
Regularized Submodular Maximization at Scale

A. Streaming Algorithms: Proofs
A.1. Proof of Theorem 4

In this section, we provide the proof of Theorem 4. Let T be the subset of N of size at most k maximizing (h(r) − ε) ·
g(T)− r · `(T) among all such subsets. If h(r) · g(T)− r · `(T) ≤ 0, then the empty set is a solution set obeying all the
requirements of Theorem 4. Thus, in the rest of this section, we assume h(r) · g(T)− r · `(T) > 0, which implies that the
value τ guessed by Algorithm 1 is positive.

The following two lemmata prove together that Algorithm 1 has the approximation guarantee of Theorem 4. The first of
these lemmata handles the case in which the size of the solution S of Algorithm 1 reaches the maximum possible size k. In
the proofs of both lemmata, ui denotes the i-th element added to S by Algorithm 1.

Lemma 12. If |S| = k, then g(S)− `(S) ≥ (h(r)− ε) · g(T)− r · `(T).

Proof. Observe that

g(S)− α(r) · `(S) =

k∑
i=1

[g(ui | {u1, u2, . . . , ui−1})− α(r) · `({u})] ≥ kτ

≥ h(r) · g(T)− r · `(T)

1 + ε
≥ (1− ε) · h(r) · g(T)− r · `(T) ,

where the first inequality holds since Algorithm 1 chose to add ui to S, and the set S at that time was equal to
{u1, u2, . . . , ui−1}.
We now make two observations. First, we observe that

α(r) =
2r + 1 +

√
4r2 + 1

2
≥ 1 +

√
1

2
= 1 ,

and second, we observe that h(r) ≤ 1/2 because

h(r) ≤ 1/2 ⇐⇒ 2r + 1−
√

4r2 + 1

2
≤ 1/2 ⇐⇒ 2r ≤

√
4r2 + 1 ⇐⇒ 4r2 ≤ 4r2 + 1 .

Using, these observations and the above inequality, we now get

g(S)− `(S) ≥ g(S)− α(r) · `(S) ≥ (1− ε) · h(r) · g(T)− r · `(T) ≥ (h(r)− ε) · g(T)− r · `(T) .

The following lemma proves the approximation ratio of Algorithm 1 for the case in which the solution set S does not reach
its maximum allowed size k before the stream ends.

Lemma 13. If |S| < k, then g(S)− `(S) ≥ (h(r)− ε) · g(T)− r · `(T).

Proof. Consider an arbitrary element u ∈ OPT \ S. Since |S| < k, the fact that u was not added to S implies

g(u | S′)− α(r) · `({u}) < τ ,

where S′ is the set S at the time in which u arrived. By the submodularity of g, we also get

g(u | S)− α(r) · `({u}) < τ .

Adding the last inequality over all elements u ∈ T \ S implies

g(T)− g(S)− α(r) · `(T) ≤ g(T | S)− α(r) · `(T) ≤
∑

u∈T\S

[g(u | S)− α(r) · `({u})]

< kτ ≤ h(r) · g(T)− r · `(T) ,

Regularized Submodular Maximization at Scale

where the first inequality follows from the monotonicity of g, and the second inequality holds due to the submodularity of g
and the non-negativity of `. Rearranging this inequality yields

(1− h(r)) · g(T) + (r − α(r)) · `(T) < g(S) . (2)

Recall that τ > 0. Thus, using the same argument used in the proof of Lemma 12, we get

g(S)− α(r) · `(S) =

|S|∑
i=1

[g(ui | {u1, u2, . . . , ui−1})− α(r) · `({u})] ≥ |S|τ ≥ 0 .

Adding a 1/α(r) fraction of this equation to a 1− 1/α(r) fraction of Equation (2) yields

g(S)− `(S) > (1− 1/α(r))(1− h(r)) · g(T) + (1− 1/α(r))(r − α(r)) · `(T) .

The following two calculations now complete the proof of the lemma (since ε · g(T) is non-negative).

(1− 1/α(r))(1− h(r)) =

(
1− 2

2r + 1 +
√

4r2 + 1

)(
1− 2r + 1−

√
4r2 + 1

2

)

=
2r − 1 +

√
4r2 + 1

2r + 1 +
√

4r2 + 1
· 1− 2r +

√
4r2 + 1

2
=

4r2 + 1− (2r − 1)2

2(2r + 1 +
√

4r2 + 1)

=
(2r + 1)2 − (4r2 + 1)

2(2r + 1 +
√

4r2 + 1)
=

2r + 1 +
√

4r2 + 1

2r + 1 +
√

4r2 + 1
· 2r + 1−

√
4r2 + 1

2
= h(r) ,

and

(1− 1/α(r))(r − α(r)) =

(
1− 2

2r + 1 +
√

4r2 + 1

)(
r − 2r + 1 +

√
4r2 + 1

2

)

= − 2r − 1 +
√

4r2 + 1

2r + 1 +
√

4r2 + 1
· 1 +

√
4r2 + 1

2
= −2r − 1 + (4r2 + 1) + 2r ·

√
4r2 + 1

2[2r + 1 +
√

4r2 + 1]

= − 2r · [1 + 2r +
√

4r2 + 1]

2[2r + 1 +
√

4r2 + 1]
= −r .

A.2. Proof of Corollary 6

In this section, we first restate Corollary 6 and then provide its proof.
Corollary 6. Assume the value of βOPT is given, where OPT is the optimal solution of Problem (1). Setting r = rOPT =

βOPT

2
√
1+2βOPT

makes Algorithm 1 return a solution S with the guarantee

g(S)− `(S) ≥
(

1 + βOPT −
√

1 + 2βOPT
2βOPT

− ε′
)
· (g(OPT)− `(OPT)) ,

where ε′ = ε · (1 + 1/βOPT).

Proof. First, let us define T ∗r = arg maxT∈N ,|T |≤k[(h(r)− ε) · g(T)− r · `(T)]. From Theorem 4 and the definition of
T ∗r , we have

g(S)− `(S) ≥ (h(r)− ε) · g(T ∗r)− r · `(T ∗) ≥ (h(r)− ε) · g(OPT)− r · `(OPT) .

Furthermore, from the definition of βOPT , we have

(h(r)− ε) · g(OPT)− r · `(OPT) =
(h(r)− ε) · g(OPT)− r · `(OPT)

g(OPT)− `(OPT)
· (g(OPT)− `(OPT))

=
(h(r)− ε) · (1 + βOPT)− r

βOPT
· (g(OPT)− `(OPT)) .

It can be verified that rOPT is the value that maximizes the above expression, and plugging this value into the expression
proves the corollary.

Regularized Submodular Maximization at Scale

A.3. Proof of Theorem 1

Recall that Theorem 1 analyzes the approximation ratio of DISTORTED-STREAMING (Algorithm 2). In Section 3, we have
defined βOPT = g(OPT)−`(OPT)

`(OPT) . In this section, we restate and prove Theorem 1. However, before doing so, let us give
some intuition for DISTORTED-STREAMING. Let

ζOPT =
1 + βOPT −

√
1 + 2βOPT

2βOPT
(3)

be the approximation ratio that can be obtained for the unknown value of βOPT via Corollary 6 (except for the ε′ error term).
One can verify that this formula for ζOPT is equivalent to the formula given for ζOPT in the statement of Theorem 1 in
Section 1. The last formula implies that we always have 0 ≤ ζOPT < 1/2. Thus, we can find an accurate guess for ζOPT by
dividing the interval [ε, 1/2) into small intervals (values of ζOPT below ε < ε′ are not of interest because Corollary 6 gives a
trivial guarantee for them). Moreover, given a guess for ζOPT , we can calculate the corresponding values of βOPT and
rOPT . DISTORTED-STREAMING is an implementation of this idea.

Theorem 1. Despite not assuming access to βOPT , DISTORTED-STREAMING (Algorithm 2) outputs a set S obeying

g(S)− `(S) ≥ ((1− δ′) · ζOPT − ε′) · (g(OPT)− `(OPT)) ,

where δ′ = δ/2 and ε′ = ε
2ζOPT

.

Proof. For values of ζOPT < ε, the right-hand side of the lower bounded provided by the lemma is negative, and thus,
it gives a trivial lower bound (note that ε′ ≥ ε and δ′ > 0 since ζOPT is always smaller than 1/2). For this reason, in the
rest of proof, we assume ζOPT ≥ ε. First, note that there must be a value ζ ∈ Λ such that ζ ≤ ζOPT < (1 + δ) · ζ, and
let us denote ω = ζOPT

ζ . It is clear that 1 ≤ ω < 1 + δ. Moreover, using the definition of ω we get that the value of β

corresponding to ζ is β = 4ωζOPT

(ω−2ζOPT)2 , and the value of r corresponding to this ζ is

r =
β

2
√

1 + 2β
=

4ωζOPT /(ω − 2ζOPT)2

2
√

1 + 8ωζOPT /(ω − 2ζOPT)2

=
4ωζOPT

2(ω − 2ζOPT) ·
√

(ω − 2ζOPT)2 + 8ωζOPT

=
4ωζOPT

2(ω − 2ζOPT) ·
√

(ω + 2ζOPT)2
=

2ωζOPT
ω2 − 4ζ2OPT

.

To calculate the value of h(r) corresponding to this value of r, we note that:

√
4r2 + 1 =

√
4

(
2ωζOPT

ω2 − 4ζ2OPT

)2

+ 1 =
ω2 + 4ζ2OPT
ω2 − 4ζ2OPT

.

If we plug this equality into the definition of h(r), we get

h(r) =
2r + 1−

√
4r2 + 1

2
=

1

2
·
[
1 +

4ωζOPT
ω2 − 4ζ2OPT

− ω2 + 4ζ2OPT
ω2 − 4ζ2OPT

]
=

2ωζOPT − 4ζ2OPT
ω2 − 4ζ2OPT

=
2ζOPT

ω + 2ζOPT
.

We are now ready to plug the calculated value of r into Theorem 4, which yields that the output set S′ of the instance of
THRESHOLD-STREAMING initialized with this value of r obeys

g(S′)− `(S′) ≥ (h(r)− ε) · g(OPT)− r · `(OPT) (4)

=
(h(r)− ε) · g(OPT)− r · `(OPT)

g(OPT)− `(OPT)
· (g(OPT)− `(OPT))

=
(h(r)− ε) · (1 + βOPT)− r

βOPT
· (g(OPT)− `(OPT)) , (5)

Regularized Submodular Maximization at Scale

where the last equality follows from the definition of βOPT . Let us now lower bound the coefficient of g(OPT)− `(OPT)

in the rightmost hand side of the last equality. Recalling that βOPT = 4ζOPT

(1−2ζOPT)2 , we get 1+βOPT

βOPT
=

1+4ζ2OPT

4ζOPT
. Thus, the

above mentioned coefficient can be written as

(h(r)− ε) · (1 + βOPT)− r
βOPT

=
1 + βOPT
βOPT

· h(r)− r

βOPT
− (1 + βOPT) · ε

βOPT

=
1 + 4ζ2OPT

4ζOPT
· 2ζOPT
ω + 2ζOPT

− ω · (1− 2ζOPT)2

2 · (ω2 − 4ζ2OPT)
− (1 + 4ζ2OPT) · ε

4ζOPT

=
2ωζOPT − ζOPT − 4ζ3OPT

ω2 − 4ζ2OPT
− (1 + 4ζ2OPT) · ε

4ζOPT

=

(
1− (ω − 1)2

ω2 − 4ζ2OPT

)
· ζOPT −

(1 + 4ζ2OPT) · ε
4ζOPT

.

We can observe that the coefficient of ζOPT on the rightmost side is a decreasing function of ω for ω ≥ 4ζ2OPT . Together
with the facts that ζOPT < 1/2 and ω ≥ 1, this implies

(h(r)− ε) · (1 + βOPT)− r
βOPT

≥
(

1− δ2

(1 + δ)2 − 4ζ2OPT

)
· ζOPT −

ε

2ζOPT

≥
(

1− δ2

2δ

)
· ζOPT −

ε

2ζOPT
=

(
1− δ

2

)
· ζOPT −

ε

2ζOPT
.

Plugging this inequality into Eq. (4), we get that the set S′ produced by THRESHOLD-STREAMING for the above value of r
has at least the value guaranteed by the lemma for the output set S of DISTORTED-STREAMING. The lemma now follows
since the set S is chosen as the best set among multiple options including S′.

B. Guessing τ in Algorithm 1
In this section, we explain how one can guess the value τ in Algorithm 1, which is a value obeying kτ ≤ h(r) · g(T)− r ·
`(T) ≤ (1 + ε)kτ , at the cost of increasing the space complexity of the algorithm by a factor of O(ε−1(log k + log r−1)).
Like in Appendix A.1, we assume that h(r) · g(T)− r · `(T)—and thus, also τ—is positive.

Observe that

max
u∈N

[h(r) · g({u})− r · `({u})] ≤ h(r) · g(T)− r · `(T) ≤
∑
u∈T

[h(r) · g({u})− r · `({u})]

≤ k ·max
u∈N

[h(r) · g({u})− r · `({u})] ,

where the first inequality holds since {u} is a candidate to be T for every u ∈ N , and the second inequality follows from
the submodularity of g. Thus, if we knew the value of maxu∈N [h(r) · g({u})− r · `({u})] from the very beginning, we
could simply run in parallel an independent copy of Algorithm 1 for every value of τ that has the form (1 + ε)i for some
integer i and falls within the range[

k−1 ·max
u∈N

[h(r) · g({u})− r · `({u})], (1 + ε) ·max
u∈N

[h(r) · g({u})− r · `({u})]
]
.

Clearly, at least one of the values we would have tried obeys kτ ≤ h(r) · g(T)− r · `(T) ≤ (1 + ε)kτ , and the number of
values we would have needed to try is upper bounded by

1 + log1+ε

(
(1 + ε) ·maxu∈N [h(r) · g({u})− r · `({u})
k−1 ·maxu∈N [h(r) · g({u})− r · `({u})]

)
= 2 + log1+ε k = O(ε−1 log k) .

Unfortunately, the value of maxu∈N [h(r) · g({u})− r · `({u})] is not known to us in advance. To compensate for this, we
make the following two observations. The first observation is that k−1 ·maxu∈N ′ [h(r) · g({u})− r · `({u})], where N ′ is
the set of elements viewed so far, is a lower bound on the value of k−1 ·maxu∈N [h(r) · g({u})− r · `({u})]. Following is
the second observation, which shows that copies of Algorithm 1 with τ values that are much larger than this lower bound
cannot accept any element of N ′, and thus, need not be maintained explicitly.

Regularized Submodular Maximization at Scale

Observation 14. If τ > (α(r)/r) ·maxu∈N ′ [h(r) · g({u})− r · `({u})], then Algorithm 1 accepts no element of N ′.

Proof. Algorithm 1 accepts an element u ∈ N ′ if g(u | S)− α(r) · `({u}) ≥ τ . However, the condition of the observation
implies

g(u | S)− α(r) · `({u}) ≤ g({u})− α(r) · `({u}) =
α(r)

r
· [h(r) · g({u})− r · `({u})]

≤ α(r)

r
· max
u∈N ′

[h(r) · g({u})− r · `({u})] < τ ,

where the first inequality follows from the submodularity of g, and the equality follows from the following calculation.

α(r) · h(r) =
2r + 1 +

√
4r2 + 1

2
· 2r + 1−

√
4r2 + 1

2
=

(2r + 1)2 − (4r2 + 1)

4
=

4r

4
= r .

The above observations imply that it suffices to explicitly maintain a copy of Algorithm 1 for values of τ that are equal to
(1 + ε)i for some integer i and fall within the range[

k−1 · max
u∈N ′

[h(r) · g({u})− r · `({u})], α(r)

r
· max
u∈N ′

[h(r) · g({u})− r · `({u})]
]
. (6)

In particular, we know that when the value of maxu∈N ′ [h(r) · g({u})− r · `({u})] increases (due to the arrival of additional
elements), we can start a new copy of Algorithm 1 for the values of τ that have the form (1 + ε)i for some integer i
and now enter the range. By Observation 14, these instances will behave in exactly the same way as if they had been
created at the very beginning of the stream. A formal description of the algorithm we obtain using this method is given as
Algorithm 4. We note that the space complexity of this algorithm is larger than the space complexity of Algorithm 1 only by
an O(ε−1(log k + log r−1)) factor because the number of values of the form (1 + ε)i that can fall within the range (6) is at
most

1 + log1+ε

(
α(r)
r ·maxu∈N ′ [h(r) · g({u})− r · `({u})]
k−1 ·maxu∈N ′ [h(r) · g({u})− r · `({u})]

)
= 1 + log1+ε

(
k · α(r)

r

)

= 1 + log1+ε

(
k · (2r + 1 +

√
4r2 + 1)

2r

)
≤ 1 + log1+ε(k + k/r)

≤ 1 + log1+ε k + log1+ε(k/r) = O(ε−1(log k + log r−1)) .

Algorithm 4: DISTORTED-STREAMING: Guessing τ

1 Let M ← −∞ and I ← ∅. // M represents maxu∈N ′ [h(r) · g({u})− r · `({u})] and I is the
list of copies of Algorithm 1 currently maintained.

2 while there are more elements in the stream do
3 Let u be the next element of the stream.
4 Update M ← max{M,h(r) · g({u})− r · `({u})}.
5 Let J = {i ∈ Z | k−1M ≤ (1 + ε)i ≤ r−1M · α(r)}.
6 Delete every copy of Algorithm 1 in I corresponding to a value τ = (1 + ε)i for an integer i that now falls

outside the set J .
7 Add to I a new copy of Algorithm 1 with τ = (1 + ε)i for every integer i ∈ J , unless such a copy already exists

there.
8 Pass the element u to all the copies of Algorithm 1 in I .

9 return the set S maximizing g(S)− `(S) among all the output sets of all the copies of Algorithm 1 in I .

C. Proofs of Theorems 2 and 3
Theorem 2 guarantees the performance of DISTORTED-DISTRIBUTED (Algorithm 3). In Section C.1 we first restate
Theorem 2 and then prove it. Then, in Section C.2 we consider a modified version of Algorithm 3 and use it to prove
Theorem 3.

Regularized Submodular Maximization at Scale

C.1. Proof of Theorem 2

Theorem 2. DISTORTED-DISTRIBUTED (Algorithm 3) returns a set D ⊆ N of size at most k such that

E[g(D)− `(D)] ≥ (1− ε)
[
(1− e−1)g(OPT)− `(OPT)

]
.

For simplicity, we assume that 1/ε is an integer from this point on, and let us define the submodular function f(S) ,
g(S) − `(S). It is easy to see that f is a submodular function (although it is not guaranteed to be either monotone or
non-negative). The Lovász extension of f is the function f̂ : [0, 1]N → R given by

f̂(x) = E
θ∈U(0,1)

[f ({i : xi ≥ θ})] ,

where U(0, 1) is the uniform distribution within the range [0, 1] (Lovász, 1983). Note that the Lovász extension of a modular
set function is the natural linear extension of the function. It was also proved in (Lovász, 1983) that the Lovász extension of
a submodular function is convex. Finally, we need the following well-known properties of Lovász extensions, which follow
easily from its definition.

Observation 15. For every set S ⊆ N , f̂(1S) = f(S). Additionally, f̂(c ·p) ≥ c · f̂(p) for every c ∈ [0, 1] and p ∈ [0, 1]N

whenever f(∅) is non-negative.

Let us denote by DISTORTED-GREEDY(A) the set produced by DISTORTED-GREEDY when it is given the elements of a
set A ⊆ N as input. Using this notation, we can now state the following lemma. We omit the simple proof of this lemma,
but note that it is similar to the proof of (Barbosa et al., 2015, Lemma 2).

Lemma 16. Let A ⊆ N and B ⊆ N be two disjoint subsets of N . Suppose that, for each element u ∈ B,
we have DISTORTED-GREEDY(A ∪ {u}) = DISTORTED-GREEDY(A). Then, DISTORTED-GREEDY(A ∪ B) =
DISTORTED-GREEDY(A).

We now need some additional notation. Let S∗ denote an optimal solution for Problem (1), and let N (1/m) represent the
distribution over random subsets of N where each element is sampled independently with probability 1/m. To see why this
distribution is important, recall that Nr,i is the set of elements assigned to machine i in round i by the random partition, and
that every element is assigned uniformly at random to one out of m machines, which implies that the distribution of Nr,i is
identical to N (1/m) for every two integers 1 ≤ i ≤ m and 1 ≤ r ≤ ε−1. We now define for every integer 0 ≤ r ≤ ε−1 the
set Cr = ∪rr′=1 ∪mi=1 Sr′,i and the vector pr ∈ [0, 1]N whose u-coordinate, for every u ∈ N , is given by

pru =

{
PrA∼N (1/m)[u 6∈ Cr−1 and u ∈ DISTORTED-GREEDY(A ∪ Cr−1 ∪ {u})] if u ∈ S∗ ,
0 otherwise .

The next lemma proves an important property of the above vectors.

Lemma 17. For every element u ∈ S∗ and 0 ≤ r ≤ 1/ε, Pr[u ∈ Cr] =
∑r
r′=1 p

r′

u .

Proof. Since u is assigned in round r′ to a single machine uniformly at random,

Pr[u ∈ Cr′ \ Cr′−1] = Pr[u ∈ ∪mi=1Sr′,i \ Cr′−1] =
1

m

m∑
i=1

Pr[u ∈ Sr′,i \ Cr′−1 | u ∈ Nr′,i]

=
1

m

m∑
i=1

Pr[u 6∈ Cr′−1 and u ∈ DISTORTED-GREEDY(Nr′,i ∪ (∪r′−1r′′=1 ∪mi′=1 Sr′′,i′)) | u ∈ Nr′,i]

=
1

m

m∑
i=1

PrA∼N (1/m)[u 6∈ Cr′−1 and u ∈ DISTORTED-GREEDY(A ∪ Cr′−1 ∪ {u})] = pr
′

u ,

where the first equality holds since Cr′ can be obtained from Cr′−1 by adding to the last set all the elements of ∪mi=1Sr′,i
that do not already belong to Cr′−1, and the last equality holds since the distribution of Nr′,i conditioned on u belonging to
this set is equal to the distribution of A ∪ {u} when A is distributed like N (1/m).

Regularized Submodular Maximization at Scale

Since C1 ⊆ C2 ⊆ . . . ⊆ Cr, the events Pr[u ∈ Cr′ \ Cr′−1] must be disjoint for different values of r′, which implies

r∑
r′=1

pr
′

u =

r∑
r′=1

Pr[u ∈ Cr′ \ Cr′−1] = Pr[u ∈ Cr]− Pr[u ∈ C0] = Pr[u ∈ Cr] ,

where the last equality holds since C0 = ∅ by definition.

Using the last lemma, we can now prove lower bounds on the expected values of the sets Sr,i.

Lemma 18. Let ĝ and ˆ̀ be the Lovász extensions of the functions g and `, respectively. Then, for every two integers
1 ≤ r ≤ ε−1 and 1 ≤ i ≤ m,

E[f(Sr,i)] ≥ (1− e−1) · ĝ(1S∗ − pr)− ˆ̀(1S∗ − pr) ,

and
E[f(Sr,i)] ≥ (1− e−1) · ĝ(

∑r−1
r′=1 pr

′
)− ˆ̀(

∑r−1
r′=1 pr

′
) .

Proof. Let R = {u ∈ S∗ | u 6∈ DISTORTED-GREEDY(Nr,i ∪ Cr−1 ∪ {u})}, and let Or,i be some random subset of S∗ to
be specified later which includes only elements of Nr,i ∪ Cr−1 ∪R. By Lemma 16,

Sr,i = DISTORTED-GREEDY(Nr,i ∪ (∪r−1r′=1 ∪mi′=1 Sr′,i′))

= DISTORTED-GREEDY(Nr,i ∪ Cr−1) = DISTORTED-GREEDY(Nr,i ∪ Cr−1 ∪R) .

Due to this equality and the fact that |Or,i| ≤ |S∗| ≤ k, the guarantee of DISTORTED-GREEDY (Harshaw et al., 2019,
Theorem 3) implies:

f(Sr,i) = g(Sr,i)− `(Sr,i) ≥ (1− e−1) · g(Or,i)− `(Or,i) .

Therefore,

E[f(Sr,i)] ≥ E[(1− e−1) · g(Or,i)− `(Or,i)] = (1− e−1) · E[g(Or,i)]− E[`(Or,i)] (7)

≥ (1− e−1) · ĝ(E[1Or,i])− ˆ̀(E[1Or,i]) ,

where the second inequality holds since ĝ is convex and ˆ̀ is linear (see the discussion before Observation 15).

To prove the first part of the lemma, we now choose

Or,i = (Cr−1 ∩ S∗) ∪R = (Cr−1 ∩ S∗) ∪ {u ∈ S∗ : u /∈ DISTORTED-GREEDY(Nr,i ∪ Cr−1 ∪ {u})} .

One can verify that this choice obeys our assumptions about Or,i; and moreover, since the distribution of Nr,i is the same as
that of N (1/m), we get:

Pr [u ∈ Or,i] = 1− Pr [u /∈ Or,i] = 1− pru ∀ u ∈ S∗ and E
[
1Or,i

]
= 1S∗ − pr .

The first part of the lemma now follows by combining the last equality with Inequality (7).

To prove the second part of this lemma, we choose Or,i = Cr−1 ∩ S∗. One can verify that this choice again obeys our
assumptions about Or,i; and moreover, by Lemma 17, E[1Or,i

] =
∑r−1
r′=1 pr

′
. The second part of the lemma now follows

by combining this equality with Inequality (7).

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let D be the output set of Algorithm 3. The definition of D and Lemma 18 together guarantee that for
every 1 ≤ r ≤ ε−1 − 1 we have

E[f(D)] ≥ E[f(Sr,1)] ≥ (1− e−1) · ĝ(1S∗ − pr)− ˆ̀(1S∗ − pr) ,

and additionally,
E[f(D)] ≥ E[f(S1/ε,1)] ≥ (1− e−1) · ĝ(

∑1/ε−1
r=1 pr)− ˆ̀(

∑1/ε−1
r=1 pr) .

Regularized Submodular Maximization at Scale

Therefore,

E[f(D)] ≥ ε ·
1/ε−1∑
r=1

[(1− e−1) · ĝ(1S∗ − pr)− ˆ̀(1S∗ − pr)]

+ ε[(1− e−1) · ĝ(
∑1/ε−1
r=1 pr)− ˆ̀(

∑1/ε−1
r=1 pr)]

≥ (1− e−1) · ĝ

ε · 1/ε−1∑
r=1

(1S∗ − pr) + ε ·
1/ε−1∑
r=1

pr

− ˆ̀

ε · 1/ε−1∑
r=1

(1S∗ − pr) + ε ·
1/ε−1∑
r=1

pr


= (1− e−1) · ĝ ((1− ε) · 1S∗)− ˆ̀((1− ε) · 1S∗) ≥ (1− ε) ·

[
(1− e−1) · g(S∗)− `(S∗)

]
,

where the second inequality holds since ˆ̀ is linear and ĝ is convex, and the last inequality follows again from the linearity of
ˆ̀and Observation 15 because f(∅) = g(∅)− `(∅) = g(∅) ≥ 0.

C.2. Proof of Theorem 3

Let us begin by restating Theorem 3.

Theorem 3. Given a hereditary set system (N , I) of rank R (i.e., R = maxS∈I |S|). If the greedy algorithm obtains
α-approximation for the problem of finding a set S ∈ I maximizing a given non-negative monotone submodular function
f : 2N → R≥0, then, for every ε > 0 and number m of machines, there exists a MapReduce algorithm for this problem that
(i) uses Õ(ε−1) MapReduce rounds, (ii) has a space complexity of O(|N |/m+mR/ε) per machine (with high probability)
and Õ(|N |+m2R/ε) in total, and (iii) has an approximation ratio of α− ε.

To prove Theorem 3, we consider a modified version of Algorithm 3 that uses the standard greedy algorithm instead of
DISTORTED-GREEDY. In the following, we refer to this modified version as GREEDY-DISTRIBUTED. Based on the
pseudocode of the algorithm, we immediately get that GREEDY-DISTRIBUTED uses only dε−1e = O(ε−1) MapReduce
rounds. The next lemma analyzes the total and machine space complexities of GREEDY-DISTRIBUTED.

Lemma 19. The total space complexity used by GREEDY-DISTRIBUTED isO(|N |+m2R/ε). Furthermore, each individual
machine used by the algorithm uses, with high probability, a space complexity of O(|N |/m+mRε).

Proof. Except for the values of the variables r and i, which require only Õ(1) space, GREEDY-DISTRIBUTED requires
space only for two purposes: storing the elements of the input, and storing the solutions Sr,i produced during its execution.
Let us analyze the space required for these purposes separately.

• Since only O(m/ε) solutions Sr,i are produced by the algorithm during its execution, and each solution is of size at
most R, the total space required to store these solutions is Õ(mR/ε). As all the solutions have to be stored in each one
of the m machines, they contribute Õ(mR/ε) to the space complexity of each machine and Õ(m2R/ε) to the total
space complexity.

• The elements of the input are redistributed between the machines at the beginning of every MapReduce round, but they
are never duplicated. Thus, they contribute Õ(|N |) to the total space complexity of the algorithm. If m ≥ |N |/ε, then
this completes the proof of the lemma since mRε ≥ |N | in this case, which means that the lemma only guarantees that
the space complexity used by the individual machines is at most Õ(|N |). Otherwise, each individual machines gets in
every MapReduce round a subset of the input elements whose size follows the binomial distribution B(|N |, ε), and
therefore, by the Chernoff and union bounds, the probability that in any iteration any machine gets more than 2|N |/ε
elements is at most

mdε−1e · e−|N|/3 ,

which approaches 0 when the size of the ground set |N | increases given our assumption that m < |N |/ε.

It remains to analyze the approximation guarantee of GREEDY-DISTRIBUTED. Using an argument that is completely
analogous to the one used in Section C.1 to prove Theorem 2, we can get that the value of the output set of GREEDY-
DISTRIBUTED is, in expectation, at least (1− ε) · α · f(S∗) ≥ (α− ε) · f(S∗).

Regularized Submodular Maximization at Scale

D. Mode Finding of SLC Distributions: Proofs and Experiments
D.1. Proofs

In this section, we restate the theoretical results from Section 5 and then prove them.

Lemma 8. For a γ-additively weak submodular function ρ, the function Λ(S) , ρ(S)− γ
2 · |S| · (|S| − 1) is submodular.

Proof. For every set S and two distinct elements u, v 6∈ S, the γ-additively weak submodularity of ρ implies

ρ(S) + ρ(S ∪ {u, v}) ≤ γ + ρ(S ∪ {u}) + ρ(S ∪ {v}) .

Rearranging this inequality now gives

ρ(S)− γ · |S| · (|S| − 1))

2
+ ρ(S ∪ {u, v})− γ · (|S|+ 2) · (|S|+ 1)

2

≤ ρ(S ∪ {u}) + ρ(S ∪ {v})− 2 · γ · (|S|+ 1) · |S|
2

,

which, by the definition of Λ, is equivalent to

Λ(S) + Λ(S ∪ {u, v}) ≤ Λ(S ∪ {u}) + Λ(S ∪ {v}) .

Lemma 9. The function g(S) , Λ(S) + `(S) is monotone and submodular. Furthermore, if ρ(∅) ≥ 0, then g(S) is also
non-negative because `(∅) = 0.

Proof. To see that g(S) is submodular, recall that Λ(S) is submodular and that the summation of a submodular function
with a modular function is still submodular. To prove the monotonicity of g(S), we show that for all sets S ⊆ N and
elements u ∈ N \ S: g(u | S) ≥ 0.

g(u | S) = Λ(u | S) + `(u | S) = Λ(u | S) + `u = Λ(u | S) + max{Λ(N \ u)− Λ(N), 0}
≥ Λ(u | S) + Λ(N \ u)− Λ(N) = Λ(u | S)− Λ(u | N \ u) ≥ 0 ,

where the last inequality follows from the submodularity of Λ.

Corollary 10. Assume ρ : 2N → R is a γ-additively weak submodular function obeying ρ(∅) ≥ 0. Then, when given Λ as
the objective function, DISTORTED-DISTRIBUTED (Algorithm 3) returns a solution R such that

E[ρ(R)] ≥ (1− ε)
[
(1− e−1)ρ(OPT)− e−1 · `(OPT)

]
− γ · [(1− e−1) · l(l − 1)− E[|R|(|R| − 1)]]

2
,

where OPT ∈ arg max|S|≤k ρ(S) and l = |OPT| ≤ k.

Proof. Using the guarantee of Theorem 2 for the performance of DISTORTED-DISTRIBUTED for maximizing the function
Λ(S) = g(S)− `(S) in the distributed setting under a cardinality constraint k, we get

E[g(R)− `(R)] ≥ (1− ε) ·
[
(1− e−1) · g(OPT)− `(OPT)

]
,

which implies, by the definition of g,

E[Λ(R)]

1− ε ≥ (1− e−1) · (Λ(OPT) + `(OPT))− `(OPT) = (1− e−1) · Λ(OPT)− e−1 · `(OPT) .

Using the definition of Λ now, we finally get

E[ρ(R)] ≥ (1− ε) ·
[
(1− e−1) · ρ(OPT)− e−1 · `(OPT)

]
− γ · [(1− ε) · (1− e−1) · |OPT| · (|OPT| − 1)− E[|R| · (|R| − 1)]]

2
,

which implies the corollary since (1− e−1) · |OPT| · (|OPT| − 1) is non-negative.

Regularized Submodular Maximization at Scale

Corollary 11. Assume ρ : 2N → R is a γ-additively weak submodular function obeying ρ(∅) ≥ 0. Then, when given Λ as
the objective function, THRESHOLD-STREAMING (Algorithm 1) returns a solution R such that ρ(R) is at least

(h(r)− ε) · ρ(OPT)− (α(r)− r − 1 + ε) · `(OPT)

− γ · [(h(r)− ε) · l · (l − 1)− |R| · (|R| − 1)]

2
,

where OPT ∈ arg max|S|≤k ρ(S) and l = |OPT| ≤ k.

Proof. By Theorem 4,
g(R)− `(R) ≥ (h(r)− ε) · g(OPT)− r · `(OPT) ,

which implies, by the definition of g,

Λ(R) ≥ (h(r)− ε) · (Λ(OPT) + `(OPT))− r · `(OPT) = (h(r)− ε) · Λ(OPT)− (r − h(r) + ε) · `(OPT) .

Using the definition of Λ now, we finally get

ρ(R) ≥ (h(r)− ε) · ρ(OPT)− (r − h(r) + ε) · `(OPT)

− γ · [(h(r)− ε) · |OPT| · (|OPT| − 1)− |R| · (|R| − 1)]

2
.

The corollary now follows by observing that r − h(r) =
√
4r2+1−1

2 = α(r)− r − 1.

D.2. Experimental Evaluations

In this supplementary section, we compare the performance of DISTORTED-STREAMING with the performance of distorted
greedy, vanilla greedy and sieve streaming on the problem of mode finding for an SLC distribution. We consider a
distribution ν(S) ∝

√
det (LS) · 1{|S| ≤ d}, where L is an n × n PSD matrix. Here, LS corresponds to the submatrix

of L, where the rows and columns are indexed by elements of S (Robinson et al., 2019). In the optimization procedure,
our goal is to maximize ρ(S) , log(ν(S)). To generate the random matrix L, we first sample a diagonal matrix D and
a random PSD matrix Q, and then assign L = QDQ−1. Each diagonal element of D is from a log-normal distribution
with a probability mass function p(x) = 1

σx
√
2π

exp(− (ln(x)−µ)2
2σ2), where µ and σ are the mean and standard deviation

of the normally distributed logarithm of the variable, respectively. This log-normal distribution allows us to have a PSD
matrix where the eigenvalues have a heavy-tailed distribution. In these experiments, we set n = 1000, d = 100, µ = 1.0
and σ = 1.0.

In Fig. 5, we observe that the outcome of DISTORTED-STREAMING outperforms sieve streaming. This is mainly a result
of the fact that DISTORTED-STREAMING estimates the value of βOPT and uses the best possible value for r. Furthermore,
we see that vanilla greedy performs better than distorted greedy, and for cardinality constraints larger than k = 20, the
performance of distorted greedy degrades. This observation could be explained by the fact that the linear cost for each
element u is comparable to the value of g(u) (or marginal gain of u to any set S). Therefore, distorted greedy does not pick
any element in the first few iterations when k is large enough, i.e., when (1− 1

k)k−(i+1) is small. It is worth mentioning that
while the performance of the greedy algorithm is the best for this specific application, only DISTORTED-STREAMING and
distorted greedy have a theoretical guarantee.

E. Supplementary Material for Section 6: Additional Applications
E.1. Yelp Location Summarization

In this summarization task, we want to summarize a dataset of business locations. For this reason, we consider a subset of
Yelp’s businesses, reviews and user data (Yelp, b), referred to as the Yelp Academic dataset (Yelp, a). This dataset contains
information about local businesses across 11 metropolitan areas. The features for each location are extracted from the
description of that location and related user reviews. The extracted features cover information regarding several attributes,
including parking options, WiFi access, having vegan menus, delivery options, possibility of outdoor seating, being good for
groups.8

8For the feature extraction, we used the script provided at https://github.com/vc1492a/Yelp-Challenge-Dataset.

https://github.com/vc1492a/Yelp-Challenge-Dataset

Regularized Submodular Maximization at Scale

20 40 60 80 100

Cardinality constraint

4

6

8

10

12

O
b

je
ct

iv
e

va
lu

e

Distorted Streaming

Distorted Greedy

Greedy

Sieve Streaming

Figure 5. We want to find the mode of a distribution ν(S) ∝
√

det (LS) · 1{|S| ≤ d} for a PSD matrix L. For the objective value, we
report log(ν(S)).

The goal is to choose a subset of businesses locations, out of a ground setN = {1, . . . , n}, which provides a good summary
of all the existing locations. We calculated the similarity matrix M ∈ Rn×n between locations using the same method
described in Section 6.3. For a selected set S, we assume each location i ∈ N is represented by the location from the set S
with the highest similarity to i. This makes it natural to define the total utility provided by set S using the set function

f(S) , g(S)− `(S) =
1

n

n∑
i=1

max
j∈S

Mi,j −
∑
u∈S

`u . (8)

Note that g(S) is monotone and submodular (Krause & Golovin, 2012; Frieze, 1974). For the linear function ` we consider
two scenarios: (i) in the first one, the cost assigned to each location is defined as its distance to the downtown in the city
of that location. ii) in the second scenario, the linear cost of each location u is the distance between u and the closest
international airport in that area. The intuitive explanation of the first linear function is that while we look for the most
diverse subset of locations as our summary, we want those locations to be also close enough to the down-town in order to
make commute and access to other facilities easier. For the second linear function, we want the selected locations to be in
the vicinity of airports.

From Eq. (8) it is evident that computing the objective function requires access to the entire dataset N , which in the
streaming setting is not possible. Fortunately, however, this function is additively decomposable (Mirzasoleiman et al.,
2013) over the ground setN . Therefore, it is possible to estimate Eq. (8) arbitrarily close to its exact value as long as we can
sample uniformly at random from the data stream (Badanidiyuru et al., 2014, Proposition 6.1). In this section, to sample
randomly from the data stream and to have an accurate estimate of the function, we use the reservoir sampling technique
explained in (Badanidiyuru et al., 2014, Algortithm 4).

In Fig. 6, we compare algorithms for varying values of k while we consider the two different linear functions `. We
observe that distorted greedy returns the solutions with the highest utilities. The performance of DISTORTED-STREAMING
is comparable with that of the offline algorithms, and it clearly surpasses sieve-streaming. In addition, our experiments
demonstrate that DISTORTED-STREAMING (and similarly sieve-streaming) requires orders of magnitude fewer oracle
evaluations.

E.2. Movie Recommendation

In this application, the goal is to recommend a set of movies to a user, where we know that the user is mainly interested in
movies released around 1990. As a matter of fact, we are aware that her all-time favorite movie is Goodfellas (1990). To
design our recommender system, we use ratings from MovieLens users (Harper & Konstan, 2015), and apply the method of
Lindgren et al. (2015) to generate a set of features for each movie.

For a ground set of movies N , assume vi represents the feature vector of the i-th movie. Following the same approach
we used in Section 6.3, we define a similarity matrix M such that Mij = e−dist(vi,vj), where dist(vi, vj) is the euclidean
distance between vectors vi, vj ∈ N . The objective of each algorithm is to select a subset of movies that maximizes
f(S) , g(S) − `(S) = log det(I + αMS) −∑v∈S `v subject to a cardinality constraint k. In this application for

Regularized Submodular Maximization at Scale

10 20 30 40

Cardinality constraint

0

10

20

30
O

b
je

ct
iv

e
va

lu
e

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(a) ` = distance to down-town

10 20 30 40

Cardinality constraint

0

5

10

15

20

25

30

O
b

je
ct

iv
e

va
lu

e

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(b) ` = distance to airport

10 20 30 40

Cardinality constraint

0.0

0.2

0.4

0.6

0.8

1.0

O
ra

cl
e

ca
ll

s

×106

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(c) ` = distance to down-town

10 20 30 40

Cardinality constraint

0.0

0.2

0.4

0.6

0.8

1.0

O
ra

cl
e

ca
ll

s

×106

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(d) ` = distance to airport

Figure 6. Yelp location summarization: data points are locations from six different cities. For the linear costs we consider two different
cases: 1) distances to the downtown in each city, 2) distances to the airport in each city.

`(S) =
∑
v∈S `v we consider two different scenarios: (i) `v = |1990 − yearv|, where yearv denote the release year of

movie v, and (2) `v = 10− ratingv , where ratingv denotes the IMDb rating of v (10 is the maximum possible rating).

From our experimental evaluation in Fig. 7, we observe that both modeling approaches (directly maximizing the function f
and maximizing the function g subject to a knapsack constraint for `) return solutions with similar objective values. Besides,
we note that the computational complexity of DISTORTED-STREAMING is better than the complexity of the expensive
offline algorithms (as it makes only a single pass over the data), but this difference is not very significant for some offline
algorithms. Nevertheless, DISTORTED-STREAMING always provides better utility than sieve streaming.

10 20 30 40

Cardinality constraint

0

20

40

60

80

100

O
b

je
ct

iv
e

va
lu

e

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(a) `v = |1990− yearv|

10 20 30 40

Cardinality constraint

0

20

40

60

80

100

O
b

je
ct

iv
e

va
lu

e

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(b) `v = |10− ratingv|

10 20 30 40

Cardinality constraint

0.0

0.5

1.0

1.5

O
ra

cl
e

ca
ll

s

×106

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(c) `v = |1990− yearv|

10 20 30 40

Cardinality constraint

0.0

0.5

1.0

1.5

2.0

O
ra

cl
e

ca
ll

s

×106

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(d) `v = |10− ratingv|

Figure 7. Movie recommendation: we compare algorithms for varying cardinality constraint k. We use two different linear functions:
|1990− yearv| and 10− ratingv , where the goal of first one is to recommend movies with a release year closer to 1990 and the goal of
the second linear function is to promote movies with higher ratings.

E.3. Twitter Text Summarization

There are several news-reporting Twitter accounts with millions of followers. In this section, our goal is to produce real-time
summaries for Twitter feeds of a subset of these accounts. In the Twitter stream summarization task, one might be interested
in a representative and diverse summary of events that happen around a certain date. For this application, we consider
the Twitter dataset provided in (Kazemi et al., 2019), where the keywords from each tweet are extracted and weighted
proportionally to the number of retweets the post received. LetW denote the set of all existing keywords. The function f
we want to maximize is defined over a ground set N of tweets (Kazemi et al., 2019). Assume each tweet e ∈ N consists of
a positive value vale representing the number of retweets it has received (as a measure of the popularity and importance of
that tweet) and a set of le keywordsWe = {we,1, · · · , we,le} fromW . The score of a word w ∈ We with respect to a given
tweet e is calculated by score(w, e) = vale. If w /∈ We, we assume score(w, e) = 0. Formally, the function f is defined as
follows:

f(S) , g(S)− `(S) =
∑
w∈W

√∑
e∈S

score(w, e)−
∑
e∈S

`e , (9)

where for the linear function ` two options are considered: (i) `e = |01/01/2019 − T(e)| is the absolute difference (in
number months) between time of tweet e and the first of January 2019, (ii) `e = |We| is the length of each tweet, which

Regularized Submodular Maximization at Scale

enables us to provide shorter summaries. Note that the monotone and submodular function g is designed to cover the
important events of the day without redundancy (by encouraging diversity in a selected set of tweets) (Kazemi et al., 2019).

The main observation from Fig. 8 is that DISTORTED-STREAMING clearly outperforms the sieve-streaming algorithm and
the Greedy Dynamic Program algorithm in terms of objective value, where the gap between their performances grows for
larger values of k. The utility of other offline algorithms is slightly better than that of our proposed streaming algorithm. We
also see that while distorted greedy is by far the fastest offline algorithm, the computational complexities of both streaming
algorithms are negligible with respect to the other offline algorithms.

10 20 30 40

Cardinality constraint

0

1000

2000

3000

4000

O
b

je
ct

iv
e

va
lu

e

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(a) `e = |01/01/2019− T(e)|

10 20 30 40

Cardinality constraint

0

1000

2000

3000
O

b
je

ct
iv

e
va

lu
e

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(b) `e = |We|

10 20 30 40

Cardinality constraint

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
ra

cl
e

ca
ll

s

×106

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(c) `e = |01/01/2019−T(e)|

10 20 30 40

Cardinality constraint

0.0

0.2

0.4

0.6

0.8

1.0

O
ra

cl
e

ca
ll

s

×106

D-Streaming

DG

Sieve

FANTOM

Fast

DP

(d) `e = |We|

Figure 8. Twitter text summarization: We compare algorithms for varying values of the cardinality constraint k. In figures (a) and (c) the
linear cost is the difference between the time of the tweet and the first of January 2019. In figures (b) and (d) the linear cost is the number
of keywords in each tweet.

