
“Hey, that’s not an ODE”: Faster ODE Adjoints via Seminorms

A. Code
Built-in to torchdiffeq torchdiffeq
(Chen et al., 2018) has chosen to support adjoint
seminorms as a built-in option. This may
be used by passing odeint adjoint(...,
adjoint options=dict(norm=’seminorm’)).

PyTorch reference implementation A reference
implementation, using PyTorch (Paszke et al., 2019) and
torchdiffeq (Chen et al., 2018), is shown in Figure 7.

By default, torchdiffeq uses a (somewhat unusual)
mixed L∞-RMS norm. Given the adjoint state
[at, z, az, aθ], then the norm used is

‖[at, z, az, aθ]‖ = max{ ‖at‖RMS ,

‖z‖RMS ,

‖az‖RMS ,

‖aθ‖RMS},

where for x = (x1, . . . , xn),

‖x‖RMS =

√√√√ 1

n

n∑

i=1

x2i .

Respecting this convention, the code provided reduces this
to the seminorm

‖[at, z, az, aθ]‖ = max{‖z‖RMS , ‖az‖RMS}.

Other similar approaches such as pure-RMS over [z, az]
should be admissible as well.

Julia The DifferentialEquation.jl library (Rackauckas &
Nie, 2017) library offers an argument internalnorm
which may be used to implement seminorms in a manner
analogous to the reference implementation provided here.

B. Experimental details
B.1. Neural Controlled Differential Equations

We use the same setup and hyperparameters as in Kidger
et al. (2020). The loss function is cross entropy. The
optimiser used was Adam (Kingma & Ba, 2015), with
learning rate 1.6 × 10−3, batch size of 1024, and 0.01-
weighted L2 weight regularisation, trained for 200 epochs.
The number of hidden channels (the size of z) is 90, and
f is parameterised as a feedforward network, of width
40 with 4 hidden layers, ReLU activation, and tanh final
activation.

B.2. Continuous Normalising Flows

We follow Grathwohl et al. (2019) and Finlay et al.
(2020). The loss function is the negative log likelihood
− log(p(z(T ) = x)) of equation (6). The optimiser used
was Adam, with learning rate 10−3 and batch size 256,
trained for 100 epochs. Relative and absolute tolerance of
the solver are both taken to be 10−5. We used a multi-scale
architecture as in Grathwohl et al. (2019) and Finlay et al.
(2020), with 4 blocks of CNFs at 3 different scales.

B.3. Symplectic ODE-Net

The optimiser used was Adam, with learning rate
10−3, batch size of 256, and 0.01-weighted L2 weight
regularisation. Relative and absolute tolerance of the solver
are both taken to be 10−4. We use the same architecture as
in Zhong et al. (2020): this involves parameterising H as a
sum of kinetic and potential energy terms. These details of
Sympletic ODE-Net are a little involved, and we refer the
reader to Zhong et al. (2020) for full details.



“Hey, that’s not an ODE”: Faster ODE Adjoints via Seminorms

1 import t o r c h d i f f e q
2
3 def rms norm ( t e n s o r ) :
4 re turn t e n s o r . pow ( 2 ) . mean ( ) . s q r t ( )
5
6 def make norm ( s t a t e ) :
7 s t a t e s i z e = s t a t e . numel ( )
8
9 def norm ( a u g s t a t e ) :

10 y = a u g s t a t e [ 1 : 1 + s t a t e s i z e ]
11 a d j y = a u g s t a t e [1 + s t a t e s i z e : 1 + 2 * s t a t e s i z e ]
12 re turn max ( rms norm ( y ) , rms norm ( a d j y ) )
13 re turn norm
14
15 t o r c h d i f f e q . o d e i n t a d j o i n t ( fu nc = . . . , y0 = . . . , t = . . . ,
16 a d j o i n t o p t i o n s = d i c t ( norm=make norm ( y0 ) ) )

Figure 7: Reference PyTorch implementation for adjoint seminorms.


