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A. Theoretical Analysis
As described in the main manuscript, the theoretical analysis presented here provides a non-uniform recovery guarantee,
which applies to in-distribution objects that are in the range of the StyleGAN G, further constrained by styles from the prior
image. In contrast to the theoretical results presented in (Bora et al., 2017) where the Lipschitz constant of the generator
network G is used to bound the number of measurements, the analysis presented here is in terms of the expected Frobenius
norm of its Jacobian. Due to this, the presented analysis applies to generative networks having Lipschitz constants that are
large as compared to the typical scaling of differences under the network, or generative networks that are not Lipschitz
stable, such as StyleGAN2. The price paid is in terms of the guarantee being non-uniform, and allowing for an additional
network-dependent term in the reconstruction error. Nevertheless, as we show, the proposed guarantees are useful in
analyzing the behaviour of generative model-constrained reconstruction in general, and the PICGM method in particular.

We begin by defining the notation used.
Notation A.1.

1. Let pw denote the distribution of the extended latent space vector w = [u>1 u>2 . . . u>L ]> ∈ W+, where ui =
gmapping(zi), zi ∼ N (0, Ik), zi’s are independently distributed, with Ik denoting the real k × k identity matrix.

2. Recall that as evidenced by (Wulff & Torralba, 2020), it can be assumed that if w ∼ pw, v = LReLα(w) is distributed
as a multivariate Gaussian distribution. Let v̄ and Σ be its mean and covariance matrix respectively. Recall that
LReLα denotes the leaky-ReLU nonlinear activation, defined as

LReLα(x)i =

{
xi, xi ≥ 0,
αxi, xi < 0.

(1)

The value of α is the reciprocal of the scaling value for negative numbers included in the last leakyReLU layer in the
mapping network gmapping.

3. Let p1, p2 be positive integer multiples of k, with 1 ≤ p1 < p2 ≤ K. Let P = p2−p1. LetW+
p1,p2 be the P -dimensional

subspace ofW+ containing all w such that w1:p1 = 0,wp2:K = 0.

4. Let

BKw (r) := {w s.t. ‖LReLα(w)− v̄‖Σ ≤ r} ,
BKv (r) := {v s.t. ‖v − v̄‖Σ ≤ r} .

Similarly, let

Bp1,p2w (r) :=
{
w s.t. w ∈ BKw (r),w1:p1 = w

(PI)
1:p1

,wp2:K = w
(PI)
p2:K

}
,

Bp1,p2v (r) :=
{
v s.t. v ∈ BKv (r),v1:p1 = v

(PI)
1:p1

,vp2:K = v
(PI)
p2:K

}
,
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where for a vector x ∈ RK , ‖x‖2Σ := x>Σ−1x. Note that α > 1 and 1 ≤ p1 < p2 ≤ K.

5. Let J(w) denote the Jacobian of the synthesis network G evaluated at w. Let Jp1:p2(w) denote the Jacobian of G with
respect to wp1:p2 , evaluated at w.

We first prove the following series of lemmas.

Lemma A.1. Let σ1 ≥ σ2 ≥ · · · ≥ σK be the singular values of
√
Σ. Let σ = [σ1 σ2 . . . σK ]>. For r > 1, if N p1,p2

w (ε)
is an optimal ε-net of Bp1,p2w (r), then

log |N p1,p2
w | ≤ P log

[
6r

ε

(
ε+
‖σ‖2√
K

)]
.

Proof. First, note that if w ∼ pw, then the subsections of w corresponding to the different style inputs, i.e. wlk+1:(l+1)k, l =
0, . . . , L− 1 are distributed such that wlk+1:(l+1)k is independent to and identically distributed as wl′k+1:(l′+1)k if l 6= l′.
This implies that the singular values of

√
Σ are degenerate to a certain degree. Specifically,

σjL+1 = σjL+2 = · · · = σ(j+1)L, j = 0, 2, . . . , k − 1 (2)

Let σ′1 ≥ σ′2 ≥ · · · ≥ σ′P be the singular values of
√

Cov(vp1:p2), and let σ′ = [σ′1 σ
′
2 . . . σ

′
P ]T . Therefore, by Eq. (2),

‖σ′‖√
P

=
‖σ‖√
K
. (3)

Note that Bp1,p2v (r) is an ellipsoid with center v̄p1:p2 and principal radii of lengths σ′ir, i = 1, 2, . . . , P . Assume for a
moment, that there exists an integer p such that σ′pr > ε ≥ σ′p+1r. Let Nv(ε) be an optimum ε-net of Bp1,p2v (r).

Therefore, by Theorem 2 in (Dumer, 2006),

log |Nv(ε)| ≤
p∑
i=1

log

(
rσ′i
ε

)
+ P log 6,

≤ log

(r
ε

)P p∏
i=1

σ′i

P∏
i=p+1

ε

+ P log 6, (since r > 1,)

≤ P log

[
6r

ε

(
ε+

1

P

P∑
i=1

σ′i

)]
, (by AM-GM inequality,)

≤ P log

[
6r

ε

(
ε+
‖σ′‖√
P

)]
, (by AM-RMS inequality,)

≤ P log

[
6r

ε

(
ε+
‖σ‖√
K

)]
.

Observe that this bound is valid even if ε > σ′1r or ε < σ′P r. Since α > 1, LReL1/α(.) is a bijective function with Lipschitz
constant 1. Therefore, for every v1 = LReLα(w1), and v2 = LReLα(w2),

‖w1 −w2‖ ≤ ‖v1 − v2‖ .

Therefore,

log |N p1,p2
w (ε)| ≤ P log

[
6r

ε

(
ε+
‖σ‖√
K

)]
. (4)
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Now, the following assumptions about StyleGAN are made.

1. Path length regularity:

Ew∼pw
(
‖J(w)‖F − a

)2
< b, (AS1)

where b > 0 and a = Ew ‖J(w)‖F are global constants. As described in the main manuscript, this assumption is
inspired by the path-length regularization used in (Karras et al., 2020). Although during training a is implemented as
EwEy∼N (0,In)

∥∥J(w)>y
∥∥, as per the Hanson-Wright inequality, this concentrates to Ew ‖J(w)‖F , when y is high-

dimensional (Vershynin, 2018). The value of awas estimated by empirically estimating Ew∼pwEy∼N (0,In)

∥∥J(w)>y
∥∥

using 100 samples w drawn from pw and 100 samples y drawn fromN (0, In) for each sample of w. b was empirically
estimated over the same dataset of samples using Eq. (AS1). The values of a and

√
b were estimated to be around 80.1

and 16.7 respectively for the specific StyleGAN2 trained and used in the inverse-crime study.

2. Approximate local linearity:

Ew∼pw max
w′

‖w′−w‖≤ε
L(w′,w) ≤ β2(ε), (AS2)

where

L(w′,w) = ‖G(w′)−G(w)− J(w)(w′ −w)‖22
This property essentially measures how close G is to its linear approximation in an ε-neighborhood around a point w.
For ease of notation, we will write

φ2
p1,p2(ε;w) := max

w′

‖w′−w‖≤ε
w′−w∈W+

p1,p2

L(w′,w), (5)

with φp1,p2(ε;w) ≥ 0. Approximate estimates of β2(ε) were obtained for several values of ε by first computing
the Jacobian at a point w ∼ pw, and then iteratively maximizing L(w′,w) using a projected gradient ascent-type
algorithm. Figure 1 shows the plot of β2(ε) versus ε estimated over a dataset of 100 samples w from pw for the
StyleGAN2 trained and used in the inverse-crime study.

Lemma 4.1. If w is a sample from pw, then it satisfies the following three properties with probability at least 1−O(1/K):

‖J(w)‖F ≤
√
Ka, (P1)

φ1,K(ε;w) ≤
√
Kβ(ε) (P2)∥∥∥Σ−1/2LReLα(w)

∥∥∥
2
≤
√
K(1 + o(1)) (P3)

Proof. For w sampled from pw, P1 and P2 are true with probability at least 1 − a2+b
Ka2 and 1 − 1/K respectively, due to

Markov’s inequality (Vershynin, 2018). P3 is true with probability at least 1 − Ω(e−cK) due to concentration of norm
(Vershynin, 2018). Therefore, by union bound, w satisfies all the three with probability at least 1−O(1/K).

As a consequence of Lemma 4.1, for
ws = [w

(PI)
1:p1
> w>p1:p2 w

(PI)
p2:K

>]>,

the following properties also hold with probability at least 1−O(1/K) if w,w(PI) ∼ pw:

‖Jp1:p2(ws)‖F ≤
√
Ka, (TP1)

(Since Jp1:p2(ws) is a sub-matrix of J(ws))

φp1,p2(ε;ws) ≤
√
Kβ(ε) (TP2)

If w satisfies properties P1, P2 and P3, then G(w) will be referred to as an in-distribution image in the range of G, since
these are the properties of a typical sample from the StyleGAN.
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Figure 1: Plot of β(ε)2 versus ε

Notation A.2.
Let B̃p1,p2w (r) be the set of all points in Bp1,p2w (r) satisfying properties P1 and P2.

Lemma A.2. Let 0 < δ ≤ a‖σ‖2
72
√
K

. Let Ñf (δ) be a discrete set in G(B̃p1,p2w (r)) such that for every f ∈ G(B̃p1,p2w (r)), there
exists an f0 ∈ Nf (δ) such that

‖f − f0‖2 ≤ δ +
√
Kβ(δ/a). (6)

Then,

|Ñf (δ)| ≤ P log

(
145ar ‖σ‖√

Pδ

)
. (7)

Proof. The outline of this proof is as follows. First, an δ/a-covering over B̃p1,p2w (r) will be constructed. Then, each of the
spherical balls covering B̃p1,p2w (r) is transformed into approximately an ellipsoid depending upon the Jacobian of G at the
center of the spherical ball. Then, each of these ellipsoids will be approximately covered by a δ-net. The collection of all
such approximate δ-nets covering the individual ellipsoids will give an approximate δ-net over G(B̃p1,p2w (r)), which is the
result required.

Let ε = δ/a. Let Ñw(ε) be an optimal ε-covering of B̃p1,p2w (r). Also, let Nw(ε) denote an optimal ε-covering of Bp1,p2w (r).
Therefore, since B̃p1,p2w (r) ⊆ Bp1,p2w (r), (Vershynin, 2018),

log |Ñw(ε)| ≤ log |Nw(ε/2)|

≤ P log

[(
12r

ε

)(‖σ‖√
K

+
ε

2

)]
. (using Lemma A.1.)

Now, consider a point w0 ∈ Ñw(ε). Therefore, for every w′ ∈ B̃p1,p2w (r) such that ‖w′ −w0‖ ≤ ε, we have

‖G(w′)−G(w0)‖ ≤ ‖J(w0)(w′ −w0)‖+
√
Kβ(ε). (8)

Therefore, upto an error of
√
Kβ(ε), G(w′) − G(w0) lies in an ellipsoid E(w0) with principal radii ς1ε, ς2ε, . . . , ςP ε,

where ς1 ≥ ς2 ≥ · · · ≥ ςP are the singular values of Jp1:p2(w0).
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Let Nδ(w0) be a δ-covering of E(w0). For a moment assume that there exists an integer p such that ςp < a ≤ ςp+1.
Therefore, from Theorem 2 in (Dumer, 2006), we have

log |Nδ(w0)| ≤
p∑
i=1

log
( ςi
a

)
+ P log 6,

= log

 1

aP

p∏
i=1

ςi

P∏
i=p+1

a

+ P log 6

≤ P log

[
1

a

(‖ς‖2√
P

+ a

)]
+ P log 6,

≤ P log

[
1

a

(
‖ς‖2√
P

+ a

√
K

P

)]
+ P log 6,

≤ P log 12

√
K

P
. (using Property TP1.)

Note that this bound holds even when a ≥ ς1, or a ≤ ςP .

Therefore, for every w′ such that ‖w′ −w0‖ ≤ ε, there exists a point f1 in Nδ(w0) such that

‖G(w0) + J(w0)(w′ −w0)− f1‖ ≤ δ,
⇒‖G(w0) + J(w0)(w′ −w0)−G(w′) +G(w′)− f1‖ ≤ δ,
⇒‖G(w′)− f1‖ ≤ δ +

√
Kβ(δ/a) (9)

(by triangle inequality)

This holds for all w0 ∈ ÑK
w (r). Therefore, a suitable candidate set for Ñf (δ) is

Ñf (δ) = {w1 s.t. w1 ∈ Nδ(w0), w0 ∈ ÑK
w (r)} (10)

Therefore,

log |Ñf (δ)| ≤ P log 12

√
K

P
+ P log

[
12ar

δ

(‖σ‖√
K

+
δ

2a

)]
,

≤ P log

[(
144ar

√
K

δ
√
P

)(‖σ‖√
K

+
δ

2a

)]
,

≤ P log

(
145ar ‖σ‖√

Pδ

)
.

Proof of Theorem 4.1:

First, we note that the result of Lemma A.2 applies to a decreasing sequence of δ’s: δi = δ0/2
i. Also, from Fig. 1, we note

that β(ε) goes polynomially with ε with β(0) = 0. Due to these, Lemma 8.2 in (Bora et al., 2017) can be reformulated as
following, with the proof proceeding similarly as (Bora et al., 2017).
Lemma A.3. Let H ∈ Rm×n be a matrix with iid Gaussian random elements having mean 0 and variance 1/m. Let
0 < δ ≤ a‖σ‖2

72
√
K

. For all δ′ < δ, let β(δ′/a) go polynomially as δ′/a, with β(0) = 0. If

m = Ω

(
P log

ar ‖σ‖
δ

)
, (11)

then for any f ∈ G(B̃p1,p2w (r)), if f ′ = arg minx̂∈Ñf (δ)

∥∥∥f − f̂
∥∥∥, ‖H(f − f ′)‖ ≤ O(δ +

√
Kβ(δ/a)) with probability

1− e−Ω(m).
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The proof goes similarly as the proof of Lemma 8.2 in (Bora et al., 2017). Furthermore, similar to Lemma 4.1 in (Bora et al.,
2017), Lemma A.2 and Lemma A.3 give rise to the set-restricted eigenvalue condition of H on G(B̃p1,p2w (r)) as follows:

Lemma A.4 (Set-restricted eigenvalue condition). Let τ < 1. Let H be an matrix with iid Gaussian-distributed elements
with mean 0 and variance 1/m. Let 0 < δ ≤ a‖σ‖2

72
√
K

. For all δ′ < δ, let β(δ′/a) go polynomially as δ′/a, with β(0) = 0. If

m = Ω

(
P

τ2
log

ar ‖σ‖
δ

)
, (12)

then H satisfies the S-REC
(
G(B̃p1,p2w (r)), 1− τ, δ +

√
Kβ(δ/a)

)
with probability 1− e−Ω(τ2m).

Lemma A.4, Lemma 4.3 in (Bora et al., 2017) and Lemma 4.1 imply Theorem 4.1 which is restated here for convenience.

Theorem 4.1.

LetH ∈ Rm×n satisfy S-REC(G(B̃p1,p2w (r)), γ, δ+
√
Kβ(δ/a)). Let n ∈ Rm. Let w,w(PI) ∼ pw. Let f (PI) = G(w(PI))

be the known prior image. Let
w̃ = [w

(PI)
1:p1
> w>p1:p2 w

(PI)
p2:K

>]>.

Let f̃ = G(w̃) represent the object to-be-imaged. Let g = H f̃ + n be the imaging measurements. Let

f̂ = arg min
f∈G(B̃K

w (r))

‖g −Hf‖22 . (13)

Then,

‖f̂ − f̃‖ ≤ 1

γ
(2 ‖n‖+ δ +

√
Kβ(δ/a)) (14)

with probability 1−O(1/K).
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B. Additional Figures
B.1. Inverse crime study: n/m = 5
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Figure 2: Ground truth, prior image and image estimated from Gaussian measurements with n/m = 5 using the proposed approach in
the inverse crime case.
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B.2. Inverse crime study: n/m = 10
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Figure 3: Ground truth, prior image and image estimated from Gaussian measurements with n/m = 10 using the proposed approach in
the inverse crime case.
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B.3. Inverse crime study: n/m = 20
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Figure 4: Ground truth, prior image and image estimated from Gaussian measurements with n/m = 20 using the proposed approach in
the inverse crime case.
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B.4. Inverse crime study: n/m = 50

G
ro

un
d

T
ru

th
P

ri
or

Im
ag

e
P

IC
G

M

Figure 5: Ground truth, prior image and image estimated from Gaussian measurements with n/m = 50 using the proposed approach in
the inverse crime case.
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B.5. Face image study: n/m = 50

GT PI PLS-TV CSGM PICCS PICGM

Figure 6: Ground truth, prior image and image estimated from Gaussian measurements with n/m = 50 using the proposed approach for
the face image study.
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B.6. MR image study: n/m = 2

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Figure 7: Ground truth, prior image, and images reconstructed from simulated MRI measurements with n/m = 2 along with difference
images for the MR image study
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B.7. MR image study: n/m = 4

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Figure 8: Ground truth, prior image, and images reconstructed from simulated MRI measurements with n/m = 4 along with difference
images for the MR image study
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B.8. MR image study: n/m = 6

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Figure 9: Ground truth, prior image, and images reconstructed from simulated MRI measurements with n/m = 6 along with difference
images for the MR image study



Prior Image-Constrained Reconstruction using Style-Based Generative Models

B.9. MR image study: n/m = 8

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Figure 10: Ground truth, prior image, and images reconstructed from simulated MRI measurements with n/m = 8 along with difference
images for the MR image study
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B.10. MR image study: n/m = 12

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Ground Truth Prior Image PLS-TV CSGM PICCS PICGM

Figure 11: Ground truth, prior image, and images reconstructed from simulated MRI measurements with n/m = 12 along with difference
images for the MR image study
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