Reward Identification in Inverse Reinforcement Learning

A. Proofs

First we state some lemmas that will be used in proving the main theorems.

A.1. Proper MDP Models

Example 1. Let $J_{\text {MaxEnt }}$ be the MaxEntRL objective. Then, the MaxEnt MDP model $\mathcal{P}_{\mathrm{MDP}}\left[R ; d, T, J_{\mathrm{MaxEnt}}\right]$ is proper.

Proof. Let R be any set of reward functions. We need to show that $\forall r, \hat{r} \in R, r \cong_{\tau} \hat{r} \Rightarrow p_{r}=p_{\hat{r}}$. If $r \cong_{\tau} \hat{r}$, then r and \hat{r} have trajectory level rewards shifted by a constant, i.e for all $x_{0} \in \mathcal{X}^{0}$ there exists a constant $c_{x_{0}}$ such that $\forall \tau \in \Omega\left[x_{0}, d, T\right], \hat{r}(\tau)=r(\tau)+c_{x_{0}}$. It suffices to show that the optimal policies for r, \hat{r} are the same. For any policy family Π,

$$
\begin{aligned}
\underset{\pi \in \Pi}{\arg \max } \mathbb{E}_{\tau \sim \pi}[\hat{r}(\tau)]+\mathcal{H}(\pi) & =\underset{\pi \in \Pi}{\arg \max }\left(\sum_{x_{0} \in \mathcal{X}^{0}} \sum_{\tau \in \Omega\left[x_{0}, d, T\right]} p(\tau ; \pi) \hat{r}(\tau)\right)+\mathcal{H}(\pi) \\
& =\underset{\pi \in \Pi}{\arg \max }\left(\sum_{x_{0} \in \mathcal{X}^{0}} \sum_{\tau \in \Omega\left[x_{0}, d, T\right]} p(\tau ; \pi)\left(r(\tau)+c_{x_{0}}\right)\right)+\mathcal{H}(\pi) \\
& =\underset{\pi \in \Pi}{\arg \max }\left(\sum_{x_{0} \in \mathcal{X}^{0}} \sum_{\tau \in \Omega\left[x_{0}, d, T\right]} p(\tau ; \pi) r(\tau)\right)+\left(\sum_{x_{0} \in \mathcal{X}^{0}} P_{0}\left(x_{0}\right) c_{x_{0}}\right)+\mathcal{H}(\pi) \\
& =\underset{\pi \in \Pi}{\arg \max } \mathbb{E}_{\tau \sim \pi}[r(\tau)]+\mathbb{E}_{x_{0} \sim P_{0}}\left[c_{x_{0}}\right]+\mathcal{H}(\pi) \\
& =\underset{\pi \in \Pi}{\arg \max } \mathbb{E}_{\tau \sim \pi}[r(\tau)]+\mathcal{H}(\pi)
\end{aligned}
$$

where $\mathcal{H}(\pi):=\mathbb{E}_{\pi}\left[-\sum_{t=0}^{T} \gamma^{t} \log \pi\left(a_{t} \mid s_{t}\right)\right]$ is the γ-discounted causal entropy. The last step holds since $\mathbb{E}_{x_{0} \sim P_{0}}\left[c_{x_{0}}\right]$ is constant with respect to π.

A.2. Weak Identifiability

Lemma 1. For all reward families $R, r, \hat{r} \in R$, and any $(d, T),\left(r \cong_{x, a} \hat{r}\right) \Rightarrow\left(r \cong_{\tau} \hat{r}\right)$

Proof. Let $r, \hat{r} \in R$ be rewards such that $r \cong{ }_{x, a} \hat{r}$. For all $\tau, \tau^{\prime} \in \Omega[d, T]$, where $\tau=\left(x_{t}, a_{t}\right)_{0 \leq t \leq T}, \tau^{\prime}=\left(x_{t}^{\prime}, a_{t}^{\prime}\right)_{0 \leq t \leq T}$,

$$
\begin{align*}
\hat{r}(\tau)-r(\tau) & =\sum_{t=0}^{T} \gamma^{t}\left(\hat{r}\left(x_{t}, a_{t}\right)-r\left(x_{t}, a_{t}\right)\right) \tag{6}\\
& =\sum_{t=0}^{T} \gamma^{t}\left(\hat{r}\left(x_{t}^{\prime}, a_{t}^{\prime}\right)-r\left(x_{t}^{\prime}, a_{t}^{\prime}\right)\right) \tag{7}\\
& =\hat{r}\left(\tau^{\prime}\right)-r\left(\tau^{\prime}\right)
\end{align*}
$$

where $6 \rightarrow 7$ holds since for all $0 \leq t \leq T,\left(x_{t}, a_{t}\right),\left(x_{t}^{\prime}, a_{t}^{\prime}\right) \in \mathcal{X} \times \mathcal{A}$ and so $\hat{r}\left(x_{t}, a_{t}\right)-r\left(x_{t}, a_{t}\right)=\hat{r}\left(x_{t}^{\prime}, a_{t}^{\prime}\right)-r\left(x_{t}^{\prime}, a_{t}^{\prime}\right)$. Thus, $r \cong_{\tau} \hat{r}$

Proposition 1. A proper MDP model is strongly identifiable only if it is weakly identifiable

Proof. We prove the contrapositive: if a proper MDP model is not weakly identifiable it is also not strongly identifiable. Let $\mathcal{P}_{\text {MDP }}[R ; d, T, J]$ be a proper MDP model that is not weakly identifiable. Since the model is not weakly identifiable, there exists $r, \hat{r} \in R$ such that either $\left(r \cong{ }_{\tau} \hat{r}\right.$ and $\left.p_{r} \neq p_{\hat{r}}\right)$ or $\left(r \nVdash_{\tau} \hat{r}\right.$, and $\left.p_{r}=p_{\hat{r}}\right)$. Since the model is proper the former cannot be true. Thus it must be that there exists $r, \hat{r} \in R$ such that $r \not ¥_{\tau} \hat{r}$, and $p_{r}=p_{\hat{r}}$. Then, by the contrapositive of Lemma 1 , $r \not ¥_{x, a} \hat{r}$. Thus, $p_{r}=p_{\hat{r}} \nRightarrow r \cong_{x, a} \hat{r}$ and $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is not strongly identifiable as desired.

Theorem 1. Let $\mathcal{P}_{\mathrm{MDP}}\left[R ; d, T, J_{\mathrm{MaxEnt}}\right]$ be a MaxEnt MDP model and $R \subseteq\{r \mid r: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}\}$ be any set of rewards. Then, for all domains $d:=\left(\mathcal{X}, \mathcal{A}, P, P_{0}, \gamma\right)$ consisting of deterministic transition dynamics, i.e $\forall(x, a),|\operatorname{supp}(P(\cdot \mid x, a))|=$ 1 , a deterministic initial state, i.e $\left|\operatorname{supp}\left(P_{0}\right)\right|=1$, and $T \geq 0, \mathcal{P}_{\mathrm{MDP}}\left[R ; d, T, J_{\mathrm{MaxEnt}}\right]$ is weakly identifiable.

Proof. We seek to show that $\forall r, \hat{r} \in R,\left(r \cong_{\tau} \hat{r}\right) \Longleftrightarrow\left(p_{r}=p_{\hat{r}}\right)$. Since $\mathcal{P}_{\text {MDP }}$ is a MaxEnt MDP model, it is proper by Example 1 and as a result $\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(p_{r}=p_{\hat{r}}\right)$. We are left to prove that $\forall r, \hat{r} \in R,\left(p_{r}=p_{\hat{r}}\right) \Rightarrow\left(r \cong_{\tau} \hat{r}\right)$
From Ziebart et al. (2008), for all MDPs with deterministic dynamics and a deterministic initial state, the trajectory distribution of the MaxEnt optimal policy is

$$
p_{r}(\tau)=\frac{e^{r(\tau)}}{Z_{r}}
$$

where $Z_{r}=\int_{\Omega[d, T]} e^{r\left(\tau^{\prime}\right)} d \tau^{\prime}$ is the partition function. Then, $\forall \tau \in \Omega[d, T]$

$$
\begin{aligned}
p_{r}(\tau) & =p_{\hat{r}}(\tau) \\
\log p_{r}(\tau) & =\log p_{\hat{r}}(\tau) \\
r(\tau)-\log Z_{r} & =\hat{r}(\tau)-\log Z_{\hat{r}} \\
r(\tau) & =\hat{r}(\tau)+\log \frac{Z_{r}}{Z_{\hat{r}}}
\end{aligned}
$$

Since, $\log \frac{Z_{r}}{Z_{\hat{r}}}$ is a constant w.r.t τ, we have $r \cong_{\tau} \hat{r}$ as desired.
Proposition 2. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be an MDP model that is weakly identifiable. Then, it is strongly identifiable if and only iffor all $r, \hat{r} \in R,\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(r \cong_{x, a} \hat{r}\right)$. In other words, $\forall r \in R,[r]_{\tau} \subseteq[r]_{x, a}$.

Proof. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be weakly identifiable. We abbreviate Strongly Identifiable as S.I.

- (Sufficiency) $\forall r \in R,[r]_{\tau} \subseteq[r]_{x, a} \Rightarrow \mathcal{P}_{\text {MDP }}$ is S.I.

By weak identifiability, for all $r, \hat{r} \in R,\left(p_{r}=p_{\hat{r}}\right) \Rightarrow\left(r \cong_{\tau} \hat{r}\right)$ and by $\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(r \cong_{x, a} \hat{r}\right)$, we have $r \cong_{x, a} \hat{r}$. Thus, $\left(p_{r}=p_{\hat{r}}\right) \Rightarrow\left(r \cong_{x, a} \hat{r}\right)$.
By Lemma 1, for all $r, \hat{r} \in R,\left(r \cong_{x, a} \hat{r}\right) \Rightarrow\left(r \cong_{\tau} \hat{r}\right)$, and by weak identifiability $\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(p_{r}=p_{\hat{r}}\right)$. Thus, $\left(r \cong_{x, a} \hat{r}\right) \Rightarrow\left(p_{r}=p_{\hat{r}}\right)$.
We have $\forall r, \hat{r} \in R,\left(r \cong_{x, a} \hat{r}\right) \Longleftrightarrow\left(p_{r}=p_{\hat{r}}\right)$ as desired.

- (Necessity) $\mathcal{P}_{\mathrm{MDP}}$ is S.I $\Rightarrow \forall r \in R,[r]_{\tau} \subseteq[r]_{x, a}$.

We prove the contrapositive. Suppose there exists $r, \hat{r} \in R$ such that $r \cong_{\tau} \hat{r}$ but $r \not ¥_{x, a} \hat{r}$. By weak identifiability, $\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(p_{r}=p_{\hat{r}}\right)$, so $\left(p_{r}=p_{\hat{r}}\right) \nRightarrow\left(r \cong_{x, a} \hat{r}\right)$. Thus, $\mathcal{P}_{\mathrm{MDP}}[R ; d, J, T]$ is not strongly identifiable.
Corollary 1. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be an MDP model that is weakly identifiable, R be the set of all rewards, $\left|\mathcal{X}^{0}\right|=1$, and $\gamma=1$. Then, it is strongly identifiable if and only if $\operatorname{rank}(A[d, T])=|\mathcal{X} \times \mathcal{A}|$

Proof. Let $\mathcal{P}_{\text {MDP }}$ be weakly identifiable, $\gamma=1$.

- (Sufficiency) We seek to show that if $\operatorname{rank}(A[d, T])=\mathcal{X} \times \mathcal{A}$, then $\mathcal{P}_{\text {MDP }}$ is strongly identifiable. By Proposition 2 , it suffices to show that $\forall r, \hat{r} \in R,\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(r \cong_{x, a} \hat{r}\right)$, i.e trajectory equivalence implies state-action equivalence.
Since $A[d, T]$ is full rank, the solution to the linear system $A[d, T] \mathbf{r}_{x, a}=\mathbf{r}_{\tau}$ is unique for any \mathbf{r}_{τ}. Let $\mathbf{r}_{\tau}, \hat{\mathbf{r}}_{\tau}$ be two trajectory equivalent rewards such that $\mathbf{r}_{\tau}=\hat{\mathbf{r}}_{\tau}+\boldsymbol{c}$ for some constant vector $\boldsymbol{c}=(c, \ldots, c) \in \mathbb{R}^{|\Omega[d, T]|}$. Then,

$$
\begin{aligned}
A[d, T] \mathbf{r}_{x, a}-A[d, T] \hat{\mathbf{r}}_{x, a} & =\mathbf{r}_{\tau}-\hat{\mathbf{r}}_{\tau} \\
A[d, T]\left(\mathbf{r}_{x, a}-\hat{\mathbf{r}}_{x, a}\right) & =\boldsymbol{c}
\end{aligned}
$$

Since $A[d, T]$ is a trajectory matrix, $\forall i, \sum_{j} A_{i j}[d, T]=T+1$, i.e all feasible trajectories are of the same length and hence visit the same number of (not necessarily distinct) nodes. Thus, one solution to $A[d, T]\left(\mathbf{r}_{x, a}-\hat{\mathbf{r}}_{x, a}\right)=\boldsymbol{c}$ is to let
$\mathbf{r}_{x, a}-\hat{\mathbf{r}}_{x, a}=\left(\frac{c}{T+1}, \ldots, \frac{c}{T+1}\right)$. In fact, since $A[d, T]$ is full rank, $\left(\frac{c}{T+1}, \ldots, \frac{c}{T+1}\right)$ is the only solution and thus $\mathbf{r}_{x, a}, \hat{\mathbf{r}}_{x, a}$ are trajectory equivalent, $\forall x, a \in \mathcal{X} \times \mathcal{A}, r(x, a)=\hat{r}(x, a)+\frac{c}{T+1}$ implying $r \cong{ }_{x, a} \hat{r}$.

- (Necessity) We show that if $\mathcal{P}_{\text {MDP }}$ be strongly identifiable, then $\operatorname{rank}(A[d, T])=|\mathcal{X} \times \mathcal{A}|$. By strong identifiability, $\forall r, \hat{r} \in R,\left(r \cong_{\tau} \hat{r}\right) \Rightarrow\left(r \cong_{x, a} \hat{r}\right)$ and thus general solutions to

$$
A[d, T] \mathbf{r}_{x, a}=\mathbf{r}_{\tau}
$$

must only be constant shifts of a particular solution. Equivalently, $\operatorname{ker}(A[d, T])$ must only contain constant vectors. We then claim that in fact $\operatorname{ker}(A[d, T])$ only contains the zero vector and thus $A[d, T]$ is full rank.

Suppose for contradiction that $\boldsymbol{c} \in \operatorname{ker}(A[d, T])$ for some non-zero constant vector \boldsymbol{c}. Then, for any scalar $k \in \mathbb{R}$, $k \boldsymbol{c} \in \operatorname{ker}(A[d, T])$. Thus the kernel must contain all constant vectors. Pick a strictly positive constant vector $\boldsymbol{c}^{+}=$ $\left(c^{+}, \ldots, c^{+}\right)$where $c^{+}>0$. Then, $\boldsymbol{c}^{+} \in \operatorname{ker}(A[d, T]) \Rightarrow A[d, T] c^{+}=0$, so $\forall i, \sum_{j} A_{i j}[d, T] c^{+}=c^{+} \sum_{j} A_{i j}[d, T]=$ $0 \Rightarrow \forall i, \sum_{j} A_{i j}[d, T]=0$. Since $A[d, T]$ is a trajectory (path) matrix, its entries represent visitation counts of a state-action pair and thus are all non-negative, i.e $\forall i, j, A_{i j}[d, T] \geq 0$. Therefore, $\left(\forall i, \sum_{j} A_{i j}[d, T]=0\right) \Rightarrow\left(\forall i, j, A_{i j}[d, T]=0\right)$, so $A[d, T]$ is the zero-matrix. Then, $\operatorname{ker}(A[d, T])=\mathbb{R}^{|\mathcal{X} \times \mathcal{A}|}$ which contradicts strong identifiability. Therefore, $\operatorname{ker}(A[d, T])$ can only contain the zero vector and $A[d, T]$ is full rank, i.e $\operatorname{rank}(A[d, T])=\mathcal{X} \times \mathcal{A}$.

A.3. Properties of Domain Graphs

Lemma 2. Let $G_{d}=\left(V_{d}, E_{d}, V_{d}^{0}\right)$ be a domain graph.

1. (Commutative) For all $V \subseteq V_{d}$ and $t, t^{\prime} \geq 0, L_{t^{\prime}}\left(L_{t}(V)\right)=L_{t+t^{\prime}}(V)$
2. (Monotonic) For all $V, V^{\prime} \subseteq V_{d}$ such that $V \subseteq V^{\prime}$ and $t \geq 0, L_{t}(V) \subseteq L_{t}\left(V^{\prime}\right)$

Proof. • (Commutative) We first prove that $L_{t^{\prime}}\left(L_{t}(V)\right) \subseteq L_{t+t^{\prime}}(V)$. Let $v \in L_{t^{\prime}}\left(L_{t}(V)\right)$, then by Definition 6, $\exists \zeta^{\prime}=$ $\left(v_{i}^{\prime}\right)_{0 \leq i \leq t^{\prime}}$ such that $v_{t^{\prime}}^{\prime}=v$ and $v_{0}^{\prime} \in L_{t}(V)$, i.e $\exists \zeta=\left(v_{i}\right)_{0 \leq i \leq t}$ where $v_{t}=v_{0}^{\prime}, v_{0} \in V$. Then, $v \in L_{t+t^{\prime}}(V)$ since there exists a path $\zeta \oplus \zeta_{1:}^{\prime}=\left(v_{0}, \ldots, v_{t}, v_{1}^{\prime}, \ldots, v_{t^{\prime}}^{\prime}\right)$ such that $v_{t^{\prime}}^{\prime}=v$ and $v_{0} \in V$.
Next, we prove that $L_{t+t^{\prime}}(V) \subseteq L_{t^{\prime}}\left(L_{t}(V)\right)$. If $v \in L_{t+t^{\prime}}(V)$, then $\exists \zeta^{\prime \prime}=\left(v_{i}^{\prime \prime}\right)_{0 \leq i \leq t+t^{\prime}}$ such that $v_{t+t^{\prime}}^{\prime \prime}=v$ and $v_{0}^{\prime \prime} \in V$. Then, there exists paths $\zeta=\left(v_{i}\right)_{0 \leq i \leq t^{\prime}}=\left(v_{0}^{\prime \prime}, \ldots, v_{t}^{\prime \prime}\right)$ and $\zeta^{\prime}=\left(v_{i}^{\prime}\right)_{0 \leq i \leq t^{\prime}}=\left(v_{t}^{\prime \prime}, \ldots, v_{t+t^{\prime}}\right)$ which can be joined to form $\zeta^{\prime \prime}$. Therefore, $v \in L_{t^{\prime}}\left(L_{t}(V)\right)$ since there exists a path ζ^{\prime} such that $v_{t^{\prime}}^{\prime}=v$ and $v_{0}^{\prime} \in L_{t}(V)$ since ζ is a path such that $v_{t}=v_{0}^{\prime}$ and $v_{0} \in V$.

- (Monotonic) Let $V, V^{\prime} \subseteq V_{d}$ satisfy $V \subseteq V^{\prime}$. If $v \in L_{t}(V)$, then by Definition $6, \exists \zeta=\left(v_{i}\right)_{0 \leq i \leq t}$ such that $v_{t}=v$ and $v_{0} \in V$. Since $V \subseteq V^{\prime}, v_{0} \in V^{\prime}$ as well. Therefore, $v \in L_{t}\left(V^{\prime}\right)$.

Lemma 3. If G_{d} is coverable, then $\cup_{(x, a) \in \mathcal{X} \times \mathcal{A}} \operatorname{supp}(P(\cdot \mid x, a))=\mathcal{X}$
Proof. Since G_{d} is coverable, there exists $v \in V_{d}^{0}$ and $t \geq 0$ such that $L_{t}(v)=V_{d}$. If G_{d} is 0-coverable, i.e $L_{0}(v)=\{v\}=$ $V_{d}=\mathcal{X} \times \mathcal{A}$, then $|\mathcal{X} \times \mathcal{A}|=1$ and thus $\operatorname{supp}(P(\cdot \mid x, a))=\{x\}=\mathcal{X}$. For $t \geq 1$, since $L_{t}(v)=L_{1}\left(L_{t-1}(v)\right)=V_{d}$ and $L_{t-1}(v) \subseteq V_{d}$, by Lemma 2 monotonicity, we have $L_{1}\left(L_{t-1}(v)\right)=V_{d} \subseteq L_{1}\left(V_{d}\right)$. Since $L_{1}\left(V_{d}\right) \subseteq V_{d}$, it must be that $L_{1}\left(V_{d}\right)=V_{d}=\mathcal{X} \times \mathcal{A}$. By definition of layers, $L_{1}\left(V_{d}\right)=\left(\cup_{(x, a) \in \mathcal{X} \times \mathcal{A}} \operatorname{supp}(P(\cdot \mid x, a))\right) \times \mathcal{A}$ and thus $\cup_{(x, a) \in \mathcal{X} \times \mathcal{A}} \operatorname{supp}(P(\cdot \mid x, a))=\mathcal{X}$.

Lemma 4. Let G_{d} be a domain graph and $v \in V_{d}$ be t-covering. Then for all $t^{\prime} \geq t, L_{t^{\prime}}(v)=V_{d}$.
Proof. We prove by induction.

- Base $t^{\prime}=t$: trivially holds since $L_{t}(v)=V_{d}$ by definition of a covering vertex.
- For $t^{\prime} \geq t: L_{t^{\prime}}(v)=V_{d} \Rightarrow L_{t^{\prime}+1}(v)=V_{d}$.

$$
L_{t^{\prime}+1}(v)=L_{1}\left(L_{t^{\prime}}(v)\right)=L_{1}\left(V_{d}\right)
$$

$L_{t}(v)=L_{1}\left(L_{t-1}(v)\right)=V_{d}$ and $L_{t-1}(v) \subseteq V_{d}$, we have that $L_{1}\left(L_{t-1}(v)\right)=V_{d} \subseteq L_{1}\left(V_{d}\right)$ by Lemma 2 monotonicity. Since $L_{1}\left(V_{d}\right) \subseteq V_{d}$, it must be that $L_{1}\left(V_{d}\right)=V_{d}$.

Proposition 3. Let G_{d} be strongly connected. Then, G_{d} is aperiodic if and only if it is coverable.
Proof. (aperiodic \Rightarrow coverable) If G_{d} is aperiodic, there exists two cycles $C=\left(v_{i}\right)_{0 \leq i \leq k}, C^{\prime}=\left(v_{i}^{\prime}\right)_{0 \leq i \leq k^{\prime}}$ of coprime length k, k^{\prime}. For any $v \in V_{d}^{0}$ and any destination vertex $\tilde{v} \in V_{d}$ consider paths that start from v, reaches v_{0} via a shortest path $\zeta^{v \rightarrow v_{0}}$, loops n times around cycle C back to v_{0}, reaches v_{0}^{\prime} via a shortest path $\zeta^{v_{0} \rightarrow v_{0}^{\prime}}$, loops n^{\prime} times around cycle C^{\prime} back to v_{0}^{\prime}, and finally reaches \tilde{v} via a shortest path $\zeta^{v_{0}^{\prime} \rightarrow \tilde{v}}$, i.e

$$
\zeta^{v \rightarrow \tilde{v}}=\zeta^{v \rightarrow v_{0}} \oplus n \cdot C_{1:} \oplus \zeta_{1:}^{v_{0} \rightarrow v_{0}^{\prime}} \oplus n^{\prime} \cdot C_{1:}^{\prime} \oplus \zeta_{1:}^{v_{0}^{\prime} \rightarrow \tilde{v}}
$$

The paths $\zeta^{v \rightarrow v_{0}}, \zeta^{v_{0} \rightarrow v_{0}^{\prime}}, \zeta^{v_{0}^{\prime} \rightarrow \tilde{v}}$ exist by strong connectivity of G_{d}. We let $|\zeta|$ denote the length of a path. Then,

$$
\begin{equation*}
\left|\zeta^{v \rightarrow \tilde{v}}\right|=n k+n^{\prime} k^{\prime}+\left|\zeta^{v \rightarrow v_{0}}\right|+\left|\zeta^{v_{0} \rightarrow v_{0}^{\prime}}\right|+\left|\zeta^{v_{0}^{\prime} \rightarrow \tilde{v}}\right| \tag{8}
\end{equation*}
$$

Since k, k^{\prime} are coprime, for all $\left|\zeta^{v \rightarrow \tilde{v}}\right| \geq(k-1)\left(k^{\prime}-1\right)+\left|\zeta^{v \rightarrow v_{0}}\right|+\left|\zeta^{v_{0} \rightarrow v_{0}^{\prime}}\right|+\left|\zeta^{v_{0}^{\prime} \rightarrow \tilde{v}}\right|$, there exists n, n^{\prime} such that Eq. 8 holds. (Corollary 2 of Denardo (1977)) Furthermore, since $\left|\zeta^{v \rightarrow v_{0}}\right|,\left|\zeta^{v_{0} \rightarrow v_{0}^{\prime}}\right|,\left|\zeta^{v_{0}^{\prime} \rightarrow \tilde{v}}\right| \leq\left|V_{d}\right|$ since they are shortest paths. Thus, for any destination vertex $\tilde{v} \in V_{d}$ and all lengths $T \geq(k-1)\left(k^{\prime}-1\right)+3\left|V_{d}\right|$, there exists a path $\zeta^{v \rightarrow \tilde{v}}$ such that $\left|\zeta^{v \rightarrow \tilde{v}}\right|=T$. Therefore, G_{d} is coverable.
(coverable \Rightarrow aperiodic) If G_{d} is coverable, there exists $v \in V_{d}^{0}$ and $t \geq 0$ such that $L_{t}(v)=V_{d}$. If $t=0$, then $V_{d}=\{v\}$ and there must be an edge $(v, v) \in E_{d}$. Therefore, there exists cycles $(v, v),(v, v, v)$ which have coprime lengths 1 and 2, respectively. For $t \geq 1$, by Lemma $4, L_{t+1}(v)=V_{d}$. Since $v \in L_{t}(v)$ and $v \in L_{t+1}(v)$, there exists cycles of coprime length $t, t+1$ that start and end at v. Thus, G_{d} is aperiodic.

A.4. Strong Identifiability

Theorem 2. (Strong Identification Condition) For all (d, r, T, J) such that the MDP model $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is proper and G_{d} is strongly connected,

- (Sufficiency) $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is weakly identifiable, G_{d} is T_{0}-coverable, and $T \geq 2 T_{0} \Rightarrow \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable
- (Necessity) $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable $\Rightarrow \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is weakly identifiable, G_{d} is coverable.

Proof. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be proper and G_{d} be strongly connected.

- (Sufficiency) Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be proper and weakly identifiable, G_{d} be strongly connected and T_{0}-covering, and $T \geq 2 T_{0}$. By Proposition 2 it suffices to show that

$$
\begin{aligned}
& \forall x \in \mathcal{X}^{0}, \forall \tau, \tau^{\prime} \in \Omega[x, d, T], \hat{r}(\tau)-r(\tau)=\hat{r}\left(\tau^{\prime}\right)-r\left(\tau^{\prime}\right) \Rightarrow \\
& \forall(x, a),\left(x^{\prime}, a^{\prime}\right) \in \mathcal{X} \times \mathcal{A}, \hat{r}(x, a)-r(x, a)=\hat{r}\left(x^{\prime}, a^{\prime}\right)-r\left(x^{\prime}, a^{\prime}\right)
\end{aligned}
$$

In the language of domain graphs, this statement translates to:

$$
\forall v \in V_{d}^{0}, \forall \zeta, \zeta^{\prime} \in Z[v, d, T], \hat{r}(\zeta)-r(\zeta)=\hat{r}\left(\zeta^{\prime}\right)-r\left(\zeta^{\prime}\right) \Rightarrow \forall v, v^{\prime} \in V_{d}, \hat{r}(v)-r(v)=\hat{r}\left(v^{\prime}\right)-r\left(v^{\prime}\right)
$$

Let r, \hat{r} be any two rewards such that, $\forall v \in V_{d}^{0}, \forall \zeta, \zeta^{\prime} \in Z[v, d, T], \hat{r}(\zeta)-r(\zeta)=\hat{r}\left(\zeta^{\prime}\right)-r\left(\zeta^{\prime}\right)$ or equivalently $\hat{r}(\zeta)-\hat{r}\left(\zeta^{\prime}\right)=r(\zeta)-r\left(\zeta^{\prime}\right)$. Let $v_{0}^{*} \in V_{d}^{0}$ be any vertex that is T_{0}-covering and for any integer $t \geq 0$ let H_{t} be the statement that,

$$
\forall v, v^{\prime} \in L_{t}\left(v_{0}^{*}\right), \hat{r}\left(v^{\prime}\right)-\hat{r}(v)=r\left(v^{\prime}\right)-r(v)
$$

Since v_{0}^{*} is T_{0}-covering, we have that $L_{T_{0}}\left(v_{0}^{*}\right)=V_{d}$, so it suffices to prove $H_{T_{0}}$. We prove by strong induction. H_{0} : Trivially true, since $L_{0}\left(v_{0}^{*}\right)=\left\{v_{0}^{*}\right\}$ only has one element.
$H_{<t} \Rightarrow H_{t}$ for all $0<t \leq T_{0}$: Let $\zeta^{0} \in Z\left[v_{0}^{*}, d, T-t\right]$ be any base path of length $T-t$ that starts at v_{0}^{*} and reaches v_{0}^{*} again $T-t$ steps. Such a base path exists for all $0 \leq t \leq T_{0}$ since $T \geq 2 T_{0} \Rightarrow T-t \geq T_{0}$ and so by Lemma 4, $v_{0}^{*} \in L_{T_{0}}\left(v_{0}^{*}\right) \Rightarrow v_{0}^{*} \in L_{T-t}\left(v_{0}^{*}\right)$.
We will use Z_{t} to denote the set of all paths of length T that starts at v_{0}^{*} and follows ζ^{0} to reach v_{0}^{*} again at time $T-t$, then reaches a vertex in $L_{t}\left(v_{0}^{*}\right)$ in t steps, i.e.

$$
Z_{t}=\left\{\zeta \in Z\left[v_{0}^{*}, d, T\right] \mid \zeta_{:-t}=\zeta^{0}\right\}
$$

It's then clear that the set terminal vertices of paths in Z_{t} is equal to $L_{t}\left(v_{0}^{*}\right)$, i.e. $\left\{v \mid \exists \zeta:=\left(v_{t}\right)_{0 \leq t \leq T} \in Z_{t}\right.$ s.t $\left.v=v_{T}\right\}=$ $L_{t}\left(v_{0}^{*}\right)$ since Z_{t} contains all possible paths that take t steps after reaching v_{0}^{*}
Consider any two $\zeta, \zeta^{\prime} \in Z_{t}$ where $\zeta=\left(v_{t}\right)_{0 \leq t \leq T}, \zeta^{\prime}=\left(v_{t}^{\prime}\right)_{0 \leq t \leq T}$.

$$
\begin{align*}
& \hat{r}(\zeta)-\hat{r}\left(\zeta^{\prime}\right)=\hat{r}\left(\zeta_{:-t+1}\right)-\hat{r}\left(\zeta_{:-t+1}^{\prime}\right)+\hat{r}\left(\zeta_{-t+1:}\right)-\hat{r}\left(\zeta_{-t+1:}^{\prime}\right)+\gamma^{T}\left(\hat{r}\left(v_{T}\right)-\hat{r}\left(v_{T}^{\prime}\right)\right) \tag{9}\\
& r(\zeta)-r\left(\zeta^{\prime}\right)=r\left(\zeta_{:-t+1}\right)-r\left(\zeta_{:-t+1}^{\prime}\right)+r\left(\zeta_{-t+1:}\right)-r\left(\zeta_{-t+1:}^{\prime}\right)+\gamma^{T}\left(r\left(v_{T}\right)-r\left(v_{T}^{\prime}\right)\right) \tag{10}
\end{align*}
$$

Since $\zeta_{:-t+1}=\zeta_{:-t+1}^{\prime}=\zeta^{0}$, we have $\hat{r}\left(\zeta_{:-t+1}\right)-\hat{r}\left(\zeta_{:-t+1}^{\prime}\right)=r\left(\zeta_{:-t+1}\right)-r\left(\zeta_{:-t+1}^{\prime}\right)=0$. Furthermore,

$$
\begin{align*}
\hat{r}\left(\zeta_{-t+1:}\right)-\hat{r}\left(\zeta_{-t+1:}^{\prime}\right) & =\sum_{t^{\prime}=0}^{t-1} \gamma^{T-t^{\prime}}\left(\hat{r}\left(v_{T-t^{\prime}}\right)-\hat{r}\left(v_{T-t^{\prime}}^{\prime}\right)\right) \\
& =\sum_{t^{\prime}=0}^{t-1} \gamma^{T-t^{\prime}}\left(r\left(v_{T-t^{\prime}}\right)-r\left(v_{T-t^{\prime}}^{\prime}\right)\right) \\
& =r\left(\zeta_{-t+1:}\right)-r\left(\zeta_{-t+1:}^{\prime}\right) \tag{11}
\end{align*}
$$

since for all $0 \leq t^{\prime}<t, v_{T-t^{\prime}}, v_{T-t^{\prime}}^{\prime} \in L_{t-t^{\prime}}\left(v_{0}^{*}\right)$ and by the inductive hypothesis $H_{<t}$, it holds that, for all $0 \leq t^{\prime}<t$, $\hat{r}\left(v_{T-t^{\prime}}\right)-\hat{r}\left(v_{T-t^{\prime}}^{\prime}\right)=r\left(v_{T-t^{\prime}}\right)-r\left(v_{T-t^{\prime}}^{\prime}\right)$.
By definition, $Z_{t} \subseteq Z\left[v_{0}^{*}, d, T\right]$, and thus by weak identifiability, $\hat{r}(\zeta)-\hat{r}\left(\zeta^{\prime}\right)=r(\zeta)-r\left(\zeta^{\prime}\right)$. Combining with Eq. 9, 10, 11, we get that for all $v_{T}, v_{T}^{\prime} \in\left\{v \mid \exists \zeta:=\left(v_{t}\right)_{0 \leq t \leq T} \in Z_{t}\right.$ s.t $\left.v=v_{T}\right\}=L_{t}\left(v_{0}^{*}\right)$,

$$
\hat{r}\left(v_{T}\right)-\hat{r}\left(v_{T}^{\prime}\right)=r\left(v_{T}\right)-r\left(v_{T}^{\prime}\right)
$$

Thus, by strong induction H_{t} is true for $0 \leq t \leq T_{0}$, which includes $H_{T_{0}}$.

- (Necessity) Next we prove necessity. To do so, we will first prove some useful properties of layer sequences.

Lemma 5. Let G_{d} be strongly connected. Then, for all $v, v^{\prime} \in V_{d}$, there exists $t \geq 1$ such that $v^{\prime} \in L_{t}(v)$.

Proof. Pick any $v, v^{\prime} \in V_{d}$. Since G_{d} is strongly connected, there exists a path ζ of length $|\zeta| \geq 1$ between v, v^{\prime}. Thus $v^{\prime} \in L_{|\zeta|}(v)$.

Lemma 6. Let G_{d} be strongly connected. Then for all $v, v^{\prime} \in V_{d}$ and $T \geq 0$, there exists $t \geq T$ such that $v^{\prime} \in L_{t}(v)$.

Proof. If $v^{\prime} \in L_{T}(v)$, then we are done. If $v^{\prime} \notin L_{T}(v)$, then choose any vertex $v_{T} \in L_{T}(v)$. There exists a path $\zeta^{v \rightarrow v_{T}}$ that starts from v and reaches v_{T}. Since G_{d} is strongly connected there exists a path $\zeta^{v_{T} \rightarrow v^{\prime}}$ that starts from v_{T} and reaches v^{\prime}. Thus $\zeta_{v \rightarrow v^{\prime}}=\zeta_{:-1}^{v \rightarrow v_{T}} \oplus \zeta^{v_{T} \rightarrow v^{\prime}}$ is a path that starts from v and reaches v^{\prime} in $\left|\zeta_{v \rightarrow v^{\prime}}\right| \geq T$ steps and $v^{\prime} \in L_{\left|\zeta_{v \rightarrow v^{\prime}}\right|}(v)$.

Lemma 7. Let G_{d} be strongly connected. Let $T_{v} \geq 1$ denote the smallest positive horizon such that $v \in L_{T_{v}}(v)$. Then, for all $v \in V_{d}$, the sequence $\left(L_{n T_{v}}(v)\right)_{n \geq 0}$ converges to a limiting layer $\bar{L}(v) \subseteq V_{d}$, i.e, for all $v \in V_{d}$, there exists $\bar{n}_{v} \geq 0$ such that, for all $n \geq \bar{n}_{v}, L_{n T_{v}}(v)=\overline{\bar{L}}(v)$.

Proof. Since G_{d} is connected, v must be able to reach itself again and so there indeed exists a $T_{v} \geq 1$ such that $v \in L_{T_{v}}(v)$.

We first show that $\left(L_{n T_{v}}(v)\right)_{n \geq 0}$ is "growing", i.e $L_{n T_{v}}(v) \subseteq L_{(n+1) T_{v}}(v)$ for all $n \geq 0$ by induction. The base case when $n=0$ holds trivially by how we've defined $L_{T_{v}}(v)$ since $L_{0}(v)=\{v\} \subseteq L_{T_{v}}(v)$. Now assume for induction that $L_{n T_{v}}(v) \subseteq L_{(n+1) T_{v}}(v)$. Then,

$$
L_{(n+1) T_{v}}(v)=L_{T_{v}}\left(L_{n T_{v}}(v)\right) \subseteq L_{T_{v}}\left(L_{(n+1) T_{v}}(v)\right)=L_{(n+2) T_{v}}(v)
$$

by Lemma 2, monotonicity.
We now see that sequence $\left\{L_{n T_{v}}(v)\right\}_{n}$ is growing and bounded above, i.e $L_{n T_{v}}(v) \subseteq L_{(n+1) T_{v}}(v)$ and $L_{n T_{v}}(v) \subseteq V_{d}$ for all $n \geq 0$. Thus the sequence must converge to some fixed set $\bar{L}(v) \subseteq V_{d}$, i.e there exists $\bar{n}_{v} \geq 0$ such that $L_{n T_{v}}(v)=\bar{L}(v)$ for all $n \geq \bar{n}_{v}$.

Lemma 8. Let G_{d} be connected. Then, for all $v \in V_{d}$, the sequence $\left\{L_{t}(v)\right\}_{t \geq 0}$ is eventually periodic, i.e, for all $v \in V_{d}$, there exist $\bar{T}_{v} \geq 0, \delta_{v} \geq 1$ such that, for all $t \geq \bar{T}_{v}, L_{t}(v)=L_{t+\delta_{v}}(v)$.

Proof. By Lemma 7, since G_{d} is connected, for all $v \in V_{d},\left(L_{n T_{v}}(v)\right)_{n \geq 0}$ converges to a limiting layer $\bar{L}(v)$ i.e, for all $v \in V_{d}$, there exists $\bar{n}_{v} \geq 0$ such that, for all $n \geq \bar{n}_{v}, L_{n T_{v}}(v)=\bar{L}(v)$.

Set $\bar{T}_{v}=\bar{n}_{v} T_{v}$ and $\delta_{v}=T_{v}$. Then we see that for all $t \geq \bar{T}_{v}=\bar{n}_{v} T_{v}$, it holds that

$$
\begin{align*}
L_{t+\delta_{v}}(v) & =L_{\left(t-\bar{n}_{v} T_{v}\right)+\bar{n}_{v} T_{v}+T_{v}}(v) \\
& =L_{\left(t-\bar{n}_{v} T_{v}\right)+\left(\bar{n}_{v}+1\right) T_{v}}(v) \tag{12}\\
& =L_{t-\bar{n}_{v} T_{v}}\left(L_{\left(\bar{n}_{v}+1\right) T_{v}}(v)\right) \tag{13}\\
& =L_{t-\bar{n}_{v} T_{v}}\left(L_{\bar{n}_{v} T_{v}}(v)\right) \tag{14}\\
& =L_{t-\bar{n}_{v} T_{v}+\bar{n}_{v} T_{v}}(v) \\
& =L_{t}(v)
\end{align*}
$$

where $12 \rightarrow 13$ holds since $\left(\bar{n}_{v}+1\right) T_{v} \geq 0$ and $t-\bar{n}_{v} T_{v} \geq 0$. Furthermore, $13 \rightarrow 14$ holds by Lemma 7 since $L_{\left(\bar{n}_{v}+1\right) T_{v}}(v)=\bar{L}(v)=L_{\bar{n}_{v} T_{v}}(v)$.

In words, Lemma 8 states that the layers induced by starting at any vertex always converge to a periodic sequence.
Definition 8. Let $\left(a_{t}\right)_{t \geq 0}$ be a sequence. We say that a sequence $\left(b_{t}\right)_{t \geq 0}$ is a tail of the sequence $\left(a_{t}\right)_{t \geq 0}$ if and only if there exists an index $N \geq 0$ such that $b_{t}=a_{t+N}$. Let $\left(a_{t}\right)_{t \geq 0}$ be an eventually periodic sequence. We say that a sequence $\left(b_{t}\right)_{t \geq 0}$ is a periodic tail of the sequence $\left(a_{t}\right)_{t \geq 0}$ if and only if $\left(b_{t}\right)_{t \geq 0}$ is a periodic sequence and a tail of $\left(a_{t}\right)_{t \geq 0}$.

We now prove some characteristics of the periodic tail.
Lemma 9. Let G_{d} be strongly connected. Let us denote $\bar{L}_{t}(v):=L_{t}(\bar{L}(v))$. Then, the sequence $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is a periodic tail of the sequence $\left\{L_{t}(v)\right\}_{t \geq 0}$.

Proof. From Lemma 7, $\left(L_{n T_{v}}(v)\right)_{n \geq 0}$ converges to \bar{L}_{0}, so there exists \bar{n}_{v} such that $L_{\bar{n}_{v} T_{v}}(v)=\bar{L}_{0}(v)$. Therefore, $L_{t+\bar{n}_{v} T_{v}}(v)=\bar{L}_{t}(v)$ and $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is a tail of the sequence $\left\{L_{t}(v)\right\}_{t \geq 0}$. It is left to show that $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is periodic. $\left(\bar{L}_{0}(v)=\bar{L}_{T_{v}}(v)\right) \Rightarrow\left(\forall t \geq 0, \bar{L}_{t}(v)=\bar{L}_{T_{v}+t}(v)\right)$, therefore $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is periodic.

Lemma 10. Let G_{d} be strongly connected. Let $T_{v} \geq 1$ denote the smallest horizon $t \geq 1$ such that $v \in L_{t}(v)$. Let $\delta_{v} \geq 1$ denote the period of the tail sequence $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ so that $\bar{L}_{t}(v)=\bar{L}_{t^{\prime}}(v)$ for $0 \leq t<t^{\prime}$ if and only if $\left(t^{\prime}-t\right) \bmod \delta_{v}=0$. Then $T_{v} \bmod \delta_{v}=0$.

Proof. We first know that $T_{v} \geq \delta_{v}$ trivially holds since $\bar{L}_{0}(v)=\bar{L}_{T_{v}}(v)$. Since $T_{v} \geq \delta_{v}>0$ are integers, T_{v} admits a unique quotient $q \geq 1$ and remainder $m \geq 0$ by Euclid's lemma, i.e $T_{v}=q \delta_{v}+m$. Assume for contradiction that $m>0$. Then, $q \delta_{v}<T_{v}$ and $m<\delta_{v}$. But then we have $\bar{L}_{q \delta_{v}}(v)=\bar{L}_{T_{v}}(v)$ and $T_{v}-q \delta_{v}=m<\delta_{v}$ and there does not exist an integer $n>0$ such that $T_{v}-q \delta_{v}=n \delta_{v}$ which is a contradiction. Thus it must be that $m=0$ as desired.

Lemma 11. Let G_{d} be strongly connected. Let $\delta_{v} \geq 1$ denote the period of the tail sequence $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ so that $\bar{L}_{t}(v)=\bar{L}_{t^{\prime}}(v)$ for $0 \leq t<t^{\prime}$ if and only if $\left(t^{\prime}-t\right) \bmod \delta_{v}=0$. Then, for all $v \in V_{d}$ and $0 \leq t<t^{\prime}$ such that $t^{\prime}-t \bmod \delta_{v} \neq 0, \bar{L}_{t}(v) \cap \bar{L}_{t^{\prime}}(v)=\emptyset$, i.e limiting layers within a period are all disjoint sets regardless of the starting vertex. Equivalently, for all $v \in V_{d}$ and $0 \leq t<t^{\prime}, \bar{L}_{t}(v)=\bar{L}_{t^{\prime}}(v)$ if $t^{\prime}-t \bmod \delta_{v}=0$ and $\bar{L}_{t}(v) \cap \bar{L}_{t^{\prime}}(v)=\emptyset$ otherwise.

Proof. Since $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is periodic with period δ_{v}, it suffices to prove that for all $v \in V_{d}$ and $0 \leq t<t^{\prime} \leq \delta_{v}$ such that $t^{\prime}-t<\delta_{v}, \bar{L}_{t}(v) \cap \bar{L}_{t^{\prime}}(v)=\emptyset$. We first prove the following claim:

Claim 1. For all $v \in V_{d}$ and $t \geq 0$, if $t \bmod \delta_{v} \neq 0$, then $v \notin \bar{L}_{t}(v)$.
Proof. Again, due to periodicity, it suffices to prove that for all $v \in V_{d}$ and $0<t<\delta_{v}, v \notin \bar{L}_{t}(v)$. Assume for contradiction that there exist $v \in V_{d}$ and $0<t<\delta_{v}$ such that $v \in \bar{L}_{t}(v)$.

- We then claim that $\bar{L}_{0}(v) \subseteq \bar{L}_{t}(v)$. Assume, again, for contradiction that $\bar{L}_{0}(v) \subsetneq \bar{L}_{t}(v)$. Let $T_{v} \geq 1$ denote the smallest horizon $t \geq 1$ such that $v \in L_{t}(v)$. Since G_{d} is connected, by Lemma $10, T_{v}=q \delta_{v}$ for some quotient integer $q \geq 1$. Then for all $n \geq 0$

$$
\begin{equation*}
L_{n T_{v}}(v) \subseteq L_{n T_{v}}\left(\bar{L}_{t}(v)\right)=L_{n T_{v}}\left(L_{t}(\bar{L}(v))\right)=L_{t+n T_{v}}(\bar{L}(v))=\bar{L}_{t+n T_{v}}(v)=\bar{L}_{t+n q \delta_{v}}(v) \tag{15}
\end{equation*}
$$

where the inclusion relation holds by monotonicity since $v \in \bar{L}_{t}(v)$ by outer assumption and the second equality holds by commutativity. (Lemma 2)
Since G_{d} is connected, by Lemma 7, there exists $\bar{n}_{v} \geq 0$ such that, for all $n \geq \bar{n}_{v}, L_{n T_{v}}(v)=\bar{L}(v)=\bar{L}_{0}(v)$. Combining this result with Eq. 15 , there exists $\bar{n}_{v} \geq 0$ such that, for all $n \geq \bar{n}_{v}$

$$
L_{n T_{v}}(v)=\bar{L}_{0}(v) \subseteq \bar{L}_{t+n q \delta_{v}}(v)
$$

Then, since $\bar{L}_{0}(v) \subsetneq \bar{L}_{t}(v)$, there exists $\bar{n}_{v} \geq 0$ such that $\bar{L}_{t}(v) \neq \bar{L}_{t+n q \delta_{v}}(v)$ for $n \geq n_{v}$ which contradicts the assumption that $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is periodic with period δ_{v}. Thus, by contradiction, we have shown $\bar{L}_{0}(v) \subseteq \bar{L}_{t}(v)$.

- Now we enumerate all cases for $\bar{L}_{t}(v)$ that satisfy $\bar{L}_{0}(v) \subseteq \bar{L}_{t}(v)$.

If $\bar{L}_{0}(v)=\bar{L}_{t}(v)$, then this contradicts the assumption that $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is periodic with period δ_{v}
If $\bar{L}_{0}(v) \subset \bar{L}_{t}(v)$, then for all $n \geq 1$,

$$
\bar{L}_{n t}(v)=L_{n t}(\bar{L}(v))=L_{n t}\left(\bar{L}_{0}(v)\right) \subseteq L_{n t}\left(\bar{L}_{t}(v)\right)=L_{n t}\left(L_{t}(\bar{L}(v))\right)=L_{(n+1) t}(\bar{L}(v))=\bar{L}_{(n+1) t}(v)
$$

where the inclusion relation holds by monotonicity since we've just assumed $\bar{L}_{0}(v) \subset \bar{L}_{t}(v)$ and the fourth equality holds by commutativity. (Lemma 2) By transitivity this implies that for all $1 \leq n \leq n^{\prime}$,

$$
\bar{L}_{n t}(v) \subseteq \bar{L}_{n^{\prime} t}(v)
$$

Choosing $n=1$ and $n^{\prime}=\delta_{v}$ we have $\bar{L}_{0}(v) \subset \bar{L}_{t}(v) \subseteq \bar{L}_{\delta_{v} t}(v)$ and so $\bar{L}_{0}(v) \neq \bar{L}_{\delta_{v} t}(v)$. Since $t>0$ this again contradicts the periodicity of $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$. Thus we have shown, by contradiction, for all $v \in V_{d}$ and $0<t<\delta_{v}, v \notin \bar{L}_{t}(v)$.

Now to prove the original lemma, assume for contradiction that there exists $0 \leq t<t^{\prime} \leq \delta_{v}$ such that $0<t^{\prime}-t<\delta_{v}$, and a shared vertex $v_{t, t^{\prime}} \in V_{d}$ such that $v_{t, t^{\prime}} \in \bar{L}_{t}(v)$ and $v_{t, t^{\prime}} \in \bar{L}_{t^{\prime}}(v)$. Since G_{d} is strongly connected $v_{t, t^{\prime}}$ can reach v and so there exists a l such that $v \in \bar{L}_{t+l}(v)$ and $v \in \bar{L}_{t^{\prime}+l}(v)$ by trivial extension of Lemma 6. We now enumerate all cases for the value of $t+l$.
If $t+l \bmod \delta_{v} \neq 0$, this contradicts Claim 1 since $v \in \bar{L}_{t+l}(v)$.
If $t+l \bmod \delta_{v}=0$, then $t^{\prime}+l \bmod \delta_{v} \neq 0$ since $\left(t^{\prime}+l\right)-(t+l)=t^{\prime}-t<\delta_{v}$. this contradicts Claim 1 since $v \in \bar{L}_{t^{\prime}+l}(v)$.

Lemma 12. Let G_{d} be strongly connected. Then, for all $v, v^{\prime} \in V_{d}$, the sequence $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is a periodic tail of the sequence $\left(L_{t}\left(v^{\prime}\right)\right)_{t \geq 0}$ i.e vertex layers all converge to the same periodic sequence regardless of the starting vertex.

Proof. Pick any $v, v^{\prime} \in V_{d}$ and consider their corresponding periodic tails $\left(\bar{L}_{t}(v)\right)_{t \geq 0},\left(\bar{L}_{t}\left(v^{\prime}\right)\right)_{t \geq 0}$. (which exists by Lemma 8) Without loss of generality, we will let the first layer of the periodic tails be those containing the initial vertex, i.e $v \in \bar{L}_{0}(v), v^{\prime} \in \bar{L}_{0}\left(v^{\prime}\right)$. Such layers exist in the periodic tail by Lemma 6.
Let $t_{v}, t_{v^{\prime}} \geq 0$ denote the horizons at which $v \in \bar{L}_{t_{v}}\left(v^{\prime}\right), v^{\prime} \in \bar{L}_{t_{v^{\prime}}}(v)$. Again, such layers exist by Lemma 6. Then, we claim $\bar{L}_{0}(v) \subseteq \bar{L}_{t_{v}}\left(v^{\prime}\right)$. To see this, first note that the sequence $\left(L_{n T_{v}}(v)\right)_{n>0}$, where $T_{v} \geq 1$ is the shortest time horizon at which $v \in L_{T_{v}}(v)$, converges to $\bar{L}_{0}(v)$ by Lemma 7. Furthermore, $\left(\bar{L}_{t_{v}+n T_{v}}\left(v^{\prime}\right)\right)_{n \geq 0}=\left(\bar{L}_{t_{v}}\left(v^{\prime}\right)\right)_{n \geq 0}$ since $\left(v \in \bar{L}_{t_{v}}\left(v^{\prime}\right), \bar{L}_{t_{v}+n T_{v}}\left(v^{\prime}\right)\right) \Rightarrow\left(\bar{L}_{t_{v}+n T_{v}}\left(v^{\prime}\right)=\bar{L}_{t_{v}}\left(v^{\prime}\right)\right)$ by Lemma 11. Since $\{v\} \subseteq \bar{L}_{t_{v}}\left(v^{\prime}\right)$, it follows from monotonicity (Lemma 2) that $L_{n T_{v}}(v) \subseteq L_{n T_{v}}\left(\bar{L}_{t_{v}}\left(v^{\prime}\right)\right)=\bar{L}_{t_{v}+n T_{v}}\left(v^{\prime}\right)=\bar{L}_{t_{v}}\left(v^{\prime}\right)$ for all $n \geq 0$. Since there exists an $\bar{n}_{v} \geq 0$ such that $L_{\bar{n}_{v} T_{v}}(v)=\bar{L}_{0}(v)$, we thus have $\bar{L}_{0}(v) \subseteq \bar{L}_{t_{v}}\left(v^{\prime}\right)$. The same argument can be applied to obtain $\bar{L}_{0}\left(v^{\prime}\right) \subseteq \bar{L}_{t_{v^{\prime}}}(v)$.

We now consider two different cases. If $\bar{L}_{0}\left(v^{\prime}\right)=\bar{L}_{0}(v)$, then it trivially follows that the sequences $\left(\bar{L}_{t}(v)\right)_{t \geq 0},\left(\bar{L}_{t}\left(v^{\prime}\right)\right)_{t \geq 0}$ are the same. For the second case if $\bar{L}_{0}\left(v^{\prime}\right) \neq \bar{L}_{0}(v)$, then $\bar{L}_{t}(v)=L_{t}\left(\bar{L}_{0}(v)\right) \subseteq L_{t}\left(\bar{L}_{t_{v}}\left(v^{\prime}\right)\right)=\bar{L}_{t_{v}+t}\left(v^{\prime}\right)$ for all $t \geq 0$ and $\bar{L}_{t}\left(v^{\prime}\right)=L_{t}\left(\bar{L}_{0}\left(v^{\prime}\right)\right) \subseteq L_{t}\left(\bar{L}_{t_{v^{\prime}}}(v)\right)=\bar{L}_{t_{v^{\prime}+t}}(v)$ for all $t \geq 0$. Thus $\bar{L}_{0}(v) \subseteq \bar{L}_{t_{v}}\left(v^{\prime}\right) \subseteq \bar{L}_{t_{v}+t_{v^{\prime}}}(v)$. Then, $v \in \bar{L}_{0}(v) \Rightarrow v \in \bar{L}_{t_{v}+t_{v^{\prime}}}(v)$ and it follows that $\bar{L}_{0}(v)=\bar{L}_{t_{v}+t_{v^{\prime}}}(v)$ by Lemma 11. Thus, $\bar{L}_{0}(v)=\bar{L}_{t_{v}}\left(v^{\prime}\right)$ which implies that $\bar{L}_{t}(v)=\bar{L}_{t_{v}+t}\left(v^{\prime}\right)$ for all $t \geq 0$ and so $\left(\bar{L}_{t}(v)\right)_{t \geq 0}$ is a tail of $\left(\bar{L}_{t}\left(v^{\prime}\right)\right)_{t \geq 0}$.

From Lemma 12, we see that the layer sequence converges to the same periodic tail sequence regardless of the starting vertex. Thus, we shall henceforth denote a periodic tail of G_{d} as $\left(\bar{L}_{t}\right)_{t \geq 0}$, dropping the dependence on intial vertex.

Lemma 13. Let G_{d} be strongly connected and let $\left(\bar{L}_{t}\right)_{t \geq 0}$ be a periodic tail of the layer sequences in G_{d}. For all $v \in V_{d}$ and $t, t^{\prime} \geq 0,\left(L_{t}(v) \cap \bar{L}_{t^{\prime}} \neq \emptyset\right) \Rightarrow\left(L_{t}(v) \subseteq \bar{L}_{t^{\prime}}\right)$

Proof. Suppose for contradiction that there exists $v \in V_{d}$ and $t, t^{\prime} \geq 0$ such that $\left(L_{t}(v) \cap \bar{L}_{t^{\prime}} \neq \emptyset\right)$, but $\left(L_{t}(v) \nsubseteq \bar{L}_{t^{\prime}}\right)$. Let $v^{-} \in L_{t}(v)-\bar{L}_{t^{\prime}}$ and $v^{\cap} \in L_{t}(v) \cap \bar{L}_{t^{\prime}}$.
Let $T_{v} \geq 1$ denote the smallest positive horizon such that $v \in L_{T_{v}}(v)$. Then, $L_{n T_{v}+t}(v)=L_{t}\left(L_{n T_{v}}(v)\right) \subseteq$ $L_{t}\left(L_{(n+1) T_{v}}(v)\right)=L_{(n+1) T_{v}+t}(v)$ for all $n \geq 0$ by Lemma 2 since $L_{n T_{v}}(v) \subseteq L_{(n+1) T_{v}}(v)$ from the proof of Lemma 7. Thus, the sequence $\left(L_{n T_{v}+t}(v)\right)_{n \geq 0}$ must converge to some fixed set $\bar{L}_{t^{*}}$ since the sequence is growing and bounded above, i.e $L_{n T_{v}}(v) \subseteq L_{(n+1) T_{v}}(v)$ and $L_{n T_{v}}(v) \subseteq V_{d}$ for all $n \geq 0$. Thus, $\bar{L}_{t^{*}}$ is an element of the tail $\left(\bar{L}_{t}\right)_{t \geq 0}$. Since $v^{-}, v^{\cap} \in L_{t}(v)$, we have $v^{-}, v^{\cap} \in \bar{L}_{t^{*}}$. This contradicts Lemma 11 since $\bar{L}_{t^{\prime}}, \bar{L}_{t^{*}}$ are two tail layers that are not the same but also not disjoint.

We now prove the necessary direction of the main theorem. We show the contrapositive, i.e if either $\mathcal{P}_{\text {MDP }}[R ; d, T, J]$ is not weakly identifiable or not coverable, it is not strongly identifiable. By Proposition $1, \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ must be weakly identifiable to be strongly identifiable. Thus, consider $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ that is weakly identifiable but not coverable. By Proposition 2 it suffices to show that $\exists r, \hat{r} \in R$ such that $r \not \oiiint_{x, a} \hat{r}$ but $r \cong_{\tau} \hat{r}$.
Let $\left(\bar{L}_{t}\right)_{t \geq 0}$ be a periodic tail of the layer sequences in G_{d}. Let r, \hat{r} be two rewards such that $\forall v \notin \bar{L}_{0}, \hat{r}(v)_{-}=r(v)$ and $\forall v \in \bar{L}_{0}, \hat{r}(v)=r(v)+c$ for some constant $c \in \mathbb{R}$. Since there does not exist a covering initial state, clearly, $\bar{L}_{0} \subset V_{d}$ and thus $r \not \oiiint_{x, a} \hat{r}$. We will show that $r \cong_{\tau} \hat{r}$ to conclude that the $\mathcal{P}_{\text {MDP }}[R ; d, T, J]$ is not strongly identifiable.
For all $v \in V_{d}^{0}$ and for all paths $\zeta=\left(v_{t}\right)_{0 \leq t \leq T}, \zeta^{\prime}=\left(v_{t}^{\prime}\right)_{0 \leq t \leq T}$ such that $\zeta, \zeta^{\prime} \in Z[v, d, T]$, we claim that $\hat{r}\left(v_{t}\right)-\hat{r}\left(v_{t}^{\prime}\right)=$ $r\left(v_{t}\right)-r\left(v_{t}^{\prime}\right)$ for all $0 \leq t \leq T$. To see this, first note that $v_{t}, v_{t}^{\prime} \in L_{t}(v)$ for all $t \geq 0$. We consider two cases: (1). If $v_{t} \in \bar{L}_{0}$, then $v_{t}^{\prime} \in \bar{L}_{0}$ since $v_{t}, v_{t}^{\prime} \in L_{t}(v)$ and, by Lemma $13,\left(L_{t}(v) \cap \bar{L}_{t^{\prime}} \neq \emptyset\right) \Rightarrow\left(L_{t}(v) \subseteq \bar{L}_{t^{\prime}}\right)$. Thus, $\hat{r}\left(v_{t}\right)-\hat{r}\left(v_{t}^{\prime}\right)=r\left(v_{t}\right)+c-r\left(v_{t}^{\prime}\right)-c=r\left(v_{t}\right)-r\left(v_{t}^{\prime}\right)$. (2) If $v_{t} \notin \bar{L}_{0}$, then $v_{t}^{\prime} \notin \bar{L}_{0}$ since $v_{t}, v_{t}^{\prime} \in L_{t}(v)$ and, by the contrapositive of Lemma 13, $\left(L_{t}(v) \nsubseteq \bar{L}_{0}\right) \Rightarrow\left(L_{t}(v) \cup \bar{L}_{0}=\emptyset\right)$. Thus, $\hat{r}\left(v_{t}\right)-\hat{r}\left(v_{t}^{\prime}\right)=r\left(v_{t}\right)-r\left(v_{t}^{\prime}\right)$

Then,

$$
\begin{aligned}
r\left(\zeta^{\prime}\right)-r(\zeta) & =\sum_{t=0}^{T} \gamma^{t}\left(r\left(v_{t}^{\prime}\right)-r\left(v_{t}\right)\right) \\
& =\sum_{t=0}^{T} \gamma^{t}\left(\hat{r}\left(v_{t}^{\prime}\right)-\hat{r}\left(v_{t}\right)\right) \\
& =\hat{r}\left(\zeta^{\prime}\right)-\hat{r}(\zeta)
\end{aligned}
$$

Therefore, r, \hat{r} are two trajectory equivalent rewards which are not state-action equivalent. Hence $\mathcal{P}_{\text {MDP }}[R ; d, T, J]$ is not strongly identifiable.

Corollary 2. (Strong Identification Condition) For all (d, r, T, J) such that $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is a proper MDP model and G_{d} is strongly connected,

- (Sufficiency) $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is weakly identifiable, G_{d} aperiodic $\Rightarrow \exists T_{0} \geq 0$ such that $\forall T \geq T_{0}, \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable
- (Necessity) $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable $\Rightarrow \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is weakly identifiable, G_{d} is aperiodic.

Proof. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be proper and G_{d} be strongly connected. • (Sufficiency) Since G_{d} is strongly connected and aperiodic, it is covering by Proposition 3, i.e there exists an initial vertex $v_{0} \in V_{d}^{0}$ that is t^{*}-covering for some t^{*}. Let $T_{0}=2 t^{*}, \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable for all $T \geq T_{0}$ by Theorem 2.

- (Necessity) If $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is proper, strongly identifiable, and G_{d} is strongly connected, by Theorem 3, it is weakly identifiable and G_{d} is coverable. Since, G_{d} is strongly connected and coverable, it is aperiodic by Proposition 3.

A.5. Strong Identifiability Test Algorithms

Theorem 3. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be a weakly identifiable MDP model and G_{d} be strongly connected. Then,

- (Correctness) MDP IdTest $\left(\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]\right)$ returns 1 (True) if and only if $\exists T$ such that $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable.
- (Efficiency) MDP IdTest runs with time and space complexity $O\left(\left|E_{d}\right|\right)$

Proof. • (Correctness) MDP IdTest returns 1 (True) if and only if the directed graph G_{d} is aperiodic as shown in (Denardo, 1977; Jarvis and Shier, 1999). Since $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is weakly identifiable and G_{d} is strongly connected, G_{d} is aperiodic if and only if $\exists T$ such that $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable by Corollary 2.

- (Efficiency) Graph aperiodicity testing can be done in $O\left(\left|E_{d}\right|\right)$ space and time as shown in (Denardo, 1977; Jarvis and Shier, 1999).

Corollary 3. (Strong Identification Condition) For all (d, r, T, J) such that the MDP model $\mathcal{P}_{\mathrm{MDP}}[R ; d, T$, $J]$ is proper.

- (Sufficiency) $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is weakly identifiable, G_{d} is T_{0}-coverable, and $T \geq 2 T_{0} \Rightarrow \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable

Proof. This result immediately follows from the proof of the Sufficiency direction for Theorem 2.
Theorem 4. Let $\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ be a weakly identifiable MDP model. Then,

- (Correctness) If MDPCoverTest($\left.\mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]\right)$ returns 1 (True) then, $\exists T_{0}$ such that $\forall T \geq T_{0}, \mathcal{P}_{\mathrm{MDP}}[R ; d, T, J]$ is strongly identifiable.
- (Efficiency) MDPCoverTest runs with time complexity $O\left(\left|V_{d}\right|^{3} \log \left|V_{d}\right|\right)$ and space complexity $O\left(\left|V_{d}\right|^{2}\right)$

Proof. - Since M is the transition matrix, i.e $M_{i j}=\tilde{P}\left(v^{(j)} \mid v^{(i)}\right)$ where $\tilde{P}\left(x^{\prime}, a^{\prime} \mid x, a\right)=P\left(x^{\prime} \mid x, a\right)$, it is clear that $M_{i j}^{\left|V_{d}\right|^{2}} \neq 0$ if and only if $v^{(j)} \in L_{\left|V_{d}\right|^{2}}\left(v^{(i)}\right)$. If MDPCoverTest returns 1 (True), then there exists $v^{(i)} \in V_{d}^{0}$ that has a fully non-zero row $M_{i}^{\left|V_{d}\right|^{2}}$, i.e $L_{\left|V_{d}\right|^{2}}\left(v^{(i)}\right)=V_{d}$. Thus, G_{d} is $\left|V_{d}\right|^{2}$-coverable by $v^{(i)}$. Let $T_{0}=2\left|V_{d}\right|^{2}$ and the result follows from Corollary 3. Therefore, MDPCoverTest returns 1 (True) if and only if

- (Efficiency) It is well known that computing matrix powers A^{m} (where the matrix A has size $n \times n$) can be done in $O\left(n^{3} \log m\right)$ time and $O\left(n^{2}\right)$ space (Cormen et al., 2009). Since M has size $\left|V_{d}\right| \times\left|V_{d}\right|$, computing $M^{\left|V_{d}\right|^{2}}$ has time complexity $O\left(\left|V_{d}\right|^{3} \log \left|V_{d}\right|^{2}\right)=O\left(\left|V_{d}\right|^{3} \log \left|V_{d}\right|\right)$ and space complexity $O\left(\left|V_{d}\right|^{2}\right)$. A naive approach to checking for rows
with only non-zero entries requires enumerating over all elements of M which can be done in $O\left(\left|V_{d}\right|^{2}\right)$ time and $O(1)$ space, thus not affecting the overall efficiency of the algorithm.

