
Self Normalizing Flows

A. Appendix
A.1. Self Normalizing Fully Connected Gradients

In this section we provide an extended derivation of Equa-
tions 10 and 11 including derivation of the reconstruction
gradient. For the gradient with respect to W , as given in
Equation 10, we see that we only need to approximate the
gradient of the Jacobian determinant term to achieve an
efficient update, yielding:

∂

∂W
L(x) ≈ 1

2

(
δfzx

T +RT
)
− λ ∂

∂W
||RWx− x||22

=
1

2

(
δfzx

T +RT
)
− 2λRT (RWx− x)xT

(17)

For the gradient with respect toR, we start with the exact
gradient as given in Equation 9:

∂

∂R
L(x) =

1

2

(
−R−T δgzxTR−T −R−T

)
− λ ∂

∂R
||RWx− x||22 (18)

To find an efficient approximation of this update without
having to compute matrix inverses, we note that in ad-
dition to substituting W in the place of R−1, we also
must approximate δgz in order to avoid having to compute
log pZ(R−1x). We propose this can similarly be approx-
imated as δgz ≈ δfz = ∂ log pZ(Wx)

∂Wx under the same con-
straint thatR−1 ≈W . Together this yields:

∂

∂R
L(x) ≈ 1

2

(
−W T δfz(Wx)T −W T

)
−2λ(RWx− x)(Wx)T (19)

Conveniently,W T δfz = ∂ log pZ(Wx)
∂x is then the delta from

the output backpropagated to the input of the layer, and is
computed by standard backpropagation. We call this term
δfx, giving a simplified gradient:

∂

∂R
L(x) ≈ 1

2

(
−δfxzT −W T

)
− 2λ(RWx− x)zT

(20)
We see then that both Equations 17 and 20 require no ma-
trix inverses, and furthermore require no additional terms
beyond those computed by standard backpropagation.

A.2. Self Normalizing Convolution Gradients

In this section we provide a detailed derivation of the ap-
proximate gradient of the log Jacobian determinant term for
convolutional layers. From Equations 14 and 16, we see
that after substitution of the approximate inverse we have:

∂

∂w
log pfX(x) ≈ δfz ? x+

∂(vec T (w))T

∂w

(
vec T (r)T

)
(21)

∂

∂r
log pgX(x) ≈ −δfx ? z −

∂(vec T (r))T

∂r

(
vec T (w)T

)
(22)

Focusing on the second term, we consider what
∂(vec T (k))T

∂k

(
vec T (p)T

)
is for arbitrary kernels k,p ∈

Rm, and matrices T (k), T (p) ∈ RD×D. First, we see
∂(vec T (k))T

∂k ∈ Rm×D2

, meaning that it is a rectangular
matrix where each row corresponds to one dimension of
the kernel, and each column corresponds to one element of
the matrix T (k). Writing out the partial derivative element-
wise, we get:[

∂(vec T (k))T

∂k

]
i,j

=
∂ [vec T (k)]j

∂ki
(23)

From this it is clear that the ith row and jth column will be
1 if [vec T (k)]j = ki and otherwise 0. Intuitively, given the
definiton of T (k), this corresponds to an indicator matrix,
indicating whether kernel element i is shared at location j
of the vectorized convolution matrix T (k).

Given this intuition, we can see that the inner product of the
ith row of this matrix and the same vectorized convolution
matrix vec T (k) will yield a sum over elements of T (k)
where T (k) = ki. Formally:

∂(vec T (k))T

∂ki
vec T (k) =

D×D∑
j

ki ∗ 1
[
[vec T (k)]j = ki

]
= mi ∗ ki (24)

where mi is the number of times the kernel element ki is
shared across the matrix T (k).

Similarly, for the inner product between a row of this indica-
tor matrix and a vectorized convolution matrix formed from
a different kernel (i.e. T (p)), we see that the result is again
given by a multiple times the new kernel:

∂(vec T (k))T

∂ki
vec T (p) =

D×D∑
j

pi ∗ 1
[
[vec T (k)]j = ki

]
= mi ∗ pi (25)

This can be understood to be due to the fact that the mapping
T (·) which generates the weight sharing structure is the
same for both the partial derivative matrix and the vectorized
convolution matrix.

Computing the Transposed Convolution Kernel flip(·)
In Equations 21 and 22 we see the partial derivative matrix
is multiplied with a transposed convolution matrix. For the
convolution operations proposed here, the transpose convo-
lution matrix can also be written as a standard convolution
matrix with a transformed kernel. We denote this transfor-
mation as flip(·) such that T (flip(k)) = T (k)T , or equiv-
alently flip(k) = T −1(T (k)T). This transformation can

Self Normalizing Flows

easily be implemented in deep learning frameworks through
index manipulation of the kernel. Informally, this opera-
tion is achieved by swapping the input and output axes, and
mirroring the spatial dimensions. Explicitly, given a four
dimensional kernel k ∈ RO×I×H×W where O, I,H,W
are the number of output channels, number of input chan-
nels, kernel height, and kernel width respectively, the flip
operation can be defined as:

flip(k)o,i,h,w = ki,o,H−h,W−w (26)

Computing the Multiplem
The constantm which is the same shape as the kernel, and
is element-wise multiplied, is given by the number of times
each element ki of the kernel k is present in the matrix
T (k). This can be easily computed as a convolution of two
images filled entirely of 1′s, the first with the shape of the
outputs, and the second with the shape of the inputs. Using
syntax from the PyTorch framework, we can write this as:

m = ones like(z) ? ones like(x) (27)

Note this convolution must be performed with the same
parameters as the main convolution (e.g. padding, stride,
grouping, dilation, etc.).

Combining Equation 25 with the flip operation, for all ker-
nel elements i, we see that we arrive at Equations 15 and
16.

A.3. Experiment Details

All code for this paper can be found at the following repos-
itory: https://github.com/AKAndykeller/
SelfNormalizingFlows

Training & Evaluation Details
In Tables 1 and 2, all log-likelihood (in nats) and bits per
dimension values are computed using the exact log Jacobian
determinant of the full transformation. They are reported on
a held-out test set, using the saved model parameters from
the best epoch as determined by performance on a separate
validation set. Each value is given as a mean ± standard
deviation as computed over 3 runs with different random
initializations.

For MNIST, the first 50,000 training images were used for
training, and the last 10,000 were used for validation. The
plots in figure 5, show the negative log-likelihood on the
MNIST validation set for the 2-layer fully connected (FC)
models.

For CIFAR-10, the first 40,000 training images were used
for training and the last 10,000 were used as a held out vali-
dation set. Data augmentation including random horizontal
flipping with probability 0.5 and random jitter by 1 pixel
was performed to prevent overfitting.

For ImageNet 32x32, a random subset of 20,000 images
were used for validation, and the remaining 1,261,149 im-
ages were used for training. The dataset was constructed us-
ing the same methodology as Kingma & Dhariwal 2018, and
can be downloaded from http://image-net.org/
small/download.php. The values reported in Table 2
were computed on the provided 50,000 image test set. No
data augmentation was performed.

Optimization Details
All fully connected (FC) models were trained for 6000
epochs using Adam optimizer (Kingma & Ba, 2014) with
a batch size of 100, a learning rate of 1 × 10−4, β1 =
0.9, β2 = 0.999, and reconstruction weight λ = 1. These
parameters were chosen to match the training methodology
of (Gresele et al., 2020). The loss was computed as the
average over the batch. All convolutional (Conv.) models
were trained for 1000 epochs with the same optimization
parameters, but with a learning rate of 1 × 10−3 due to
observed faster convergence.

The MNIST Glow models were trained for 250 epochs using
the same optimizer settings as the Conv. models. We experi-
mented with values of λ in the set {1, 10, 100, 1000}, and
chose the λ = 100 based on the highest validation accuracy.

The CIFAR-10 Glow models were trained for 1000 epochs
with the same optimizer settings, but with λ = 1000. Ad-
ditionally, the norm of the gradients was clipped at 10, 000
for the self normalizing CIFAR-10 models for improved
stability during training.

The ImageNet 32x32 Glow models were trained for 15
epochs, with the same optimization parameters and again
with λ = 1000. The norm of the gradients was clipped at
10, 000 for all ImageNet models.

All models except for the ImageNet models were trained
using a learning-rate warm-up schedule where the learning
rate is linearly increased from 0 to its full value over the
course of the first 10 epochs.

Discrepancies with Published Results
We note that our value for the Relative Gradient model
(Gresele et al., 2020) differs from the published result of
−1375.2± 1.4. We found experimentally that when using
the same settings as published in (Gresele et al., 2020),
our re-implementation achieved approximately −1102. We
found the discrepancy to be due almost exactly to the log
Jacobian determinant of the data-preprocessing steps (such
as dequantization, normalization, and the logit transform),
which we measure to sum to 272.7 ± 0.3. We discussed
with the authors of (Gresele et al., 2020) and concluded they
likely did not include the log Jacobian determinant of these
steps in their reported values. We further note the numbers
in Table 1 are using slightly different parameters than in

https://github.com/AKAndykeller/SelfNormalizingFlows
https://github.com/AKAndykeller/SelfNormalizingFlows
http://image-net.org/small/download.php
http://image-net.org/small/download.php

Self Normalizing Flows

(Gresele et al., 2020), such as α = 0.3 in the activation
function, a batch size of 100, and a significantly longer
training duration.

We additionally see that our values in Table 2 are slightly
worse than those reported in (Kingma & Dhariwal, 2018)
(i.e. 3.36 vs. 3.35 on CIFAR-10, and 4.12 vs 4.09 on Im-
ageNet 32x32). We hypothesize that our slightly worse
performance is likely due to our use of an explicit valida-
tion set, reducing the effective size of the training set. To
the best of our knowledge, this pre-processing step was not
performed in (Kingma & Dhariwal, 2018). Additional fac-
tors could be a shorter training duration, no learning rate
warmup (for ImageNet), or the imposed gradient clipping.

Timing details
Figure 4 was created by running a single fully connected
layer (with no activation function) on a machine with an
NVIDIA GeForce 1080Ti GPU and Intel Xeon E5-2630 v3
CPU. Each datapoint was computed by taking the mean and
standard deviation of the time required per batch over 4,000
batches, with a batch size of 128, on synthetically generated
random data at integer multiples of 96 dimensions starting
at 32.

The values reported for MNIST in Table 3 were computed on
the same machine with an NVIDIA GeForce 1080Ti GPU
and Intel Xeon E5-2630 v3 CPU, with a batch size of 100.
The values for CIFAR-10 and ImageNet were computed on
a machine with an NVIDIA Titan X GPU and Intel Xeon E5-
2640 v4 CPU, with batch sizes of 100 and 64 respectively.
The discrepancy between training and sampling time for the
FC models is due to the iterative optimization required to
invert the Smooth Leaky ReLU activation. Figure 5 was
created using the time results from Table 3. For all times
reported, the times of the first and last 100 batches per epoch
were ignored to reduce variance.

Architectures
All models were trained using pre-processed data in the
same as manner as (Gresele et al., 2020; Papamakarios
et al., 2017; Dinh et al., 2016). This includes uniform de-
quantization, normalization, and logit-transformation. We
additionally use a standard Gaussian as our base distribution
pZ for all models.

All 2-layer fully connected (FC) models use the Smooth
Leaky ReLU (with α = 0.3) activation (as in (Gresele et al.,
2020)). Weights of the forward model (W ’s) are initialized
to identity plus noise drawn from a Xavier Normal (Glorot &
Bengio, 2010) with gain 0.01. Weights of the inverse model
(R’s) are initialized to the transpose of the forward weights.

All 9-layer convolutional models are trained with spline
(Durkan et al., 2019) activations with individual parameters
per pixel and 5-knots, kernels of size (3 × 3), and zero-

padding of 1 on all sides. The convolutional models are ad-
ditionally divided into three blocks, each of 3 layers, with 2
‘squeeze’ layers in-between the blocks. The squeeze layers
move feature map activations from the spatial dimensions
into the channel dimension, reducing spatial dimensions by
a half and increasing the number of channels by 4 (as in
(Hoogeboom et al., 2019)). Weights of the forward model
(w’s) are initialized with the dirac delta function (preserving
the identity of the inputs) plus noise drawn from a Xavier
Normal (Glorot & Bengio, 2010) with gain 0.01. Weights
of the inverse model (r’s) are initialized to flip(w).

The Glow models for MNIST were constructed of L = 2
blocks of K = 16 steps each (as specified in (Kingma
& Dhariwal, 2018)), where each block is composed of a
squeeze layer and K-steps of flow. A split layer is placed
between the two blocks. Each step of flow is composed
of an act-norm layer, a (1 × 1) convolution, and an affine
coupling layer. The coupling layers are constructed as in
(Kingma & Dhariwal, 2018). All convolutional weights
were initialized to random orthogonal matrices. For CIFAR-
10 and ImageNet 32x32, the Glow models were composed of
L = 3,K = 32 and L = 3,K = 48 respectively, matching
those in (Kingma & Dhariwal, 2018).

A.4. Proposed Model Extensions

Asymmetric Convolutions As mentioned in Section 6,
the inverse of the forward function may not always be given
by a function of the same class (e.g. for convolutional lay-
ers). To partially alleviate this constraint, we propose that
the forward and inverse functions may be asymmetric, and
derive a simple case of this below for convolutions with
different kernel sizes (but identical output sizes). Initial ex-
periments with such an asymmetric model (i.e. 3×3 conv. f
with 7×7 conv. g) have shown promising results – improv-
ing over models with 3×3 convolutions in both directions.

For a function f with a (column vector) kernel w ∈ Rm ,
and an inverse g with a larger kernel r ∈ Rn (n > m), we
see that the approximate gradient with respect to w can be
obtained by taking the internal central dimensions of r, and
similarly the gradient for r is given by taking a zero-padded
version of w. Formally we can write the central-indexing
and padding operations as multiplication by the rectangular
matrices Pr→w and Pw→r respectively.

∂

∂w
log pfX(x) ≈ δfz ? x+ flip(Pr→wr)�m (28)

∂

∂r
log pgX(x) ≈ −δfx ? z − flip(Pw→rw)�m (29)

Where Pr→w and Pw→r are defined as:

Pr→w =
[
0 Im 0

]
& Pw→r =

 0

In
0

 (30)

Self Normalizing Flows

Where ID refers to aD×D identity matrix, and 0 is a matrix
of zeros such that the dimensions of Pr→w are m× n and
those of Pw→r are n×m.

Jacobian Vector Product Inverse Constraint As noted
in Section 3, the approximations made assume that the Jaco-
bians of the functions f and g are approximately inverses
in addition to the functions themselves being approximate
inverses. As stated, for the models presented in this work,
this property is obtained for free since the Jacobian of a
linear mapping is the matrix representation of the map itself.
However, since this property may not hold in general, we
propose the following additional constraint could be added
to the objective:

EJV P (f, g) = −Eν∼U(0,1)
[
||JgJfν − ν||22

]
(31)

where Jg,Jf are the Jacobians of g and f respectively,
evaluated at z and x respectively. The expectation can addi-
tionally be approximated by Monte Carlo methods through
a finite number of samples.

We see that such a loss would reach a minimum when the
Jacobians are exact inverses. However, it remains unclear
from which distribution the points ν should be sampled
to achieve the best approximate inverse. Since Jacobian
vector products are efficiently implemented in most deep
learning frameworks, (and are thus much faster than naive
matrix-matrix multiplication) this loss could be added to the
overall objective while still avoiding O(D3) computational
complexity.

Variational Interpretation One limitation of the self nor-
malizing flow framework becomes apparent mainly in the
presence of data-dependant transformations, as would be
contained in the general framework outlined in Section 3.
Specifically, in this setting, the invertibility of the transfor-
mation is more difficult to guarantee since the value of the
Jacobian determinant is then a function of the input, and
therefore ensuring invertibility is not as simple as computing
non-zero determinants on the training data.

To alleviate this difficulty, we believe a variational inter-
pretation of the self normalizing framework as afforded by
Gritsenko et al. (2019) would relax the global invertibil-
ity constraint to a local invertibility constraint. To achieve
this, the encoder and decoder become stochastic with a very
small noise level σ2, and in the limit of σ2 → 0, the vari-
ational lower bound becomes equal to change of variables
formula. In such a model, the inverse approximation er-
ror would contribute to the decoder likelihood directly, and
the ‘self normalizing’ inverse approximation would become
useful in computing the gradient of the entropy of the en-
coder. As the authors note, such an interpretation allows for
non-invertible encoders, and we thus believe it is a fruitful
direction for future research.

A.5. Extended Results

Choice of λ As noted in the discussion, we observe that
final likelihood values are only marginally impacted by the
choice of λ. To quantitatively demonstrate this, we present
the performance for different reconstruction weights λ in
Table 4 below. As can be seen, for values of λ greater than
a minimum threshold, the likelihood performance decreases
slightly as λ increases. For values of λ which are too small,
training is initially stable but eventually becomes unstable
and diverges, resulting in numerical instability (denoted ‘-’).

Table 4. NLL in nats on MNIST for SNF models with different
values of λ. ‘-’ implies the model training diverged.

Model
λ

≤ 0.1 1.0 10.0 100.0 1000.0

2L FC - 946.3 954.6 1007.4 1039.8
9L Conv. - 639.6 642.9 646.3 660.6
2L-16K Glow - - - 574.1 574.8

Improved Constrained Optimization In this work, to
enforce the approximate-inverse constraint f−1 ≈ g, we
make use of a penalty method with parameter λ (the ‘recon-
struction weight’). The downsides of this method are that it
requires manual tuning of λ which can lead to sub-optimal
local minima (as seen above). A powerful alternative to the
basic penalty method is the method of Lagrange multipliers,
whereby λ is simultaneously optimized with the model pa-
rameters by a min-max optimization scheme. One related
implementation of such a method is given by the GECO
algorithm from Rezende & Viola (2018). Simply, the update
equation of the algorithm is given by λt ← λt−1exp(∝ Ct)
for each iteration t, where Ct is derived from the exponen-
tial moving average of the constraint (i.e. reconstruction
loss). In initial experiments, we have shown such a method
works well when combined with the self normalizing frame-
work, reducing the need for tuning, and enabling the stable
training of more complex functions (see Table A.5 below).
The implementation of this method is additionally provided
in the code repository.

Table 5. NLL in nats on MNIST comparing the impact of larger ker-
nel sizes incorporated into the Glow framework (2L-4K width=16).
SNF models are trained with the method of Lagrange multipliers.
Mean ± std over 3 random initalizations.

Model Glow 1x1 SNF 1x1 SNF 5x5

− log pX(x) 678.3 ± 2.0 678.3 ± 9.7 669.9 ± 2.8

A.6. Novelty Comparison

We provide Table 6 (adopted from (Behrmann et al., 2019)),
to facilitate comparison of the self normalizing framework
with existing normalizing flow methods.

Self Normalizing Flows

Table 6. High level comparison of Self Normalizing Flows (SNF) with existing normalizing flow frameworks.

Method NICE/ i-RevNet Real-NVP Glow FFJORD i-ResNet SNF

Free-form 7 7 7 3 3 3
Analytic Forward 3 3 3 7 3 3
Analytic Inverse 3 3 7 7 7 7

Non-volume Preserving 7 3 3 3 3 3
Exact Likelihood 3 3 3 7 7 7

Unbiased Stochastic Log-Det Estimator N/A N/A N/A 3 7 7
Unconstrained Lipschitz Constant 3 3 3 3 7 3

A.7. Acknowledgements

We would like to thank the creators of Weight & Biases
(Biewald, 2020) and PyTorch (Paszke et al., 2019). Without
these tools our work would not have been possible. We thank
the Bosch Center for Artificial Intelligence for funding, and
Anna Khoreva and Karen Ullrich for guidance. Finally,
we thank the reviewers for their proposed extensions and
constructive comments.

