r(X)) > 0, there exists α > 0 such
that we have B ≤ OP

(
exp

(
− 2α2

(B`2/nde)+(C2B`2/nnu)

))
. Combining the above bounds on A and B, for any 0 < γ < 2,

we get

‖r̂ − r∗‖2L2(pde) ≤ OP

max

 ‖r̂ − r
∗‖1−γ/2L2(pde)√

min {nde, nnu}
,

1

(min {nde, nnu})2/(2+γ)




+OP

(
exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

))

≤ OP

max

 ‖r̂ − r
∗‖1−γ/2L2(pde)√

min {nde, nnu}
,

1

(min {nde, nnu})2/(2+γ)


 .

As a result, we have

‖r̂ − r∗‖L2(pde) ≤ OP

(
(min {nde, nnu})−

1
2+γ

)
.

Each lemma used in the proof is provided as follows.

J.1. Complexity of the hypothesis class

For the function classes in Definition 3, we have the following evaluations of their complexities.

Lemma 6 (Lemma 5 in Schmidt-Hieber (2020)). For L ∈ N and p ∈ NL+2, let V :=
∏L+1
l=0 (pl + 1). Then, for any δ > 0,

logN (δ,H(L, p, s,∞), ‖ · ‖∞) ≤ (s+ 1) log(2δ−1(L+ 1)V 2).

Lemma 7. There exists c > 0 such that

Rpnu
nnu

(H) ≤ cn−1/2
nu , Rpde

nde
(H) ≤ cn−1/2

de .

Proof. By Dudley’s entropy integral bound (Wainwright, 2019, Theorem 5.22) and Lemma 6, we have

Rpnu
nnu

(H(L, p, s, F )) ≤ 32

∫ 2F

0

√
logN (δ,H(L, p, s, F ), ‖ · ‖∞)

nnu
dδ

=

(
32

∫ 2F

0

(
(s+ 1) log(2δ−1(L+ 1)V 2)

)1/2
dδ

)
n−1/2

nu .

Therefore, there exists c > 0 such that

Rpnu
nnu

(H) ≤
∑

(L,p)∈IndL̄,p̄

Rpnu
nnu

(H(L, p, s, F )) ≤ cn−1/2
nu .

The same argument applies toRpde
nde

(H), and we obtain the assertion.
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Lemma 8. There exists c0 > 0 such that for any γ > 0, any δ > 0, and any M ≥ 1, we have

logN (δ,HM , ‖ · ‖∞) ≤ s+ 1

γ

(
M

δ

)γ
.

and

sup
r∈HM

‖r − r∗‖∞ ≤ c0M.

Proof. The first assertion is a result of the following calculation:

logN (δ,HM , ‖ · ‖∞) ≤ log
∑

(L,p)∈IndL̄,p̄

I1(L,p)≤M

N (δ,H(L, p, s,M), ‖ · ‖∞)

≤ log
∑

(L,p)∈IndL̄,p̄

I1(L,p)≤M

(
2

δ
(L+ 1)V 2

)s+1

≤ log |IndL̄,p̄|
(

1

δ
M |IndL̄,p̄|−

1
s+1

)s+1

= (s+ 1) log

(
M

δ

)
< (s+ 1)

1

γ

(
M

δ

)γ
,

where the first inequality follows from HM ⊂
⋃

(L,p)∈IndL̄,p̄:I1(L,p)≤M H(L, p, s, F ), and the last inequality from

γ log x
1
γ = log x < x that holds for all x, γ > 0.

The second assertion can be confirmed by noting that for any r ∈ HM with M ≥ 1,

‖r − r∗‖∞ ≤ ‖r‖∞ + ‖r∗‖∞ ≤M + ‖r∗‖∞

≤
(

1 +
‖r∗‖∞
M

)
M ≤ (1 + ‖r∗‖∞)M

holds.

Definition 4 (Derived function class and bracketing entropy). Given a real-valued function class F , define ` ◦ F := {` ◦ f :
f ∈ F}. By extension, we define I : ` ◦ H → [1,∞) by I(` ◦ r) = I(r) and ` ◦ HM := {` ◦ r : r ∈ HM}. Note that, as a
result, ` ◦ HM coincides with {` ◦ r ∈ ` ◦ H : I(` ◦ r) ≤M}.
Lemma 9. Let ` : (br, Br) → R be a ν-Lipschitz continuous function. Let HB

(
δ,F , ‖ · ‖L2(P )

)
denote the bracketing

entropy of F with respect to a distribution P . Then, for any distribution P , any γ > 0, any M ≥ 1, and any δ > 0, we have

HB

(
δ, ` ◦ HM , ‖ · ‖L2(P )

)
≤ (s+ 1)(2ν)γ

γ

(
M

δ

)γ
.

Moreover, there exists c0 > 0 such that for any M ≥ 1 and any distribution P ,

sup
`◦r∈`◦HM

‖` ◦ r − ` ◦ r∗‖L2(P ) ≤ c0νM,

sup
`◦r∈`◦HM

‖`◦r−`◦r∗‖L2(P )≤δ

‖` ◦ r − ` ◦ r∗‖∞ ≤ c0νM, for all δ > 0.

Proof. By combining Lemma 2.1 in van de Geer (2000) with Lemma 6, we have

HB

(
δ, ` ◦ HM , ‖ · ‖L2(P )

)
≤ logN

(
δ

2
, ` ◦ HM , ‖ · ‖∞

)
,

≤ logN
(
δ

2ν
,HM , ‖ · ‖∞

)
≤ s+ 1

γ

(
2νM

δ

)γ
.
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For M ≥ 1, we have

sup
`◦r∈`◦HM

‖` ◦ r − ` ◦ r∗‖L2(P ) ≤ sup
`◦r∈`◦HM

‖` ◦ r − ` ◦ r∗‖∞

sup
`◦r∈`◦HM

‖`◦r−`◦r∗‖L2(P )≤δ

‖` ◦ r − ` ◦ r∗‖∞ ≤ sup
`◦r∈`◦HM

‖` ◦ r − ` ◦ r∗‖∞,

and Lemma 6 implies

sup
`◦r∈`◦HM

‖` ◦ r − ` ◦ r∗‖∞ ≤ sup
r∈HM

ν‖r − r∗‖∞ ≤ νc0M.

J.2. Bounding the empirical deviations

Lemma 10. Under the conditions of Theorem 2, for any 0 < γ < 2, we have

|(Ede − Êde)(`r̂1 − `r
∗

1 )| = OP

max

‖r̂ − r
∗‖1−γ/2L2(pde)√
nde

,
1

n
2/(2+γ)
de




|(Enu − Ênu)(`r̂1 − `r
∗

1 )| = OP

max

‖r̂ − r
∗‖1−γ/2L2(pde)√
nnu

,
1

n
2/(2+γ)
nu




|(Enu − Ênu)(`r̂2 − `r
∗

2 )| = OP

max

‖r̂ − r
∗‖1−γ/2L2(pde)√
nnu

,
1

n
2/(2+γ)
nu




as nnu, nde →∞.

Proof. Since 0 < γ < 2, we can apply Lemma 11 in combination with Lemma 9 to obtain

sup
r∈H

|(Ede − Êde)(`r1 − `r
∗

1 )|
D1(r)

= OP (1) ,

sup
r∈H

|(Enu − Ênu)(`r1 − `r
∗

1 )|
D2(r)

= OP (1) ,

sup
r∈H

|(Enu − Ênu)(`r2 − `r
∗

2 )|
D3(r)

= OP (1) ,

where

D1(r) = max

‖`
r
1 − `r

∗

1 ‖
1−γ/2
L2(pde)I(`r1)γ/2

√
nde

,
I(`r1)

n
2/(2+γ)
de

 ,

D2(r) = max

‖`
r
1 − `r

∗

1 ‖
1−γ/2
L2(pnu)I(`r1)γ/2

√
nnu

,
I(`r1)

n
2/(2+γ)
nu

 ,

D3(r) = max

‖`
r
2 − `r

∗

2 ‖
1−γ/2
L2(pnu)I(`r2)γ/2

√
nnu

,
I(`r2)

n
2/(2+γ)
nu

 ,

Noting that supr∈H I(r) <∞, that `2, `1 are Lipschitz continuous, and that ‖r̂ − r∗‖L2(pnu) ≤
(

supx∈X

∣∣∣pnu(x)
pde(x)

∣∣∣) ‖r̂ −
r∗‖L2(pde) holds, we have the assertion.
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Following is a proposition originally presented in van de Geer (2000), which was rephrased in Kanamori et al. (2012) in a
form that is convenient for our purpose.
Lemma 11 (Lemma 5.14 in van de Geer (2000), Proposition 1 in Kanamori et al. (2012)). Let F ⊂ L2(P ) be a function
class and the map I(f) be a complexity measure of f ∈ F , where I is a non-negative function on F and I(f0) <∞ for a
fixed f0 ∈ F . We now define FM = {f ∈ F : I(f) ≤M} satisfying F =

⋃
M≥1 FM . Suppose that there exist c0 > 0 and

0 < γ < 2 such that

sup
f∈FM

‖f − f0‖ ≤ c0M, sup
f∈FM

‖f−f0‖L2(P )≤δ

‖f − f0‖∞ ≤ c0M, for all δ > 0,

and that HB(δ,FM , P ) = O (M/δ)
γ . Then, we have

sup
f∈F

∣∣∫ (f − f0)d(P − Pn)
∣∣

D(f)
= OP (1) , (n→∞),

where D(f) is defined by

D(f) = max

‖f − f0‖1−γ/2L2(P ) I(f)γ/2
√
n

,
I(f)

n2/(2+γ)

 .

J.3. Bounding the difference of the BD estimators

Lemma 12. AssumeRpde
nde

(H) = O(1)(nde →∞) andRpnu
nnu

(H) = O(1)(nnu →∞). Also assume the same conditions as
Theorem 3. Then,

sup
r∈H
|n̂nBDf (r)− B̂Df (r)| = OP

(
exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

))
as nnu, nde →∞.

Proof. First, by combining Lemma 13, the assumption on the Rademacher complexities, and Markov’s inequality, there
exist α > 0 and n0

de, n
0
nu ∈ N such that for any nde ≥ n0

de and nnu ≥ n0
nu and any δ ∈ (0, 1), we have with probability at

least 1− δ,

sup
r∈H
|n̂nBDf (r)− B̂Df (r)| ≤ (1 + C)B`Lρ−Id

δ
exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)
.

Therefore, we have the assertion.

Lemma 13. AssumeRpde
nde

(H) = O(1)(nde →∞) andRpnu
nnu

(H) = O(1)(nnu →∞). Also assume the same conditions as
Theorem 3. Then, there exist α > 0 and n0

de, n
0
nu ∈ N such that for any nde ≥ n0

de and nnu ≥ n0
nu,

E
[

sup
r∈H
|n̂nBDf (r)− B̂Df (r)|

]
≤ (1 + C)B`Lρ−Id exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)
holds.

Proof. First, we have

E
[

sup
r∈H
|n̂nBDf (r)− B̂Df (r)|

]
= E

[
sup
r∈H

∣∣∣ρ(Êmod`1(r(X)))− Êmod`1(r(X))
∣∣∣]

= E
[

sup
r∈H

1{ρ(Êmod`1(r(X))) 6= Êmod`1(r(X))} · |ρ(Êmod`1(r(X)))− Êmod`1(r(X))|
]

≤ E
[

sup
r∈H

1{ρ(Êmod`1(r(X))) 6= Êmod`1(r(X))}
](

sup
s:|s|≤(1+C)B`

|ρ(s)− s|

)
,



Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation

where 1{·} denotes the indicator function, and we used |Êmod`1(r(X))| ≤ (1 + C)B`. Further, we have

sup
s:|s|≤(1+C)B`

|ρ(s)− s| ≤ sup
s:|s|≤(1+C)B`

|(ρ− Id)(s)− (ρ− Id)(0)|+ |(ρ− Id)(0)|

≤ sup
s:|s|≤(1+C)B`

Lρ−Id|s− 0|+ 0 ≤ (1 + C)B`Lρ−Id,

where Id denotes the identity function. On the other hand, since infr∈H EÊmod`1(r(X)) > 0 is assumed, there exists β > 0

such that for any r ∈ H, EÊmod`1(r(X)) > β. Therefore, denoting the support of a function by supp(·),

E
[

sup
r∈H

1{ρ(Êmod`1(r(X))) 6= Êmod`1(r(X))}
]

= E
[

sup
r∈H

1{Êmod`1(r(X)) ∈ supp(ρ− Id)}
]

= E
[

sup
r∈H

1{Êmod`1(r(X)) < 0}
]

= E
[
1{∃r ∈ H : Êmod`1(r(X)) < 0}

]
= P

(
∃r ∈ H : Êmod`1(r(X)) < 0

)
≤ P

(
∃r ∈ H : Êmod`1(r(X)) < EÊmod`1(r(X))− β

)
≤ P

(
β < sup

r∈H
(EÊmod`1(r(X))− Êmod`1(r(X)))

)
.

Take an arbitrary α ∈ (0, β). Since Rpde
nde

(H) → 0(nde → ∞) and Rpnu
nnu

(H) → 0(nnu → ∞), we can apply Lemma 14
and obtain the assertion.

Lemma 14. Let β > α > 0. Assume that there exist n0
de, n

0
nu ∈ N such that for any nde ≥ n0

de and nnu ≥ n0
nu,

4L`1Rpde
nde

(H) + 4CL`1Rpnu
nnu

(H) < β − α.

Then, for any nde ≥ n0
de and nnu ≥ n0

nu, we have

P
(
β < sup

r∈H
(EÊmod`1(r(X))− Êmod`1(r(X)))

)
≤ exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)
.

Proof. First, we will apply McDiarmid’s inequality. The absolute difference caused by altering one data point in
supr∈H(EÊmod`1(r(X)) − Êmod`1(r(X))) is bounded by B`

nde
if the change is in a sample from pde and CB`

nnu
other-

wise. This can be confirmed by letting Ê′mod denote the sample averaging operator obtained by altering one data point in
Êmod and observing

sup
r∈H
{EÊmod`1(r(X))− Êmod`1(r(X))} − sup

r∈H
{EÊmod`1(r(X))− Ê′mod`1(r(X))}

≤ sup
r∈H
{EÊmod`1(r(X))− Êmod`1(r(X))− (EÊmod`1(r(X))− Ê′mod`1(r(X)))}

≤ sup
r∈H
{Ê′mod`1(r(X))− Êmod`1(r(X))}.

The right-most expression can be bounded by B`
nde

if the change is in a sample from pde and CB`
nnu

otherwise. Likewise,
supr∈H(EÊmod`1(r(X))− Ê′mod`1(r(X)))−supr∈H(EÊmod`1(r(X))− Êmod`1(r(X))) can be bounded by one of these
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quantities. Therefore, we have∣∣∣∣sup
r∈H
{EÊmod`1(r(X))− Êmod`1(r(X))} − sup

r∈H
{EÊmod`1(r(X))− Ê′mod`1(r(X))}

∣∣∣∣
≤ B`
nde

+
CB`
nnu

,

and McDiarmid’s inequality implies, for any ε > 0,

P
(
ε < sup

r∈H
(EÊmod`1(r(X))− Êmod`1(r(X)))− E

[
sup
r∈H

(EÊmod`1(r(X))− Êmod`1(r(X)))

])
≤ exp

(
− 2ε2

(B`
2/nde) + (C2B`

2/nnu)

)
.

(10)

Now, applying Lemma 1, we have

E
[

sup
r∈H

(EÊmod`1(r(X))− Êmod`1(r(X)))

]
≤ E

[
sup
r∈H
|Ede`1(r(X))− Êde`1(r(X))|

]
+ CE

[
sup
r∈H
|Enu`1(r(X))− Ênu`1(r(X))|

]
≤ 4L`1Rpde

nde
(H) + 4CL`1Rpnu

nnu
(H) =: R.

By the assumption, if nde ≥ n0
de and nnu ≥ n0

nu, we haveR < β − α. Therefore,

E
[

sup
r∈H

(EÊmod`1(r(X))− Êmod`1(r(X)))

]
< β − α < β,

hence β − E
[
supr∈H(EÊmod`1(r(X))− Êmod`1(r(X)))

]
> 0. Therefore, we can take ε = β −

E
[
supr∈H(EÊmod`1(r(X))− Êmod`1(r(X)))

]
in Equation (10) to obtain

P
(
β < sup

r∈H
(EÊmod`1(r(X))− Êmod`1(r(X)))

)

≤ exp

−2(β − E
[
supr∈H(EÊmod`1(r(X))− Êmod`1(r(X)))

]
)2

(B`
2/nde) + (C2B`

2/nnu)


≤ exp

(
− 2(β −R)2

(B`
2/nde) + (C2B`

2/nnu)

)
≤ exp

(
− 2α2

(B`
2/nde) + (C2B`

2/nnu)

)
,

where we used 0 < α < β −R.


