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When Does Data Augmentation Help With Membership Inference Attacks?
Supplementary Material

A Impact of N on the Membership Inference
Attack Success

The MIAs we used assume that the adversary is in the pos-
session of N data samples from S (the training set) and N
data samples from D (the testing set). We set N = 100
as a reasonable assumption, in our main paper. In this sec-
tion, we evalaute the impact of lower (N = 50) or higher
(N = 250) values of N on the MIA success. In Table 5,
we present the results on CIFAR-100 for the maximum ac-
curacy setting, i.e., augmentation is applied to boost the
model’s accuracy. We see that reducing N to 50, from 100,
reduces the attack success at most by 7% in the case of
Gaussian augmentation (GA). Similarly, increasing N to
250, from 100, increases the attack success at most by 13%
in the case of Mixup (MU). These results show that after
a certain amount of samples, e.g., N = 50, having more
samples lead to diminishing returns on the MIA success.
As decreasing N makes the assumption becomes weaker
and more realistic, this also highlights the practicality of
black-box MIAs.

Table 5: The impact of the # of attacker’s samples (N )
on the MIA success in the maximum accuracy setting
in Table 1. Each line presents Advstd (left) and Advpow
(right). The models are trained on CIFAR-100.

MECH. N = 50 N = 100 N = 250

SL 20.6 / 39.1 20.8 / 39.7 21.4 / 40.0

LS 57.0 / 74.1 61.4 / 75.6 59.6 / 75.8

DL 46.0 / 63.1 49.7 / 64.0 50.2 / 64.1

RC 33.0 / 30.6 32.7 / 32.0 32.7 / 33.1

CO 33.3 / 33.3 34.9 / 33.9 34.9 / 34.3

GA 54.1 / 62.4 58.7 / 62.5 58.8 / 62.2

MU 43.6 / 49.1 45.1 / 57.0 51.4 / 55.5

B Augmentation-Aware MIAs

The black-box MIAs we applied use the victim model’s
output on a data sample to infer whether this samples was
in S. Because our MIAs are unaware of how the model

is trained, the adversary uses the original, unaugmented,
data sample ((xt, yt)) to query the model and to infer
membership. On the other hand, Yu et al. (2020) shows
that an augmentation-aware MIA can boost the attack suc-
cess when the victim model is trained with augmentation.
Compared to an unaware MIA, their attacks have ∼15%
higher success rate, which leads them to argue that unaware
MIAs underestimate the risk. As we apply unaware attacks
against the augmentation methods, we also might have un-
derestimated of the risk. The main intuition behind these
attacks is that a model trained with augmentation can over-
fit on the augmented samples. For example, a model trained
with Gaussian augmentation becomes much more resilient
to noise (Cohen et al., 2019). This overfitting effect gives
more leverage to augmentation-aware MIAs.

In this section, we apply augmentation-aware attacks to
evalaute whether they change the trends we highlighted
in our paper. These attacks, instead of querying the model
with the original sample, query the model with a set of sam-
ples generated based on the victim’s augmentation strat-
egy. For example, against the random cropping (RC), the
attacker creates M different versions of (xt, yt), each ran-
domly cropped based on the victim’s RC parameter (P).
Further, against soft labels (SL), the attacker can query the
teacher model, which generated victim’s training labels,
and computes the victim’s loss using these soft labels. Af-
ter collecting the set loss values on the augmented samples,
the attacker then computes simple statistics on this set, e.g.,
taking the average or the median. Finally, the attacker com-
pares this statistics with a tuned threshold τ to infer the
membership of (xt, yt), similar to the unaware attacks.

In Table 6, we compare the success of the powerful un-
aware MIA, Advpow, to the success of augmentation aware
MIA, Advawa. We see that almost always Advpow outper-
forming Advawa by 5%-50%. On the other hand, against
GA and RC mechanisms, we see that Advawa is higher
by up 20%. This implies that when a model is augmented
using these mechanisms, it has a risk of overfitting on
the augmented training set samples, which amplifies the
Advawa. Overall, these differences between augmentation-
aware and unaware MIAs are not significant enough to
change the general trends.
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Table 6: Comparing augmentation aware (Advawa)
and unaware Advpow MIAs in maximum accuracy,
RAD<10% and RAD<25% settings. Each line presents
Advawa (left) and Advpow (right). The models are trained
on CIFAR-100.

MECH. Max Acc RAD<10% RAD<25%

SL 26.6 / 39.7 21.1 / 20.1 12.9 / 14.3

LS 67.6 / 75.6 39.6 / 45.0 39.6 / 45.0

DL 64.0 / 64.0 27.3 / 32.0 4.9 / 7.0

RC 37.3 / 32.0 7.1 / 7.1 4.1 / 2.9

CO 31.7 / 33.9 6.4 / 8.2 4.8 / 5.0

GA 63.5 / 62.5 61.0 / 49.9 62.9 / 42.3

MU 57.0 / 25.4 10.5 / 13.7 9.7 / 11.9
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