GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Training

A. Summary of Notation

Appendix

| Topic | Notation | Explanation
U Set of IV instances in training set
Data (sub)Sets and indices | V' Set of M instances in validation set
Xt Subset of instances from U at the t*"* epoch
w A generic reference to both U and V'
i eX Assignment of element ¢ € IV to an element of X’
0* Optimal model parameter (vector)
Parameters 0; Updated parameter (vector) at the t** epoch
w' Vector weights associated with each data point in X' (at the
t*" epoch)
Loss Functions Lt Training loss which when evaluated on x; € U is referred to
as L&,
Ly Validation loss which when evaluated on z; € V' is referred
to as L7,
L Generic reference to the loss function which when evaluated

on x; is referred to as L.
[ iex wiVaLi(6:) — VoL(,)]|

E(X) miny Err(w, X', L, L1, 6;)

F(Xx) Lyax — E(X) where L,y is an upperbound on E(X)

E(X) The upper bound miny, Ert(w, X, L, Ly, 6,) < E(X) mini-
mized in Section

F(x) The  facility  location lower bound  function
Z’LEW maneX (Lmax — ||V9L1(9t) — VQLJT((%)H) to
be maximized

E\(X,w) Regularized  version  of  E(X) defined  as
| Y icx WV LL(0) — VgL(H)H2 + Al|w]]2. See Sec-
tion

E\(X) ming, Ey (X, w)

Fy(X) Lyyax — ming, Ey (X, w) which we prove to be y-weakly sub-
modular in Section and subsequently maximize

or Upperbound on the gradient of L,

Hyperparameters oy Upperbound on the gradient of L,

k Size of selected subset of points

R The number of training epochs after which data selection is
periodically performed

o The learning rate schedule at the ¢/ epoch

Table 1. Organization of the notations used througout this paper

B. Proofs of the Technical Results

B.1. Proof of Theorem 1

We begin by first stating and then proving Theorem 1.

Theorem Any adaptive data selection algorithm (run with full gradient descent), defined via weights w' and subsets X'*
fort =1,--- T, enjoys the following guarantees:

(1).

If Lt is Lipschitz continuous with parameter or, optimal model parameters 0*, and o =

O'T\/T’

then
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ming—y.r L(6;) — L(0%) < 222 + B35 Err(w!, X1 L, L, 6,).

(2) If Lt is Lipschitz smooth with parameter L, optimal model parameters 0*, and LY satisfies 0 < Li-(0) < B, Vi, then
setting o = 7, we have min,—1.7 L(6;) — L(6*) < % + DS Err(wt, XY L Ly, 6,).

(3) If Lt is Lipschitz continuous with parameter orp, optimal model parameters 0%, and L is strongly convex

with parameter i, then setting a learning rate oy = ﬁ we have ming—1.7 L(6;) — L(0*) < ﬂ%;ifl)
Zi;lT %Err(wt, XU L, Lr,0).

PROOF Suppose the gradients of validation loss and training loss are sigma bounded by oy and o respectively. Let 6; be

the model parameters at epoch ¢ and 6* be the optimal model parameters.

Let, Ly, (0:) = Y. w!Li(6;) be the weighted subset training loss parameterized by model parameters 6, at time step t. Let
icXt

o be the learning rate used at epoch ¢.

From the definition of Gradient Descent, we have:

1
VoL (0:)" (0 — 6%) = — (0.~ 0::1)" (6, — 6%) (6)
t
T o 1 2 1|2 "
VoL (6)" (6= ) = 5— (100 = Brsa|* + 16 = 67 = 16141 — 671 ™
Qi
1 2
VoLu(0:)" (6 —07) = 2ar | |[e > wiVoLip(0y)|| + [16: — 0%]* — (|61 — 67| ®)
¢ icxt
We can rewrite the function V(;Lw(ﬂt)T(Qt — 0*) as follows:
VoLw(0:)" (0 — 0%) = VoLy(0:)" (0 — 6°) — Vo L(0:)" (8 — 0*) + Vo L(6,)" (6, — 6%) ©)
Combining the equations (8) and (9) we have,
1 2
VoLuw(0:) (8, — 0) — VoL (6,)" (6, — 6%) + VoL (6,)" (6, — 6%) = 5o | || ST wiVoLy ()| + 116: — 0% — (101 — 67
t iext
(10
1 2
VoL(0)" (00 = 0%) = 5 | Jaw > wiVoLip(00)| + 116 = 0" " = 1001 = 0°|* | = (VoLu(6,) = VoL(0)" (0 = 0)
t iext

Y
Summing up equation (11) for different values of ¢ € [0, 7 — 1] and assuming a constant learning rate of oy = «, we have:

2

T-1 T—1
1 1 .
Z VoL(0,)T (6, — 0%) :5”00 — 0" = ||6r — 6** + Z(% a Z wiVeL(0:)|| )
t=0 t=0 €X't
T-1
+ 3 ((VoLul@r) = VoL(0) (00~ "))
t=0
Since ||07 — 6*||> > 0, we have:
T-1 1 -1 2 714
LO)T (0, — 07) < — |60 — 6| — 'V Li(6 Lo (6y) — VoL(6:)" (6, — 6*
3 VoL 0= 07) < o 00 =0+ g | 3 wiVaLi(0) >+;(<ve (6) = VoL(6:))" (6, — 0°))

(12)
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Case 1 L is lipschitz continuous with parameter o1 and L is a convex function

From convexity of function L(6), we know L(6;) — L(0*) < VoL(8,)" (8, — 6*). Combining this with Equation 12 we
have,

T-1 2 71
STL(By) - L(9%) < 7||9 —0** + Z a Y wiVeLi (0| )+ > ((vaLw(e)t) —VoL(0,))" (6, — a*))
t=0 i€Xt t=0
13)
Since, | L7(0)|| < or, we have Ha Sicnt WIVLL(6:)]| < letl‘ wlo. Assuming that the weights at every iteration are
normalized such that ZlX | w! =1 and the training and validation loss gradients are normalized as well, we have
te| 1 T)

o> cne WV L (6,)]| < or. Also assuming that |6 — 6*|| < D, we have,

! D?  Tac2
S 10— L%) < 2+ TOTE 57 D (9L, (0) — VoL (00 (14)
t=0 t=0
T-1 T-1
o L(0,) — L(6*) _ D?*  ac? D
t=0 < T _ — 15
T < 5aT + 5 + 2 T ([IVoLw(0:) — VoL(0:)|) (15
Since, min (L(6;) — L(6*)) < w, we have:
, D>  ac: =D
min (L(6;) — L(0*)) < ST + % + T (VoL (6:) — Vo L(04)|) (16)

t

I
o

Substituting L,,(6:) = Y w!L%(6;) in the above equation we have,

icxt
. _ D’ aoh — D
t=0 ieXt
Choosing o« = —2_ we have:

O’T\/T’

T-1
min (L(6;) — L(6%)) D"T+Z ( > wiVeLi(0;) — VoL(6y)

1EX?t

) (18)

Since L, (0;) = > wiLi.(6,), from the additive property of lipschitz smooth functions we can say that L., (6;) is

Case 2 Lr is lipschitz smooth with parameter L7, and Vi, L%, satisfies 0 < L%.(0) < fr

€X'
also lipschitz smooth with constant Y w!Lr. Assuming that the weights at every iteration are normalized such that
ieX?t
N ZIXI‘ w! = 1, we can say that L., (6;) is lipschitz smooth with constant L.

te[0,T7]

From lipschitz smoothness of function L., (6), we have:
L
Lup(Br41) < Lu(00) + VoL (01)" (Orsr = 00) + 5 041 — 1| (19)
Since 0y — 0; = —aVyL,(6;), we have:

c
Lu(041) < Lw(0:) — VoL (0,) Vo Lo (6,) + §\|angw(at)||2 (20)
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Lra? —2a
Lu(Bcs1) < Lu(0) + =—5——IVoLu (0 @
Choosing o = ﬁ, we have:
1
Lu(0141) < Lu(0:) = 5[ VoLu(01)] (22)
T
Since VgL, (07) = > wiVyLi-(6;), we have:
ieXt
2
Li(0111) < Ly(6;) — > wiVeLi(6y) (23)
T llicx
2
5 cT > wiVeLi(0y)|| < Lu(6:) — Lup(0141) (24)
ieXt
Summing the above equation for different values of ¢ in [0, 7" — 1], we have:
=T-1 2 4=T-1
57 |[ 2o wiVeLr @) < Y (Lu(0) = Lu(Bra)) (25)
T
t=0 iext t=0
=1 4 2
t
> T > wiVeLin(0y)|| < Lu(6o) — Lu(61) (26)
t=0 iEX?
Substituting o = é in Equation 12, we have:
T—1 r -1 ' 2 7
> VoL(0n) (00 = 0%) < =100 = "1 + > (55— 2 wiVeLr (0] )+ ((vaLw(et) — VoL (6:))" (0, — 0*))
t=0 =0 ieXxt t=0
27)
Substituting Equation 26, we have:
T-1 r T-1
VoL(0,) (6, —0%) < 7T||9O — 0"|* + Ly (00) — Lu(07) + Y ((VeLw(ﬁt) — VoL(0,))" (6, — 9*)) (28)
t=0 t=0
* L:T *]12 — T *
Z VoL (6,)" (6, — 6%) < 7“90 —0*||" + Lw(60) + ((Vng(et) = VoL(6:)) (0, — 0 )> (29)

t

I
o

Since L7 (6) is bounded by 87, we have L,,(0) = > w!L%(6) bounded by S as the weights are normalized to 1 every
iext

epoch (i.e Z‘X ‘w =1).

T—
ngL 0,) 9t_9*)<7||9 — 0| + Br + (ng ng(at))T(at—e*)) (30)

t=0

;-.
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Dividing the above equation by T, we have:

T *
o VoL(6)" (0 —6") _ Lr g _ P 4 22 5T ((WL (0:) = Vo L(6:))" (6, — 0 )) 31
T - 2T T
Since ||§ — 6*|] < D, we have,
T-1 T _
—o VoL(6:)" (6, — 9*) DLy ﬂT D4
=0

From convexity of function L(6), we know L(6;) — L(6*) < VoL(6;)" (6; — 0*). Combining this with above equation we
have,

TV L(6,) — L(0*) _ D’Lr BT D=
t=0
< -t (IVoLw(0:) — Vo L(0:)]]) (33)
T 2T 7 ;

Since, min (L(0;) — L(6*)) < w, we have:
T—

min (L(6) — L(6")) < 2TT +7 =+ T ; VoL (6:) — VoL(0:)]]) (34

H

Substituting L,,(6;) = > w!L%(6;) in the above equation we have,
iext

> wiVeLi(0;) — VoL(6y)

ieXt

DL D=
min (L(6,) — L(67)) <~ + %T =D <

t=0

) (35)

Case 3 L is Lipschitz continuous (parameter o) and L is strongly convex with parameter p
Let the learning at time step ¢ be ay
From Equation 11, we have:

2
a; » | wiVeLi(6y)

veLwt)T(ate*)Q;t( +||9t9*||2||9t+19*||2) (VoL (6:) — VoL(6:)" (6, — 0%)

iext
(36)
From the strong convexity of loss function L, we have:
VoL(6)" (6, — 6%) = L(6:) — L(8") + 5110 = 0| &)

Combining the above two equations, we have:

2

(673 Z wfVeL’T(Ht)

; 2
ieX?

L) ~ L") = 5 (
(38)

2
—1
Wl
S > wiveLi @) + =56 — 67> - = ||9t+170 I? — (VoLu(8:) — VoL(6:)" (6, — 67)

ieX?t

(39)

41600 — 671 = 16151 — 071 | = (VoLuw(8:) — VoL (6,))" (6; — 67) — £ 6,

—0*))?
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Setting an learning rate of o, = and multiplying by ¢ on both sides, we have:

u(t+1)
¢ Lout—1)
HL(8,) — L(6)) = ———— b, Li (0 B g, — g2
(L(6:) (0%)) W+ 1) ieZthzVQ (0| + 1 104 [
tt+1 § \
D oI (0L (61) — VoL(8) (6 67)

(40)

Since, | L7(0)|| < or, we have Ha iext WV L (0,) H < Z 1 Lt vor. Assuming that the weights at every iteration are

normalized such that ZIX | w! = 1 and the training and validation loss gradients are normalized as well, we have

o> e wEVQLI( Qt || § or. Also assuming that ||§ — 6*|| < D, we have,

2
* or-t Mt(t B 1) * (12
t(L(6,) — L(6%)) = 0, — 0
(L(6) — L(07)) ) 16 — 0"
tt+1 .
D) gy 67+ D VoLa(0)) — VaL(6))]
Summing the above equation from¢ = 1,--- T, we have:
t=T t=T o Mt
> HL(O:) - L = (tT Z 0, — 6|
t=1 t=1 H t=1
t=T t=T
tt+1 .
MO o 072+ 3 DEIVoLu () — VaL(6)]
t=1 t=1
t=T t=T o t=T
o ut(t — 1
ML) —pr) < 30 7 4 3 Dy, g
t=1 t=1 M t=1
Lt +1) =
- Z—Hem —0%[*+ Y Dt|[VoLu(6:) — Vo L(6:)]
t=1
= or®T
(L) — L(07) < =+ GO =TT+ )07 = 0°]%)
t=1
t=T
+ ) Dt||[VoLu(0:) — VoL(6:)|
t=1

Since (0 — T(T + 1)|6r41 — 0*||*) < 0, we have:

il
S

t=T
t(L(0;) — L(6%)) < + 3 Dt|[VoLu(0:) — VoL(8,)l|

1 t=1

O'TQT

t

Since, L(6;) — L(6*) < miny—1.7 L(6;) — L(6*) and multiplying the above equation by ﬁ we have:

2 = 2 opT 2 =
. * T
JE— — < D \V4 —
T(T +1) = iy LO) —LO) < mm . TTw e thl FIVoLuBe) = VoL (B

This in turn implies:

t=T

Jin L(6;) — L(67) < T+1 +t:1T IIVeL (0:) — Vo L(6:)]

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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B.2. Convergence Analysis with Stochastic Gradient Descent

Theorem Denote Ly as the validation loss, Lt as the full training loss, and that the parameters satisfy ||0||* < D?. Let L
denote either the training or validation loss (with gradient bounded by o). Any adaptive data selection algorithm, defined
via weights wt and subsets X* fort = 1,--- , T, and run with a learning rate o using stochastic gradient descent enjoys
the following convergence bounds:

o if Lp is lipschitz continwous and o = D then T (ming_.r L(6;)) — L(#*) < Lz

orVT’ > VT
TZt 1 E(E”’( tv‘)(tvLaLTaat))

e if Ly is Lipschitz continuous, L is strongly convex with a strong convexity parameter i, then setting a learning rate
711(12+t)’ then E (ming—1.7 L(0;)) — L(6*) < “‘(’%ﬁl) + Zt 1 T(T+1) E (tErr(wt, Xt L, L1, 0;))

ay =
where: _
Err(w', X', L, L1,0;) = |3, cxt wi VoL (0:) — VoL(6:)||

PROOF Suppose the gradients of validation loss and training loss are sigma bounded by oy and o7 respectively. Let 6; be

the model parameters at epoch ¢ and 6* be the optimal model parameters. Let o is the learning rate at epoch ¢.

Let L, (0;) = > w!L%(6;) be the weighted training loss where Li.(6;) is the training loss of the 7! instance in the subset
1EX?

Xt

Let Vo Li, (6;) be the weighted training loss gradient of the ' instance in the subset X'*, we have:

VoL, (6y) = wiVeLi(6y)

For a particular 6, conditional expectation of Vng(Ht) given 6 = 6, over the random choice of ¢ (i.e., randomly selecting
th sample from the subset X'?) yields:

E(VoLi,(0:) |0 =0,) = Vow!Li(6,)
iext (48)

= VoL, (07)
In the above equation, w? can be assumed as weighted probability distribution as z):( wh=1.
i€X?
Similarly conditional expectation of Vo L¢ (6;)T(6; — 6*) given 6 = 0, is,
E(VoLy,(0:)"(6: — 6) | 6 = 6:) = VoL (67)" (6 — 67) (49)

Using the fact that # = 6, can occur for 6 in some finite set © (i.e., one element for every choice of samples through out all
iterations), we have:

E(VoLy,(0:)"(6: = 0%) = > E(VoL,(0:)" (6, — 6%)) prob(6 = 6;)
0:€0

=Y VoL (0r)" (6; — ) prob(6 = 6,) (50)
(S
=E (VoLuw(0r)" (6; — 0%))

From the definition of stochastic gradient descent, we have:

) 1
VoLi,(0,)" (6, — 07) = o B 00) (0, - 07) (51)

i * 1 * *
VgL;U(Ot)T(Qt —0") = Yo <||9t — O ||+ 110 — 07> — |04 — 0 Hz) (52)
t
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) 1 )
VoLiy(0)" (0.~ 0) = 5= (leWo L @)]]* + 116 0°I* — s~ 0°]1) (53)

We can rewrite the function VgLfU(Gt)T(Ht — 6*) as follows:
i T * i T * T . T *
VoL, (0r) (0 —0%) = VoL, (0:) (0: —0%) — VoL(0) (0 —0") + VoL(0:) (6 —0%) (54)
Combining the equations Equation 53 ,Equation 54 we have,

) 1 )
VoLl (0)" (6: = 07) = VaL(0) (6: = 0%) + VaL(8)" (6 — 07) = 5— (|[aeVoLiy (8)[|” + 116 = 61 = 116141 — 0|*)
t

(55)
T * 1 i 2 *|2 *(2 i T *
VoL(0:)" (0: = 0") = 5— ([ oLty 0] + 16 = %> = 01 = 0%1*) = (VoLi,(6) = VoL(6:))" (6 = 6%)
t
(56)
Taking expectation on both sides of the above equation, we have:
1 . 1
E(VoL(0)" (0: = 0%) = 5—E (||acVoLi, 0)]) + 5~ E (116 = 6°)
Qi 20415 (57)
1 * % T *
= 5o B (1001 = 0°1%) =B ((VoLi(60) = VoL(6))" (6 —0))

From Equation 50, we know that E(VoL%,(6,)7(6; — 6*)) = E (VoL (0r)" (6 — 6*)). Substituting it in the above
equation, we have:

E(VoL(0) (00— 7)) = 5B (VoL (@7 + 5 (116 — %)

o 20[,5 20[t (58)
1
= 5o B (180 = 0°17) — B ((VoLu(0r) — VoL(0)) (01— 0))

Case 1 L is lipschitz continuous with parameter o (i.e., |VoLr(0)| < or)

From convexity of function L(6), we know L(6;) — L(6*) < VoL(6,)" (6, — 6*). Combining this with Equation 58 we
have,

1 1
E(LO) — L) < 5 —E (laVoLu(0)1) + 5 E (116, - 0°|*)
2at 2at (59)
1 * *
3 E (10041 = 0°1) — E ((VoLu(0) = VoL(0)" (6 — 07))
Summing up the above equation from¢ =0---7 — 1, we have:
T—1 -1 , T2
_ * < - 2 o _ px|2
> B(LO) ~ L") £ Y 5B (Vo Lu(0)I) + 5= > B (160 - 0°I1)
t=0 t=0 t=0 (60)
1 T-1 T-1
= g0 2 E (e = 01%) = 3B (VoL () ~ VoL(6:))" (0 —0))
© t=0 t=0

Since E (||VoLr(0)|]) < o7, we have E (|| VgL (0)]]) < or as the weights are normalized to 1. Substituting it in the
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above equation, we have:

T-1 T-1
N ayo? 1 N
SOELO) - L") < Y+ —ZE(HG —0"[")
t=0 t=0 t=0 1)
1 = ) -
S ;E(nem — 0 - g ((VoLw(6) = VoL(6) (0. - 7))
T-1 -1, 2
> E(LO:) R (G
t=0 t=0 ©2)
1 T-1 .
~ 5o E(lor —0I) - > E ((VoLw(6) = VoL(6) (0. 07))
Since E (HHT - 0*||2) > 0, we have:
T—1 -1, 2 1 T—1
o * tYT - _ px||2 T _ p*
B(L(0) — L(0%) < D- 5+ 5B (160 —0°1°) = DB ((VoLu(B) — VoL(0) (0 —6))  (63)
t=0 t=0 t=0
Also assuming that ||§ — 8*|| < D, we have,
T-1 T—1
a;To2  D?
D _E(LO) — L") < =5 + 5= =D Y _E(IVeLu(6:) — VoL(®:)]) (64)
t=0 * t=0
Choosing a constant learning rate of a; = aTLﬁ’ we have:
T—1 T—1
0" DorT  DoprVT
E(L 07) < 5+ —5— ~ DY E(IVeLu(6:) — VsL(6,)) (65)
t=0 t=0
Since, L(6;) — L(0*) < min;—y.7 L(6;) — L(6*), we have:
T-1 T-1
. « DO’T\/T DO’T\/T
_ < _ _
; E(min L(6,) — L(6")) < ——+—>— - D E:j E (| VoLu(6:) = VoL(8:)]) (66)
Dividing the above equation by 7" in the both sides, we have:
Tl ! Doy DT
T Z E( mln L(et Z f T E ([VoLuw(6:) — VoL(0:)]]) (67)
t=0 t= t=0
. N — D D= 68
E(min L(6,) — L(0")) < Z:O ? = Z (IVoLuw(0:) — VoL(6y)]]) (68)
Substituting VgL, (6:) = > wiVeLi(6:), we have:
€X't
15, p Tl
. . T t i
_ < -+ = t _
E (min L(0) - L") < ; VT T 2E ( Z;tw,wmot) VoL (0:) ) (69)
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Case 2 L is Lipschitz continuous, L is strongly convex with a strong convexity parameter y

From strong convexity of function L(6), we have:

E (VoL(0)" (6~ 07)) 2 E(L(B) — L) + S E (16~ 0] 10)

Combining the above equation with Equation 58, we have:

E(L(6) — L(07) + DE (16~ 6°1) < 5 E (laeVoLu(@)I) + 5 E (6. — 6°]?)
t t (71)
= 5o B (1601 = 0°1) =& ((VLu(6) ~ VoL(8:) (0~ 6°))
E(L(6) — L(6")) < g E (locVoLu(@))?) + 5 & (16— 6°]1)
t t (72)
= 5 E (160 = 071) — B ((VoLu(61) — VoL(6)" (00 - 6%)) = S E (61~ 6°])
E(L(0) ~ 16) < 5 B (lonVoLu(@)?) + “ & (I — o)) 3
! (73)

_ atT_llE (H9t+1 - 9*”2) _E ((VQLw(et) VL) (0, — 9*))

Setting an learning rate of oy = multiplying by ¢ on both sides and substituting Vo L., (0¢) = >, v wiVoLi.(6y),

(t+1) ’
we have:
¢ ’ Ht—1)
E (t(L(6;) — L(6*))) = E D > wiVeLi(6)| | +E (“4@ — e*||2)
iext (74)
t(t + N
& (M s = 0717 — B ((TaL(60) ~ TL6)7 6, - 0°))
(0)|| < or, wehave || Y,y WV LE(6,)]] < letl wtor. Assuming that the weights at every iteration are
normalized such that lel‘ w! = 1 and the training and validation loss gradients are normalized as well, we have

E[l T)
o> scne WV L (6,)]| < or. Also assuming that |6 — 6*|| < D, we have,

2
. ort ut(t —1) 2
t(L(6:) — L(0 = + 0, — 90
E (L) ~ L) = ity + = B (1 - 0°I) o
t(t+1 .
MDY (16000 — 0°17) + B (DF [V LuB) — VoL (00)])
Summing the above equation from ¢t = 1,--- |, T, we have:
t=T t=T 2 t=T
E(HLO) = LON) = > a5+ 2 D g (jo, - 071P)
t=1 t=1 K t=1
t=T t=T (76)
— Ht(t+1 . -
S Y (o 07) + S DB VeLu(6) - VoL
t=1 t=1



GRAD-MATCH: Gradient Matching based Data Subset Selection for Efficient Training

t=T t=T o =T B
SoEe) - L) < > T+ S Mg (16, )
i = s (77)
St + 1) A2 LS
= T E (I —07) + 30 DECIVoLu(0) = VoL(E0))
= * o 2T I *12
D_E(HL) ~ L") < TGO T(TE (1741 = 0°1%)) .
B 7
t=T
+ 3 DEIVoLu(0)) - VoL@
t=1
Since £(0 — T(T + 1) E (||9T+1 - e*||2)) < 0, we have:
iE (t(L(6;) — L(6%))) < or’T + i DE (t||VoLy(0:) — VoL(6,)]) (79)

t=1 t=1

Since, L(6;) — L(6*) < miny—1.7 L(6;) — L(6*) and multiplying the above equation by ﬁ we have:

T

2 < , . 2 op?T 2 C
T 1) E (H ¢( min L(6;) — L(6 ))> < T 5 T TT D ;E(Dt\ngw(Gt) — VoL (6,)]))
(80)
This in turn implies:
E (min L)) - L(6") < 772 +t§ 2D g (1 VeLu(0)) — VoL(0)]) (81)
mir ST +1) T =TT+ Ot o

B.3. Conditions for adaptive data selection algorithms to reduce the objective value at every iteration

We provide conditions under which the adaptive subset selection strategy reduces the objective value of L (which can either
be the training loss Lt or the validation loss Ly ):

Theorem 4 [f the Loss Function L is Lipschitz smooth with parameter L, and the gradient of the training loss is bounded
by o, the adaptive data selection algorithm will reduce the objective function at every iteration, i.e. L(0y11) < L(0;) as

long as (3";cx wiVoLi(0))TVoL(0) > 0 and the learning rate schedule satisfies oy < ming 2%, where 0;
is the angle between ), w;Vo L (0) and Vg L(0).

Before proving this result, notice that any data selection approach that attempts to minimize the er-
ror term Err(w', X', L, Ly, 0;) = || X cxwiVoLip(0;) — VgL(0;)||, will essentially also maximize

(Zie xt wfVeLiT(Q))TVgL(G). Hence we expect the condition above to be satisfied, as long as the learning
rate can be selected appropriately.

PROOF Suppose we have a validation set V and the loss on the validation set or training set is denoted as L(6) depending
on the usage. Suppose the subset selected by the GRAD-MATCH is denoted by S and the subset training loss is L1 (6, X).
Since validation or training loss L is lipschitz smooth, we have,

L£]|Ag)°

5+ VoL(0))" NG,  where, A =0, —06, (82)

L(014+1) < L(0:) +
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Since, we are using SGD to optimize the subset training loss L1 (6, .S) model parameters our update equations will be as

follows: ‘
9t+1 = Gt — Z wZVgL’T(Gt)
iex
Plugging our updating rule (Equation 83) in (Equation82):
r 2
L(Oe1) < L(8;) — aVeL(8:)" ; wi Ve L (0)) + 5 ||~ ;{ w; VoLl (6)

Which gives,

L(0rs1) — L(0:) < —aVeL(0)" Y wiVoLin(0)
ieX

Z w; Vo Lip (6

1€EX

From (Equation 85), note that:

2

Z w; VQLT

L(0y41) < L(G) if o <szngT > VoL (6;) —
ieX

1EX

Since we know that Hziex w;VoL%(6) ||2 > 0, we will have the necessary condition:

( > inaLlir(e)) TVeL(et) >0

i€X
We can also re-write the condition in (Equation86) as follows:
i ’ al i ’ i
(;{ inQLT(9)> VoL(0h) > = <;{ inQLT(0)> (; wingT(e)))

The Equation 87 gives the necessary condition for learning rate i.e.,

(Sier wiveLZ‘Tw))TveL(et)

a <

Do

( Diex wiveL%(9)> ' ( Diex wiWUT(@))

The above Equation 88 can be written as follows:

o < 2 IVL(0)] cos(©r)
" L[ ien wiVeLi O)]

T
(ziex w,-ngiT<e>) VoL(8:)
15 e VoL O)]| VoL (6]

where cos©; =

(83)

(84)

(85)

(86)

87)

(88)

(89)

Assuming we normalize the subset weights at every iteration i.e., \ZZZ e, x| w! = 1, we know that the gradient norm

||Z icx WiV Li(0) H < o, the condition for the learning rate can be written as follows,

T
ey Wi VoL L
_ 2[[VoL(8:)]| cos(©r) - (Zzexw%VB T(9)> VoL(0:)
< where cos©; = ;
Lor [ e wiVoLip (O)[| Vo L(6:)]

(90)
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Since, the condition mentioned in Equation 90 needs to be true for all values of /, we have the condition for learning rate as

follows:
2||VoL(:)| cos(©r)

£O’T

T
Diex wNeUT(@)) VoL(0:)
sz‘ex wiv@UT(e)H Vo L(6:)]

a< Intin

€2y

where cos ©; =

B.4. Proof of Theorem 2
‘We first restate Theorem 2

Theorem If |X| < k, max; ||[VoL%(0)||l2 < Vimax, then F)\(X) is y-weakly submodular;, with ~v > W

max

PROOF We first note that the minimum eigenvalue of F(X) is atleast A. Next, we note that the maximum eigenvalue of
Fy(X) is atmost

A + Trace(F'(X)) 92)

VLT (6) VILT (6,)
VLZ (6r) VL7 (64)

= \ + Trace 93)
VL (0:) VL (0;)
= A+ > IV (94)
i€ (k]

which immediately proves the theorem following (Elenberg et al., 2018).

B.S. Proof of Theorem 3
We start this subsection by first restating Theorem 3.

Theorem If the function Fy(X) is y-weakly submodular, X* is the optimal subset and max; ||VgL4(0:)|l2 < Vimax
(both) the greedy algorithm and OMP (Algorithm 2), run with stopping criteria E)(X) < € achieve sets X such that

|X] < % log(%) where L. is an upper bound of F)y .

PROOF From Theorem 3, we know that F\ (X) is weakly submodular with parameter v = W'

We first prove the result using the greedy algorithm, or in particular the submodular set cover algorithm (Wolsey, 1982).
Note that an upper bound of F) is Ly ax, and consider the stopping criteria of the greedy algorithm to be achieving a subset
X such that F\(X) > Lyax — €. The goal is then to bound the | X'| of the subset X" achieving it compared to the optimal
subset X'*.

Given a set X; which is obtained at step 7 of the greedy algorithm, and denote e; to be the best gain at step 7. Note that:
YEAX*U X)) = (X)) < > Fa(ilXi)

JEX™

where the last inequality holds because of the greedy algorithm. This then implies that:

X7

EX(X") = FA(X;) < (Fx(Xip1) — Fa(X3)) (96)

We modify the second term to be (F)(X;11) — FA(X;)) = (FA(X*) — Fa(X;)) — (Fx(X*) — Fx(X;+1)) and then obtain

the following recursion:

FA(X") = Fa(Xip1) < (1 - ﬁ)(ﬂ(%*) — FA(X3)) ©7)
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We can then recursively multiply the right hand and the left hand sides, until we reach a set X’ such that F\ (X)) > Lyax — €
(which is the stopping criteria). We then achieve:

FA(X*) = FA(X) < (1= y/|X* )M (&%) = Fa(0) < (1= /|2 DHEA(*) < (1= 9/|JX DY Linare (98)
where the second-last inequality holds since F\(f)) > 0, and the last inequality holds because F\(X*) < Lyax.

This implies that we have the following inequality: F)(X*) — Fy(X) < (1 — v/|&*)!* Lyax. Next, notice that
since F\(X*) < Lmax, which in turn implies that F)\(X*) — F\(X) < e. Hence, we can pick a X’ such that (1 —
7/1X*)1 ¥ Linax < €, which will then automatically imply that Fy(X*) — Fy(X) < e. The above condition requires
(1 —~/|X*|)I¥l > ¢, which in turn implies that |X'| < |X*|/~1og Layx /€. This shows the result for the standard greedy
algorithm.

Finally, we prove it for the OMP case. In particular, from Lemma 4 and the proof of Theorem 5 in (Elenberg et al., 2018),
we can obtain a recursion very similar to Equation 96, except that we have the ratio of the m and M corresponding to strong
concavity and smoothness respectively. From the proof of Theorem 2, this is exactly the bound used for weak submodularity
of F', and hence the bound follows for OMP as well.

B.6. Convergence result for GRAD-MATCH using the OMP algorithm

The following result shows the convergence bound of GRAD-MATCH using OMP as the optimization algorithm.

Lemma 1 Suppose the subsets Xt satisfy the condition that Ex(X') < ¢, forallt = 1,--- T, then OMP based data
selection achieves the following convergence result:

e if L is lipschitz continuous with parameter o and o = - ]?/:7’ then ming—q.7 L(6;) — L(0*) < D—\/%T + De,

o if Ly is lipschitz smooth with parameter L, and LY. satisfies 0 < Li.(0) < Br,Vi. Then setting o = é, we have
ming_y. L(6;) — L(6%) < Z2£2£28r 4 D,

o if L is Lipschitz continuous (parameter o) and L is strongly convex with parameter i, then setting a learning rate

achieves min,—1.p L(0;) — L(6*) < Hf;ﬁ-n + De

_ 2
Q= p(l4t)’

PROOF We prove the first part and note that the other parts follow similarly. Notice that the stopping criteria of Algorithm 1
is E\(X") < e. Denote w; as the corresponding weight vector, and hence we have E (X") = E\ (X! w;) = E(X' w) +
Al|we||? < €, where E(X!, w;) = Brr(wy, X%, L, Lt,0;). Since |[w||?> > 0, this implies that Err(w;, X*, L, L1, 6;) < e,
which combining with Theorem 1, immediately provides the required convergence result for OMP. Finally, note that for the
third part, Zle %e = € and this proves all three parts.

B.7. More details on CRAIG
B.7.1. CONNECTIONS BETWEEN GRAD-MATCH AND CRAIG

Lemma 2 The following inequality connects E(X) and E(X)

E(X) = minErr(w, X, L, Ly, 6;) < BE(X) (99)

Furthermore, given the set X' obtained by optimizing E, the weights can be computed as: w' = Ziewﬂ[j =
arg minse){t ||V9L%r(9t) — VQLS (9,5)”]

PROOF During iteration ¢ € 1,--- , T, we partition W by assigning every element i € W to an element 7; € X as follows:

™y € argmin e x| VoL (0) — VoL7(0)]| (100)

In other words, 7! denotes the representative for a specific i € W in set X. Also recall that, E (X) is defined as follows:
E(X) = i Li(6;) — VoL(0
() ;:V%gflﬂve (00) — VoLy(6,)]]

= 5" IVeLi(8,) — VoL (8] (101)
iceW
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Then, for any ; we can write
VoL(0:)=>_ (VoLip(0:)— VoL ™ (6;)+VoL™ (0,))
iEW
=Y (VoLip(0:) = VoL™ (6:)) + Y w; VoL (6))
iEW JEX
where w; denotes the count of number of ¢ € W that were assigned to an element j € X. Subtracting the second term on

the RHS, viz.,, 3 v w;Vo LI (6;) from the LHS and then taking the norm of the both sides, we get the following upper
bound on the error of estimating the full gradient Err(w, X', L, L1, 6;):

Err(w, X, L, Ly.0;) = ||[VL(0:) = Y wi VL (6,)

ieX
= 3" (VoLip(6:) - ngﬂi(et))H
ieW
<D VoL (6:) — VoL (6,)]),
ieW

where the inequality follows from the triangle inequality.

With 7} € argmin,c ¢ [|[VoL'(0) — VgLJf(Q) ||, the upper bound exactly equals the function £(X) defined below:

B(X) =3 min [VoL'(6) = VoLip(00)]
ieW

= ST IVeLi(8,) — VoLF (8] (102)
ieW

Hence it follows that £(X') is an upper bound of E(X).

B.7.2. MAXIMIZATION VERSION OF CRAIG

We can similarly formulate the maximization version of this problem. Define:

F(X) = 3 L — min [ VgL' (6,) ~ Vo Ly (01)]
iEeWw
= 3 max (Lmas — [VoZ4(0:) = Vo L(00)])
iew 7€
Note that this function is exactly the Facility Location function considered in CRAIG (Mirzasoleiman et al., 2020a), and

F'(X) is a lower bound of F'(X'). Maximizing the above expression under the constraint | X| < k is an instance of cardinality
constraint submodular maximization, and a simple greedy algorithm achieves a 1 — 1/e approximation (Nemhauser et al.,
1978).

Next, we look at the dual problem, i.e., finding the minimum set size such that the error is bounded. Through the following
minimization problem we obtain the smallest weighted subset X" that approximates the full gradient by an error of at most €
for the current parameters 6;:

Xt = miny|X|, sothat, B(X) <. (103)
We can rewrite Equation 103 as an instance of submodular set cover:
Xt =miny|X|,s.t. F(X) > [W|Lax — €. (104)

This is an instance of submodular set cover, which can also be approximated up to a log-factor (Wolsey, 1982; Mirzasoleiman
et al., 2015). In particular, denote () = F(X *) as the optimal solution. Then the greedy algorithm is guaranteed to
obtain a set X’ such that F'(X) > |W|Lmax — € and |X| < |X*|log(Q/€). Next, note that obtaining a set X’ such that
F(é\? ) > |W)|Lmax — € is equivalent to E (X) < e. Using this fact, and the convergence result of Theorem 1, we can derive
convergence bounds for CRAIG. In particular, assume that using the submodular set cover, we achieve sets X such that
E (X*") < e. The following corollary provides a convergence result for the facility location based upper bound approach.
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B.7.3. CONVERGENCE BOUND FOR CRAIG
Next, we state and prove a convergence bound for CRAIG.

Lemma 3 Suppose the subsets X satisfy E(Xt) <eVt=1,---,T, then using the facility location upper bound for data
selection achieves the following convergence result:

e if Ly is lipschitz continuous with parameter o and o = then ming_y.7 L(0;) — L(0*) < D—"TT + De,

D
, orV'T’ ] VT
o if Ly is lipschitz smooth with parameter L, and LY. satisfies 0 < L4.(0) < Br,Vi. Then setting o = é we have
2
mint:LT L(9t> - L(9*> S % + DE,
o if L is Lipschitz continuous (parameter o) and L is strongly convex with parameter i, then setting a learning rate

a; = —2—, achieves min;— L(0;) — L(6%) < _207% + De
t pn(l+t)’ t=1:T t S LT

PROOF We prove the first part and note that the other parts follow similarly. Notice that the CRAIG algorithm tries
to minimze the term E(X*') = Y, minjexe [[VoL'(0;) — VoL%.(0,)| which is an upper bound of E(X") =
min Err(wt, X', L, L1,6,) from Lemma B.7 (i.e., Err(w’, X!, L, Ly, 0,) < E(X')). From the assumption that

E(X ) < ¢, we have Err(w!, X, L, Lt,0;) < ¢, which combining with Theorem 1, immediately proves the required

convergence result for CRAIG. Finally, note that for the third part, Zle T (QTDL) € = € and this proves all three parts.

C. More Experimental Details and Additional Results
C.1. Datasets Description

We used various standard datasets, namely, MNIST, CIFAR10, SVHN, CIFAR100, ImageNet, to demonstrate the effective-
ness and stability of GRAD-MATCH.

Name No. of classes | No. samples for | No. samples for | No. samples for | No. of features
training validation testing
CIFARI10 10 50,000 - 10,000 32x32x3
MNIST 10 60,000 - 10,000 28x28
SVHN 10 73,257 - 26,032 32x32x3
CIFAR100 100 50,000 - 10,000 32x32x3
ImageNet 1000 1,281,167 50,000 100,000 224x224x3

Table 2. Description of the datasets

Table 2 gives a brief description about the datasets. Here not all datasets have an explicit validation and test set. For such
datasets, 10% and 20% samples from the training set are used as validation and test set, respectively. The feature count given
for the ImageNet dataset is after applying the RandomResizedCrop transformation function from PyTorch (Paszke
etal., 2017).

C.2. Experimental Settings

We ran experiments using an SGD optimizer with an initial learning rate of 0.01, the momentum of 0.9, and a weight decay
of Se-4. We decay the learning rate using cosine annealing (Loshchilov & Hutter, 2017) for each epoch. For MNIST, we
use the LeNet model (LeCun et al., 1989) and train the model for 200 epochs. For all other datasets, we use ResNet18
model (He et al., 2016) and train the model for 300 epochs (except for ImageNet, where we train the model for 350 epochs).

To demonstrate our method’s effectiveness in a robust learning setting, we artificially generate class-imbalance for the above
datasets by removing almost 90% of the instances from 30% of total classes available. We ran all experiments on a single
V100 GPU, except for ImageNet, where we used an RTX 2080 GPU. However, for a given dataset, all experiments were run
on the same GPU so that the speedup and energy comparison across techniques is fair.

C.3. Other specific settings

Here we discuss various parameters’ required by Algorithm 2, their significance, and the values used in the experiments.
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e Kk determines the subset size with which we train the model.
e ¢ determines the extent of gradient approximation we want. We use a value of 1e-10 in our experiments.

e ) determines how much regularization we want. We set A = 0.5.

C.4. Data Selection Results:

This section shows the results of training neural networks on subsets selected by different data selection strategies for various
datasets. Table 3 shows the test accuracy and the training time of the ResNet18 model on CIFAR10, CIFAR100, and SVHN
datasets for 300 epochs. Table 4 shows the test accuracy and the training time of the LeNet model on the MNIST dataset
for 200 epochs. Table 5 shows the test accuracy and the training time of the ResNet18 model on the ImageNet dataset for
350 epochs. From the results, it is evident that GRAD-MATCHPB-WARM not only outperforms other baselines in terms of
accuracy but is also more efficient in model training times. Furthermore, GLISTER and CRAIG could not be run on ImageNet
due to large memory requirements and running time. GRAD-MATCH, GRAD-MATCHPB, and CRAIGPB were the only
variants which could scale to ImageNet. Furthermore, GLISTER and CRAIG also perform poorly on CIFAR-100. Overall,
we observe that GRAD-MATCH and its variants consistently outperform all baselines by achieving higher test accuracy and
lower training times.

Energy Consumption Results: Table 6 shows the energy consumption (in KWH) for different subset sizes of CIFAR10,
CIFAR100 datasets. The results show that GRAD-MATCHPB-WARM strategy is the most efficient in energy consumption
out of all other selection strategies. Similarly, we could also observe that the PerBatch variants, i.e., CRAIGPB, GRAD-
MATCHPB have better energy efficiency compared to GRAD-MATCH and CRAIG.

Energy Consumption Results

Energy consumption for training the Model(in KWH)
Budget(%) 5% 10% 20% 30%
Dataset Model Selection Strategy

CIFAR10  ResNetl8 FuLL 0.5032  0.5032 0.5032 0.5032

RANDOM (Skyline for Energy Consumption) 0.0592 0.0911 0.1281 0.18

RANDOM-WARM (Skyline for Energy Consumption) | 0.0581 0.0901  0.128 0.176
GLISTER 0.0693 0.1012 0.1392 0.1982
GLISTER-WARM 0.0672  0.0990 0.1360 0.1932
CRAIG 0.0832  0.1195 0.1499 0.2063
CRAIG-WARM 0.0770 0.1118 0.1438 0.2043
CRAIGPB 0.0709 0.1031 0.1384 0.2005
CRAIGPB-WARM 0.0682 0.1023 0.1355 0.2016
GRAD-MATCH 0.0734 0.1173  0.1501 0.2026
GRAD-MATCH-WARM 0.0703 0.1083 0.1429 0.2004
GRAD-MATCHPB 0.0670  0.1006 0.1378 0.1927
GRAD-MATCHPB-WARM 0.0649 0.0978 0.1354 0.1912
CIFARIO0 ResNetl8 FuLL 0.5051 0.5051 0.5051 0.5051
RANDOM (Skyline for Energy Consumption) 0.0582 0.0851 0.1116 0.1910
RANDOM-WARM (Skyline for Energy Consumption) | 0.0581 0.0850 0.1115 0.1910
GLISTER 0.0674 0.0991 0.1454 0.2084
GLISTER-WARM 0.0650 0.0940 0.1444 0.2018
CRAIG 0.1146  0.1294 0.1795 0.2378
CRAIG-WARM 0.0895 0.1209 0.1651 0.2306
CRAIGPB 0.0747 0.0946 0.1443 0.2053
CRAIGPB-WARM 0.0710 0.0916 0.1447 0.2039
GRAD-MATCH 0.0721 0.1129 0.1577 0.2297
GRAD-MATCH-WARM 0.0688 0.0980 0.1531 0.2125
GRAD-MATCHPB 0.0672  0.0978 0.1477 0.2100
GRAD-MATCHPB-WARM 0.0649  0.0928 0.1411 0.2001

Table 6. Energy consumptions results for training a ResNet18 model on CIFAR10, CIFAR100 datasets for 300 epochs

C.5. Standard deviation and statistical significance results:

Table 7 shows the standard deviation results over five training runs on CIFAR10, CIFAR100, and MNIST datasets. The
results show that the GRAD-MATCHPB-WARM has the least standard deviation compared to other subset selection strategies.
Note that the standard deviation of subset selection strategies is large for smaller subsets across different selection strategies.
Furthermore, GLISTER has higher standard deviation values than random for smaller subsets, which partly explains the
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Standard Deviation Results

Standard deviation of the Model(for 5 runs)
Budget(%) 5% 10% 20% 30%
Dataset Model Selection Strategy
CIFARIO  ResNetl8 FuLL 0.032 0.032  0.032 0.032
RANDOM 0483 0518 0.524 0.538
RANDOM-WARM 0.461 0.348 0.24 0.1538
GLISTER 0453 0.107 0.046 0.345
GLISTER-WARM 0.325 0.086 0.135 0.129
CRAIG 0.289  0.2657 0.1894 0.1647
CRAIG-WARM 0.123  0.1185 0.1058 0.1051
CRAIGPB 0.152  0.1021  0.086 0.064
CRAIGPB-WARM 0.0681 0.061  0.0623 0.0676
GRAD-MATCH 0.192 0.123 0.112 0.1023
GRAD-MATCH-WARM 0.1013 0.1032  0.091 0.1034
GRAD-MATCHPB 0.0581 0.0571 0.0542 0.0584
GRAD-MATCHPB-WARM | 0.0542 0.0512 0.0671 0.0581
CIFARI00 ResNetl8 FuLL 0.051 0.051 0.051 0.051
RANDOM 0.659 0.584 0.671 0.635
RANDOM-WARM 0.359 0.242 0.187 0.175
GLISTER 0.463 0.15 0.061 0.541
GLISTER-WARM 0.375 0.083 0.121 0.294
CRAIG 0.3214 0.214  0.195 0.187
CRAIG-WARM 0.18 0.132 0.125 0.115
CRAIGPB 0.12 0.134  0.123 0.115
CRAIGPB-WARM 0.1176  0.1152  0.1128 0.111
GRAD-MATCH 0.285 0.176  0.165 0.156
GRAD-MATCH-WARM 0.140 0.134 0.142 0.156
GRAD-MATCHPB 0.104  0.111 0.105 0.097
GRAD-MATCHPB-WARM | 0.093 0.101 0.100 0.098
Standard deviation of the Model(for 5 runs)
Budget(%) 1% 3% 5% 10%
MNIST LeNet FuLL 0.012  0.012 0.012 0.012
RANDOM 0.215 0265 0.224 0.213
RANDOM-WARM 0.15 0.121 0.110 0.103
GLISTER 0.256  0.218 0.145 0.128
GLISTER-WARM 0.128 0.134 0.119 0.124
CRAIG 0.186  0.178  0.162 0.125
CRAIG-WARM 0.0213 0.0223 0.0196 0.0198
CRAIGPB 0.021  0.0209 0.0216 0.0204
CRAIGPB-WARM 0.023 0.0192 0.0212 0.0184
GRAD-MATCH 0.156 0.128 0.135 0.12
GRAD-MATCH-WARM 0.087  0.084 0.0896 0.0815
GRAD-MATCHPB 0.0181 0.0163 0.0147 0.0129
GRAD-MATCHPB-WARM | 0.0098 0.012  0.0096 0.0092

Table 7. Standard deviation results for CIFAR10, CIFAR100 and MNIST datasets for 5 runs

fact that it does not work as well for very small subsets (e.g. 1% - 5%). We could also observe that the warm start variants
of subset selection strategies have lower variance than non-warm-start ones from the standard deviation numbers, partly
because of the better initialization they offer. Finally, the PerBatch variants GRAD-MATCHPB and CRAIGPB have lower
standard deviation compared to GRAD-MATCH and CRAIG which proves the effectiveness of Per-Batch approximation.

In Table 8, we show the p-values of one-tailed Wilcoxon signed-rank test (Wilcoxon, 1992) performed on every single
possible pair of data selection strategies to determine whether there is a significant statistical difference between the strategies
in each pair, across all datasets. Our null hypothesis is that there is no difference between the data selection strategies pair.
From the results, it is evident that GRAD-MATCHPB-WARM variant significantly outperforms other baselines at p < 0.01.

C.6. Other Results:

Gradient Errors: Table 9 shows the average gradient error obtained by various subset selection algorithms for the MNIST
dataset. We observe that the gradient error of GRAD-MATCHPB is the smallest, followed closely by CRAIGPB. From the
results, it is also evident that the PerBatch variants i.e., GRAD-MATCHPB and CRAIGPB achieves lower gradient error
compared to GRAD-MATCH and CRAIG. Also note that GRAD-MATCH has a lower gradient error compared to CRAIG
and GRAD-MATCH-PB has a lower gradient error compared to CRAIG-PB. This is expected since GRAD-MATCH directly
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RANDOM
GLISTER 0.0006
GLISTER-WARM 0.0002 | 0.0017
CRAIG 0.0003 0.048 0.00866
CRAIG-WARM 0.0002 | 0.0375 0.0492 | 0.0004
CRAIGPB 0.0002 | 0.0334 0.0403 | 0.0010 | 0.0139
CRAIGPB-WARM 0.0002 | 0.003 0.017 0.0002 | 0.0005 | 0.0002
GRAD-MATCH 0.0002 | 0.028 | 0.031918 | 0.0030 | 0.0107 | 0.0254 | 0.015
GRAD-MATCH-WARM 0.0002 | 0.0008 0.0018 | 0.0008 | 0.0057 | 0.0065 | 0.0117 | 0.0005
GRAD-MATCHPB 0.0002 | 0.0048 0.0067 [ 0.0002 | 0.0305 | 0.0002 | 0.0075 [ 0.0248 | 0.0305 |
GRAD-MATCHPB-WARM | 0.0002 | 0.00007 | 0.0028 | 0.0002 | 0.0002 [ 0.0002 | 0.0011 [ 0.0005 | 0.0091 | 0.0002 |

RANDOM
GLISTER
GLISTER-WARM
CRAIG
CRAIG-WARM
CRAIGPB
CRAIGPB-WARM
GRAD-MATCH
GRAD-MATCH-WARM
GRAD-MATCHPB
GRAD-MATCHPB-WARM

Table 8. Pairwise significance p-values using Wilcoxon signed rank test

optimizes the gradient error while CRAIG minimizes an upper bound. Also note that GLISTER has a signifcantly larger
gradient error at 1% subset which partially explains the reason for bad performance of GLISTER for very small percentages.

Redundant Points: Table 10 shows the redundant points, i.e., data points that were never used for training for various
subset selection algorithms on the MNIST dataset. The results give us an idea of information redundancy in the MNIST
dataset while simultaneously showing that we can achieve similar performances to full training using a much smaller
informative subset of the MNIST dataset.

MNIST Gradient Error Results

Avg.Gradient error norm
Budget(%) 1% 3% 5% 10% 30%
Dataset Model  Selection Strategy
MNIST LeNet RANDOM 410.1258  18.135  10.515 9.5214  6.415
CRAIG 68.3288  19.2665 10.9991 6.5159 0.3793
CRAIGPB 17.6352  2.9641 1.3916  0.4417 0.0825
GLISTER 5452769 79193  1.8786 2.8121 0.3249
GRAD-MATCH 66.2003  17.6965 9.8202 2.1122 0.3797
GRAD-MATCHPB | 15.5273 2.202 1.1684  0.3793  0.0587

Table 9. Gradient approximation relative to full training gradient for various data selection strategies for different subset sizes of MNIST
dataset

MNIST Redundant Points Results
Percentage of Redundant Points in MNIST training data

Budget(%) 1% 3% 5% 10% 30%
Dataset Model Selection Strategy
MNIST  LeNet CRAIG 90.381481 74.057407 60.492593  36.788889  14.425926
CRAIGPB 90.405556  73.653704 60.327778 35.301852  2.875926
GLISTER 90.712963  77.540741 67.544444 45940741 7.774074

GRAD-MATCH 91.124074 76.4 62.109259 36.114815  2.942593
GRAD-MATCHPB | 90.187037 73.468519 59.757407 36.164815 6.751852

Table 10. Redunant points(i.e., points never used for training) for various data selection strategies for different subset sizes of MNIST
dataset

Comparison between variants of GRAD-MATCH: Table 11 shows the test accuracy and the training time for PerClass,
PerClassPerGradient and PerBatch variants of GRAD-MATCH using ResNet18 model on different subsets of CIFAR10 and
CIFAR100 datasets. First, note that even though the PerClass variant achieves higher accuracy than the PerClassPerGradient
variant, it is significantly slower, having a larger training time than full data training for the 30% subset of CIFAR10 and
CIFAR100. Since the PerClass variant of GRAD-MATCH is not scalable, we use the PerClassPerGradient variant, which
achieves comparable accuracies while being much faster. Finally, note that the PerBatch variants performed better than the
other variants in test accuracy and training efficiency.
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Comparison between variants of GRAD-MATCH

Top-1 Test accuracy(%) Model Training time(in hrs)
Budget(%) 5% 10% 20%  30% 5% 10% 20%  30%
Dataset Model GRAD-MATCH Variant

CIFARIO0 ResNetl8  PerClassPerGradient | 41.01 59.88 6825 71.5 | 0.5143 0.8114 140 2.002
PerClass 41.57 5995 7087 7245 | 05357 1.225 1.907 3.796

PerBatch 40.53 60.39 70.88 72.57 | 0.3797 0.6115 1.09 1.56

CIFAR10  ResNetl8  PerClassPerGradient 86.7 909 91.67 91.89 | 0.40 0.84 1.42 1.52
PerClass 85.12 91.04 92.12 93.69 | 04225 1.042 192 348

PerBatch 854 90.01 9334 9375 | 0.36 0.69 1.09 1.38

Table 11. Top-1 test accuracy(%) and training times for variants of GRAD-MATCH for different subset sizes of CIFAR10, CIFAR100
datasets

Additional Data Selection Results

Top-1 Test accuracy(%)
Budget(%) 30%
Dataset Model Selection strategy
CIFAR100 ResNetl64 Facility Location 91.1
Forgetting Events 92.3
Entropy 90.4
ResNetl8  GRAD-MATCHPB-WARM 94.17
CIFAR10  ResNetl64 Facility Location 64.8
Forgetting Events 63.4
Entropy 60.4
ResNetl8  GRAD-MATCHPB-WARM 74.62

Table 12. Top-1 test accuracy(%) and training times for additional data selection strategies on 30% CIFAR10 and CIFAR100 subset

Comparison with additional subset selection methods: In addition to the baselines we considered so far, we compare
GRAD-MATCH with additional existing subset selection strategies like Facility Location (Wolf, 2011), Entropy (Settles,
2012) and Forgetting Events (Toneva et al., 2019) on CIFAR10 and CIFAR100 datasets. The results are in Table 12. Note
that we used the numbers reported in paper (Coleman et al., 2020) for comparison. The authors in (Coleman et al., 2020)
used a ResNet-164 Model which is a higher complexity model compared to ResNet-18 which we use in our experiments.
Even after using a lower complexity model (ResNet-18), we outperform these other baselines on both CIFAR-10 and
CIFAR-100. Furthermore, we achieve this while being much faster (since we observed that the ResNet-164 model is roughly
4x slower compared to ResNet-18). Even though a much smaller model (ResNet-20) is used for data selection, the training
is still done with the ResNet-164 model. Finally, note that the selection via proxy method is orthogonal to GRAD-MATCH
and can also be applied to GRAD-MATCH to achieve further speedups. We expect that the accuracy of these baselines
(Forgetting Events, Facility Location, and Entropy) to be even lower if they are used with a ResNet-18 model. The accuracy
reported for these baselines (Table 12) are the best among the different proxy models used in (Coleman et al., 2020).



