
I-BERT: Integer-only BERT Quantization

A. Quantization Methods
A.1. Symmetric and Asymmetric Quantization

Symmetric and asymmetric quantization are two different
methods for uniform quantization. Uniform quantization is
a uniform mapping from floating point x ∈ [xmin, xmax] to
b-bit integer q ∈ [−2b−1, 2b−1 − 1]. Before the mapping,
input x that does not fall into the range of [xmin, xmax]
should be clipped. In asymmetric quantization, the left
and the right side of the clipping range can be different,
i.e., −xmin 6= xmax. However, this results in a bias term
that needs to be considered when performing multiplication
or convolution operations (Jacob et al., 2018). For this
reason, we only use symmetric quantization in this work.
In symmetric quantization, the left and the right side of the
clipping range must be equal, i.e., −xmin = xmax = α, and
the mapping can be represented as Eq. 1.

A.2. Static and Dynamic Quantization

There is a subtle but important factor to consider when com-
puting the scaling factor, S. Computing this scaling factor
requires determining the range of parameters/activations
(i.e., α parameter in Eq. 1). Since the model parameters are
fixed during inference, their range and the corresponding
scaling factor can be precomputed. However, activations
vary across different inputs, and thus their range varies. One
way to address this issue is to use dynamic quantization,
where the activation range and the scaling factor are cal-
culated during inference. However, computing the range
of activation is costly as it requires a scan over the entire
data and often results in significant overhead. Static quan-
tization avoids this runtime computation by precomputing
a fixed range based on the statistics of activations during
training, and then uses that fixed range during inference. As
such, it does not have the runtime overhead of computing
the range of activations. For maximum efficiency, we adopt
static quantization, with all the scaling factors fixed during
inference.

B. Error Term of Eq. 3
As one can see, the polynomial approximation of Eq. 3
exactly matches the data at the interpolating points (xj , fj).
The error between a target function f(x) and the polynomial
approximation L(x) is then:

|f(x)− L(x)| =
∣∣∣∣f (n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn)

∣∣∣∣ , (16)

where ξ is some number that lies in the smallest interval
containing x0, ..., xn. In general, this error reduces for large
n (for a properly selected set of interpolating points). There-
fore, a sufficiently high-order polynomial that interpolates a
target function is guaranteed to be a good approximation for

it. We refer interested readers to (Stewart, 1996) for more
details on polynomial interpolation.

C. Experimental Details
C.1. Implementation

In I-BERT, all the MatMul operations are performed with
INT8 precision, and are accumulated to INT32 precision.
Furthermore, the Embedding layer is kept at INT8 precision.
Moreover, the non-linear operations (i.e., GELU, Softmax,
and LayerNorm) are processed with INT32 precision, as we
found that keeping them at high precision is important to
ensure no accuracy degradation after quantization. Impor-
tantly, note that using INT32 for computing these operations
has little overhead, as input data is already accumulated with
INT32 precision, and these non-linear operations have linear
computational complexity. We perform Requantization (Yao
et al., 2020) operation after these operations to bring the
precision down from INT32 back to INT8 so that the follow
up operations (e.g., next MatMuls) can be performed with
low precision.

C.2. Training

We evaluate I-BERT on the GLUE benchmark (Wang et al.,
2018), which is a set of 9 natural language understanding
tasks, including sentimental analysis, entailment, and ques-
tion answering. We first train the pre-trained RoBERTa
model on the different GLUE downstream tasks until the
model achieves the best result on the development set. We
report this as the baseline accuracy. We then quantize the
model and perform quantization-aware fine-tuning to re-
cover the accuracy degradation caused by quantization. We
refer the readers to (Yao et al., 2020) for more details about
the quantization-aware fine-tuning method for integer-only
quantization. We search the optimal hyperparameters in a
search space of learning rate {5e−7, 1e−6, 1.5e−6, 2e−6},
self-attention layer dropout {0.0, 0.1}, and fully-connected
layer dropout {0.1, 0.2}, except for the one after GELU
activation that is fixed to 0.0. We fine-tune up to 6 epochs
for larger datasets (e.g., MNLI and QQP), and 12 epochs
for the smaller datasets. We report the best accuracy of
the resulting quantized model on the development set as
I-BERT accuracy.

C.3. Accuracy Evaluation on the GLUE Tasks

For evaluating the results, we use the standard metrics
for each task in GLUE. In particular, we use classifica-
tion accuracy and F1 score for QQP (Iyer et al., 2017) and
MRPC (Dolan & Brockett, 2005), Pearson Correlation and
Spearman Correlation for STS-B (Cer et al., 2017), and
Mathews Correlation Coefficient for CoLA (Warstadt et al.,
2019). For the remaining tasks (Dagan et al., 2005; Ra-

I-BERT: Integer-only BERT Quantization

jpurkar et al., 2016; Socher et al., 2013; Williams et al.,
2017), we use classification accuracy. For the tasks with
multiple metrics, we report the average of them. Since
there are two development sets for MNLI (Williams et al.,
2017), i.e., MNLI-match (MNLI-m) for in-domain evalua-
tion, and MNLI-mismatch (MNLI-mm) for cross-domain
evaluation, and we report the accuracy on both datasets. We
exclude WNLI (Levesque et al., 2012) as it has relatively
small dataset and shows an unstable behaviour (Dodge et al.,
2020).

C.4. Environment Setup for Latency Evaluation

We use TensorRT 7.2.1 to deploy and tune the latency of
BERT-Base and BERT-Large models (both INT8 and FP32)
on Google Cloud Platform virtual machine with a single
Tesla T4 GPU, CUDA 11.1, and cuDNN 8.0.

We should also mention that the most efficient way of im-
plementing BERT with TensorRT is to use NVIDIA’s plu-
gins (Mukherjee et al., 2019) that optimize and accelerate
key operations in the Transformer architecture via opera-
tion fusion. Our estimates are that INT8 inference using
NVIDIA’s plugins is about 2 times faster than naïvely using
TensorRT APIs. However, we cannot modify those plug-
ins to support our integer-only kernels as they are partially
closed sourced and pre-compiled. Therefore, our latency
evaluation is conducted without fully utilizing NVIDIA’s
plugins. This leaves us a chance for further optimization
to achieve our latency speedup relative to FP32 even more
significant. As such, one could expect the potential for a
further ∼ 2× speed up with INT8 quantization.

