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A. Appendix
A.1. Dataset

We used 4 types of datasets: Mouse retina transcriptomes (Macosko et al., 2015; Poličar et al., 2019), Fashion MNIST (Xiao
et al., 2017), EMNIST Letters (Cohen et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009). The details on the datasets and
the numbers used in training and evaluations are shown in Table 1. The Mouse retina transcriptomes dataset consists of
PCA projections of single-cell transcriptome data collected from mouse retina. The Fashion MNIST dataset consists of 10
types of clothing such as shirts, sneakers, and ankle boots. The EMNIST Letters dataset is a set of handwritten alphabet
characters of 26 classes. The CIFAR-10 dataset consists of real-world images in 10 classes such as airplanes, automobiles,
birds and cats. Except for Mouse retina transcriptomes dataset, the distribution of classes is uniform. The class distribution
of the Mouse retina transcriptomes dataset is shown in Table 2. The distribution of each dataset is visualized in Figure 1. For
visualization, each dataset was projected into a 2-dimensional embedding space using Parametric UMAP.

At least 10,000 samples of each dataset were used as test dataset for the performance evaluation of MPART. We also used
30% of the training dataset to train the Parametric UMAP (Sainburg et al., 2020) for dimensionality reduction. MPART was
trained using only 10,000 randomly sampled data from the remaining 70% of the training dataset.

Table 1. Datasets used to evaluate our proposed method and the number of samples used in training and testing.

DATASET NUM. OF CLASSES DIMENSIONS
PARAMETRIC UMAP MPART

(TRAIN) TRAIN TEST

MOUSE RETINA TRANSCRIPTOMES 12 50 10,442 24,366 10,000
FASHION MNIST 10 28X28 18,000 42,000 10,000

EMNIST LETTERS 26 28X28 37,440 87,360 20,800
CIFAR-10 10 32X32X3 15,000 35,000 10,000

Table 2. Distribution of classes in Mouse retina transcriptomes dataset.

LABEL CLASS NAME
PARAMETRIC UMAP MPART TOTAL

(TRAIN) TRAIN TEST

0 CONES 425 1,029 414 1,868
1 HORIZONTAL CELLS 67 131 54 252
2 PERICYTES 16 37 10 63
3 AMACRINE CELLS 1,041 2,314 1,071 4,426
4 RETINAL GANGLION CELLS 113 228 91 432
5 FIBROBLASTS 21 50 14 85
6 VASCULAR ENDOTHELIUM 54 139 59 252
7 MULLER GLIA 363 893 368 1,624
8 ASTROCYTES 15 29 10 54
9 MICROGLIA 15 41 11 67

10 RODS 6,855 16,047 6,498 29,400
11 BIPOLAR CELLS 1,457 3,428 1,400 6,285

TOTAL 10,442 24,366 10,000 44,808

The datasets can be downloaded from the following links.

• Mouse retina transcriptomes: http://file.biolab.si/opentsne/macosko_2015.pkl.gz

• Fashion MNIST: https://github.com/zalandoresearch/fashion-mnist

• EMNIST Letters: https://github.com/aurelienduarte/emnist

• CIFAR-10: https://www.cs.toronto.edu/˜kriz/cifar.html

http://file.biolab.si/opentsne/macosko_2015.pkl.gz
https://github.com/zalandoresearch/fashion-mnist
https://github.com/aurelienduarte/emnist
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 1. Visualization of the distribution of each dataset using Parametric UMAP.
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A.2. Implementation Details

Parametric UMAP. In order for MPART to cluster input data and properly generate the topological graph, it is necessary to
represent high-dimensional input data in a low-dimensional latent space. So, the performance of the dimensionality reduction
can affect the overall performance. We extracted the 2048-dimensional feature vector of the CIFAR-10 dataset using the
BYOL (Grill et al., 2020) model pretrained with the ImageNet (Deng et al., 2009) dataset. Then we projected the input data
into a 4-dimensional embedding space using the pretrained Parametric UMAP for each dataset. The Parametric UMAP was
trained using the parameters shown in Table 3, and the training was conducted for 50 epochs. A convolutional neural network
(CNN) was used as an embedding algorithm of Parametric UMAP for Fashion MNIST and EMNIST Letters. For the Mouse
retina transcriptome and CIFAR-10, a 3-layer multi-layer perceptron (MLP) was used with 100-neurons per layer. More
information about Parametric UMAP can be found at the following link: https://umap-learn.readthedocs.io/.

Table 3. Summary of important UMAP parameters used in this study.

NAME VALUE DESCRIPTION

N NEIGHBORS 15 CONTROLS HOW UMAP BALANCES LOCAL VERSUS GLOBAL STRUCTURE IN THE DATA

MIN DIST 0.1 CONTROLS HOW TIGHTLY UMAP IS ALLOWED TO GROUP POINTS TOGETHER

N COMPONENTS 4 CONTROLS THE DIMENSIONALITY OF THE REDUCED DIMENSION SPACE

METRIC EUCLIDEAN THE METHOD FOR DISTANCE MEASURE IN THE AMBIENT SPACE OF THE INPUT DATA

MPART. We chose the parameters of the MPART empirically. The parameters used in the model are shown in Table 5, and
the same values were used for all datasets and experiments. The value of ρ should be determined by considering the number
of dimensions of the input space and computational power. The larger ρ value, the more MPART nodes are created, which
allows for finer clustering, but increases the required computational power. The value of ke should be set according to how
many queries are possible. A small value of ke should be used in situations where enough queries are possible. Since we
dealt with very few labeled data, we used a relatively large value of ke = 1.0. The value of kd should be set small enough
according to the total amount of training data including unlabeled data. We also show in Table 5 the parameters used in the
competitive models.

Table 4. Model parameters used in the MPART.

SYMBOL VALUE DESCRIPTION

α 0.01 CHOICE PARAMETER

β 0.5 LEARNING RATE FOR NODE WEIGHTS

ρ 0.95 VIGILANCE PARAMETER

δ 0.1 PROPAGATION RATE FOR MESSAGE PASSING

τ 0.7 WEIGHT FOR QUERY SELECTION SCORE

ke 1.0 SENSITIVITY FOR EPISTEMIC UNCERTAINTY

kd 0.01 SENSITIVITY FOR DENSITY-WEIGHTED QUERY SELECTION SCORE

L 3 NUMBER OF LAYERS FOR MESSAGE PASSING

https://umap-learn.readthedocs.io/
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Table 5. Model parameters used in LPART and A-SOINN.

MODEL SYMBOL VALUE DESCRIPTION

α 0.01 CHOICE PARAMETER

LPART β 0.5 LEARNING RATE FOR NODE WEIGHTS

ρ 0.95 VIGILANCE PARAMETER

δ 1.0 PROPAGATION RATE

λ 500 PERIOD FOR NODE REMOVAL AND CLUSTERING

A-SOINN agemax 30 MAXIMUM AGE OF EDGE

α 2.0 SMOOTHING PARAMETER FOR GROUPING

A.3. Parameter Search for δ and τ

The choice of values of the propagation rate δ in message passing and the weight τ for query selection score affects the
performance only marginally, unless δ is set to 0. Table 6 shows the classification performance on CIFAR-10 according to
the change of δ and τ . The ‘Explorer’ strategy and 1/500 query frequency were used. The mean and standard deviation were
drawn from results of 10 trials.

Table 6. The classification accuracy (mean ± std) of our model with various δ and τ . For each L, boldface indicates the top three and the
blue text indicates the bottom three.

NUMBER OF
δ

τ

LAYERS 0.0 0.1 0.3 0.5 0.7 0.9 1.0

L = 0 0.0 12.5±0.4 12.6±0.3 12.8±0.3 12.7±0.4 12.6±0.5 12.8±0.6 12.8±0.4

L = 1

0.1 39.2±1.9 38.6±1.8 39.5±1.9 39.3±2.0 39.3±1.9 35.8±1.7 33.6±2.6
0.3 39.2±1.9 38.7±2.2 39.7±2.2 39.2±1.8 38.4±2.4 38.4±1.9 34.2±1.6
0.5 39.3±1.4 39.5±2.3 39.3±1.6 39.1±1.4 38.4±1.7 38.3±2.2 37.2±1.5
0.7 38.2±2.4 38.7±1.7 39.8±3.1 37.8±2.3 39.7±1.4 37.8±1.8 38.7±2.8
0.9 39.3±2.4 38.1±2.5 38.8±2.6 37.0±2.9 37.2±2.2 38.8±2.0 38.4±1.6
1.0 39.1±3.3 38.4±2.4 37.1±3.3 40.3±2.0 38.1±2.0 36.7±3.9 38.2±2.3

L = 3

0.1 61.4±3.8 61.1±1.7 63.4±2.4 59.3±3.6 58.9±2.9 56.7±3.4 55.2±3.5
0.3 59.5±5.8 58.8±3.8 61.7±3.3 59.3±3.9 59.3±3.5 58.5±5.9 59.3±3.0
0.5 57.9±5.5 58.8±4.0 59.8±4.9 60.5±3.4 60.5±2.8 59.2±3.6 57.5±4.6
0.7 60.4±2.5 56.3±5.2 60.4±3.7 59.9±3.1 58.7±3.1 59.9±3.8 60.0±4.2
0.9 58.0±4.8 56.4±5.3 58.4±5.9 58.9±3.1 60.0±3.8 60.0±3.0 61.5±3.9
1.0 58.9±4.3 58.6±4.5 59.2±5.2 56.6±5.9 61.0±3.5 59.7±3.9 59.5±3.7

L = 5

0.1 54.6±6.6 55.1±7.8 60.1±2.7 60.1±2.6 60.0±4.0 57.4±2.3 60.0±3.4
0.3 50.6±4.4 51.2±6.6 54.3±3.8 61.5±2.1 60.5±4.5 60.3±4.3 60.8±3.7
0.5 49.7±7.3 53.8±4.6 56.1±5.2 59.1±3.7 58.9±3.5 59.1±4.9 58.9±3.6
0.7 48.2±4.9 52.0±2.9 53.8±8.0 57.5±5.3 58.2±3.8 60.4±4.4 60.5±2.2
0.9 47.2±6.3 45.7±8.6 52.1±4.4 58.0±4.1 56.3±5.7 57.2±6.3 56.8±5.8
1.0 49.1±4.3 51.0±4.0 51.3±4.2 53.5±7.9 56.2±10.4 54.0±7.4 58.9±2.1
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A.4. Additional Experimental Results

Online Topology Learning. Figure 2 shows an example result of MPART’s online topology learning. MPART continuously
learns the distribution and topology structure of sequential input data without forgetting.

Figure 2. An example result of topology learning. (a) ∼ (e) is the process of topology learning, and the lower right figure is the final
learning result. The colored scattered points refer to newly entered data and the intensity of the topological graph represents the density of
nodes and edges. All data samples were input only once, one by one.
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Analysis of the Generated Topological Graph. For a deeper analysis, it would be interesting to see some statistics of the
topological graph. In Table 7, we show the numbers of generated nodes, co-activations for each task, and co-activated nodes
per winning node and per sample. We also analyzed the average number of neighboring nodes per node, weights of edges,
and the nodes that do not have any co-activated node, in which case will be indicated by nodes without edges.

Table 7. Detailed analysis of the trained topological graph. The mean and standard deviation are drawn from 10 trials for each dataset.

ITEM
MOUSE RETINA FASHION MNIST EMNIST CIFAR-10

TRANSCRIPTOMES LETTERS

TOTAL # OF NODES 290.3±5.3 256.2±4.3 1165.5±8.0 984.6±10.5
TOTAL # OF CO-ACTIVATIONS 15873.2±399.5 15533.1±404.4 9222.8±151.4 11230.6±210.6

AVG. # OF CO-ACTIVATIONS PER NODE 54.69±1.68 60.63±1.48 7.91±0.15 11.41±0.24
AVG. # OF CO-ACTIVATIONS PER SAMPLE 1.59±0.04 1.55±0.04 0.92±0.02 1.12±0.02

AVG. # OF NEIGHBORING NODES PER NODE 7.46±0.12 7.51±0.22 4.16±0.06 6.02±0.08
TOTAL # OF NODES W/O EDGES 11.00±3.43 6.70±2.11 34.20±6.07 19.50±3.03
AVG. # OF WEIGHTS OF EDGES 0.179±0.009 0.193±0.007 0.172±0.003 0.150±0.003

Computational Cost. We measured the run-time of our Python implementation on a 3.8 GHz CPU machine. Tables 8 and
9 show the number of nodes generated by MPART and the time required for training and inference according to the number
of training samples.

Table 8. The number of nodes generated by MPART according to the query selection frequency and the number of training samples. The
number of layer L = 3 and the ‘Explorer’ strategy were used. The mean and standard deviation are drawn from 10 trials for each dataset.

QUERY SELECTION NUMBER OF MOUSE RETINA FASHION EMNIST CIFAR-10
FREQUENCY TRAINING DATA TRANSCRIPTOMES MNIST LETTERS

1 / 1000
10,000 290.2±5.0 254.8±4.3 1170.6±9.4 970.7±7.4
15,000 349.0±5.8 301.0±4.1 1504.4±9.6 1260.6±6.7
20,000 396.1±4.4 338.1±4.8 1810.3±6.9 1505.7±7.8

1 / 500
10,000 290.5±4.5 254.3±5.3 1167.1±8.9 980.8±5.9
15,000 348.6±6.0 301.6±3.7 1511.6±11.3 1262.1±3.8
20,000 394.9±5.7 337.7±5.3 1810.6±8.5 1510.7±7.3

1 / 100
10,000 290.5±4.6 255.0±4.5 1163.5±8.2 976.4±8.5
15,000 347.3±4.6 301.3±5.7 1510.7±10.8 1262.7±9.0
20,000 398.1±5.7 337.8±4.2 1807.6±8.4 1508.6±7.6

Table 9. Comparison of time taken by MPART for training and inference according to query selection frequency and the number of
training samples. The number of layer L = 3 and the ‘Explorer’ strategy were used. The mean and standard deviation are drawn from 10
trials for each dataset. (unit: sec)

QUERY SELECTION NUMBER OF MOUSE RETINA FASHION EMNIST CIFAR-10
FREQUENCY TRAINING DATA TRANSCRIPTOMES MNIST LETTERS

1 / 1000
10,000 9.24±0.14 9.03±0.35 13.25±0.58 11.21±0.15
15,000 14.46±0.14 13.98±0.11 25.54±0.17 20.70±0.23
20,000 19.49±0.13 19.12±0.11 43.71±0.33 34.38±0.26

1 / 500
10,000 9.08±0.10 8.90±0.07 13.03±0.11 11.43±0.20
15,000 14.55±0.11 13.93±0.05 25.84±0.32 20.90±0.21
20,000 19.83±0.08 19.12±0.17 43.60±0.41 34.59±0.19

1 / 100
10,000 9.15±0.09 8.87±0.06 13.26±0.17 11.55±0.17
15,000 13.93±0.05 13.68±0.07 25.93±0.26 21.11±0.16
20,000 18.78±0.06 18.71±0.10 43.65±0.39 34.72±0.26
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Various Query Frequencies. Table 10 summarizes the performance evaluation of MPART and competitive models on
four datasets according to various query selection frequencies. Given the same total query budget, MPART shows similar
performance regardless of query frequencies.

Table 10. Comparison of classification accuracy (mean ± std) between MPART and the competitive models. The number of layer L = 3
and the ‘Explorer’ strategy were used for MPART. The mean and standard deviation are drawn from 30 trials for each dataset. (unit : %)

TOTAL QUERY QUERY SELECTION MODEL
MOUSE RETINA FASHION EMNIST CIFAR-10BUDGET FREQUENCY TRANSCRIPTOMES MNIST LETTERS

1 / 1000
LPART 77.1±7.4 41.5±4.4 13.3±3.2 27.4±5.0

A-SOINN 88.1±13.0 45.2±7.0 16.9±4.1 37.7±6.8
MPART 91.2±5.6 56.4±5.8 26.4±2.7 52.6±4.9

2 / 2000
LPART 83.8±6.0 37.6±4.9 14.8±3.1 28.0±3.4

A-SOINN 90.9±5.0 45.4±7.9 17.8±2.7 42.7±7.0

10 MPART 91.7±4.0 56.8±3.7 25.8±1.9 54.8±4.0

5 / 5000
LPART 84.3±9.9 41.6±7.4 15.4±2.8 30.1±3.7

A-SOINN 93.6±2.6 49.8±5.2 21.5±2.5 46.2±6.2
MPART 92.2±4.4 55.0±3.7 26.2±1.7 54.4±5.3

10 / 10000
LPART 81.3±4.2 38.4±6.4 15.6±3.7 36.0±6.5

A-SOINN 94.4±2.0 50.3±4.7 23.2±2.6 50.8±4.6
MPART 91.8±4.7 54.6±4.6 25.4±2.1 56.0±4.3

1 / 500
LPART 85.4±4.3 49.3±7.4 21.2±2.7 42.0±5.7

A-SOINN 91.0±5.4 50.3±6.0 25.6±4.8 44.2±7.0
MPART 93.5±2.6 61.4±3.1 35.9±3.4 59.2±2.6

2 / 1000
LPART 89.4±4.8 52.3±6.3 20.7±2.9 42.1±7.9

A-SOINN 92.0±3.7 51.9±4.6 26.0±4.0 49.3±6.1
MPART 94.3±1.8 59.8±4.1 35.7±3.4 59.1±3.1

4 / 2000
LPART 86.5±5.5 54.8±4.0 22.9±3.6 42.8±6.9

20 A-SOINN 93.3±3.2 55.0±5.1 28.4±3.9 51.9±4.9
MPART 93.5±2.9 60.8±4.6 35.7±2.8 60.0±3.7

10 / 5000
LPART 89.5±6.9 50.1±7.0 19.3±3.0 41.7±6.2

A-SOINN 94.2±2.3 56.4±4.7 31.9±2.8 57.8±3.8
MPART 93.9±1.8 59.7±4.5 36.7±2.1 60.4±3.2

20 / 10000
LPART 89.8±4.5 49.4±4.4 23.0±3.0 45.4±6.8

A-SOINN 94.6±1.8 59.8±4.0 36.2±3.1 60.9±4.0
MPART 93.4±2.5 60.1±3.8 36.9±4.3 59.9±4.0

1 / 100
LPART 94.4±0.9 65.8±1.8 37.7±2.3 58.2±1.9

A-SOINN 91.5±7.0 55.7±6.8 29.9±4.9 50.9±7.9
MPART 95.7±0.8 67.3±1.7 47.9±1.8 67.0±1.4

10 / 1000
LPART 94.5±1.3 64.4±1.8 37.8±2.4 59.8±2.5

A-SOINN 93.9±1.6 63.0±3.8 39.5±3.0 60.3±5.8
MPART 95.6±0.9 67.5±1.4 47.7±1.7 67.4±1.1

20 / 2000
LPART 93.1±1.4 64.7±2.2 38.8±2.4 60.0±2.0

100 A-SOINN 93.6±2.3 63.9±3.0 40.6±3.8 60.6±4.3
MPART 95.7±0.9 66.7±1.9 47.6±1.3 66.8±1.5

50 / 5000
LPART 93.9±1.6 63.4±2.4 37.2±2.6 59.4±1.7

A-SOINN 93.6±2.4 64.3±2.8 42.2±3.3 60.5±3.9
MPART 95.4±1.1 67.3±1.5 47.8±1.9 66.7±1.5

100 / 10000
LPART 94.9±1.1 64.1±2.3 37.7±1.8 58.4±2.8

A-SOINN 94.2±1.3 64.8±3.1 41.9±2.8 63.6±4.1
MPART 95.5±0.7 67.6±1.2 47.3±1.3 66.7±1.3
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Visualization of Training Results. In order to evaluate the capability of our model for online active semi-supervised
learning, we visualized the generated topological graph and query distributions. The visualization results on the Mouse
retina transcriptomes and EMNIST Letters datasets are shown in Figures 3 and 4. The visualization shows that the Memory
and Explorer strategies perform better than the Random strategy, as implied by the evenly distributed queried samples.

(a) Random (b) Memory (c) Explorer

Figure 3. The visualization of training results on the Mouse retina transcriptomes dataset according to query selection strategy. The
number of layer L = 3 and 1/1000 query frequency were used. The colored scattered points refer to input samples and the intensity of the
topological graph represents the density of nodes and edges. The queried samples are indicated in yellow boxes. In the case of Random
strategy, we can observe more queried samples in the class represented by the black dots. In contrast, the queried samples are more evenly
distributed for each class when using the ‘Memory’ or ‘Explorer’ strategy. All data samples were input only once, one for each time step.
The input data was projected into a 2-dimensional embedding space for visualization.

(a) Random (b) Memory (c) Explorer

Figure 4. The visualization of training results on the EMNIST Letters dataset according to query selection strategy. The number of layer
L = 3 and 1/500 query frequency were used. The colored scattered points refer to input samples and the intensity of the topological
graph represents the density of nodes and edges. The queried samples are indicated in black boxes. In the case of Random strategy, we
can observe more queried samples in certain classes than others. In contrast, the queried samples are more evenly distributed for each
class when using the ‘Memory’ or ‘Explorer’ strategy. All data samples were input only once, one for each time step. The input data was
projected into a 2-dimensional embedding space for visualization.
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