
A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning

A. Derivation of Meta-Multiagent Policy Gradient Theorem
Theorem 1. (Meta-Multiagent Policy Gradient Theorem) For any stochastic game Mn, the gradient of the meta-value
function for agent i at state s0 with respect to current policy parameters φi

0 evolving in the environment along with other
peer agents using initial parameters φ−i

0 is:
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Proof. We begin our derivation from the meta-value function defined in Equation (2) and expand it with the state-action
value and joint actions, assuming the conditional independence between agents’ actions (Wen et al., 2019):
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where Qi
φ�+1

(s0,a0) is the state-action value under the joint policy with parameters φ�+1 at state s0 with joint action a0.

In Equation (6), we note that both φi
1:� and φ−i

1:� depend on φi
0. Considering the joint update from φ0 to φ1, for simplicity, we

can write the gradients in the inner-loop (see Equation (3)) based on the multiagent stochastic policy gradient theorem (Wei
et al., 2018):
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where ρφ0 denotes the stationary distribution under the joint policy with parameters φ0. Importantly, the inner-loop
gradients for an agent i and its peers are a function of φi

0. Hence, the updated joint policy parameter φ1 depends on φi
0.

Following Equation (7), the successive inner-loop optimization until φ�+1 results in dependencies between φi
0 and φi

1:�+1

and between φi
0 and φ−i

1:�+1 (see Figure 1b).

Having identified which terms are dependent on φi
0, we continue from Equation (6) and derive the gradient of the meta-value

function with respect to φi
0 by applying the product rule:
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We first focus on the derivative of the trajectories τφ0:�
in Term A:
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where the probability of collecting a trajectory under the joint policy with parameters φ� is given by:
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where the summations of the log-terms, such as ∇φi
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sequential dependencies between φi
0 and φ1:�. We use the result of Equation (11) and organize terms to arrive at the

following expression for Term A in Equation (8):
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Coming back to Term B-D in Equation (8), repeatedly unrolling the derivative of the Q-function ∇φi
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following Sutton & Barto (1998) yields:
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which adds the consideration of future joint policy φ�+1 to Equation (12). Finally, we summarize Equations (12) and (13)
together and express in expectations:
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B. Derivation of Meta-Policy Gradient Theorem
Remark 1. Meta-PG can be considered as a special case of Meta-MAPG when assuming that other agents’ learning in the
environment is independent of the meta-agent’s behavior.

Proof. The framework by Al-Shedivat et al. (2018) makes the implicit assumption that there exist no sequential dependencies
between the future parameters of other agents φ−i

1:L and φi
0. This assumption implies that the peers’ policy updates in

Equation (7) are not a function of a meta-agent’s policy. As a result, the gradients of the peers’ log-terms with respect to φi
0
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Similarly, Term B-D in Equation (8) become:
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Finally, summarizing Equations (14) and (15) together, and expressing in expectations results in Meta-PG:
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C. Stateless Zero-Sum Game Details

Derivation of Meta-MAPG. In the stateless zero-sum game, a meta-agent i and an opponent j maximize simple value
functions V i
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=φi
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�∈R. We note that this domain has the episode horizon
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� . Because there are no stochastic factors in this domain, the meta-value function defined in Equation (2) can be

simplified without the expectations:
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Assuming the maximum chain length L of 1 for clarity, the inner-loop updates from φ0 to φ1 are:
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where α is the inner-loop learning rate. Then, the meta-multiagent policy gradient can be directly computed without using
the log-derivative trick:

∇φi
0
V i
φ0:1

= ∇φi
0
V i
φ1

= ∇φi
0

�
φi
1φ

j
1

�
=

�
∇φi

0
φi
1

�
φj
1 +

�
∇φi

0
φj
1

�
φi
1 = φj

1 − αφi
1. (18)

During meta-training, the initial policy parameter φi
0 will be updated with the outer-loop learning rate β:
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Derivation of Meta-PG. For Meta-PG (Al-Shedivat et al., 2018), the framework assumes that there is no dependency
between φi

0 and φj
1. Thus, the term
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Hyperparameter. We used the following hyperparameters: 1) randomly sampled initial opponent policy parameter from
−1 to 1 (i.e., p(φ−i

0 ) = [−1, 1]), 2) α=0.75, and 3) β=0.01.
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D. Meta-MAPG Algorithm

Algorithm 1 Meta-Learning at Training Time

Require: p(φ−i
0 ): Distribution over peer agents’ initial policy

parameters; α,β: Learning rates
1: Randomly initialize φi

0

2: while φi
0 has not converged do

3: Sample a meta-train batch of φ−i
0 ∼ p(φ−i

0 )

4: for each φ−i
0 do

5: for � = 0, . . ., L do
6: Sample and store trajectory τφ� ∼ p(τφ� |φ�)
7: Compute φ�+1 = f(φ�, τφ� ,α) from inner-loop opti-

mization (Equation (3))
8: end for
9: end for

10: Update φi
0 ← φi

0 +β
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�=0 ∇φi
0
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i
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11: end while

Algorithm 2 Meta-Learning at Execution Time

Require: p(φ−i
0 ): Distribution over peer agents’ initial policy

parameters; α: Learning rates; Optimized φi∗
0

1: Initialize φi
0 ← φi∗

0

2: Sample a meta-test batch of φ−i
0 ∼ p(φ−i

0 )

3: for each φ−i
0 do

4: for � = 0, . . ., L do
5: Sample trajectory τφ� ∼ p(τφ� |φ�)
6: Compute φ�+1 = f(φ�, τφ� ,α) from inner-loop opti-

mization (Equation (3))
7: end for
8: end for

D.1. Meta-MAPG with Opponent Modeling

Algorithm 3 Meta-Learning at Training Time with OM

Require: p(φ−i
0 ): Distribution over peer agents’ initial policy

parameters; α, α̂−i, η̂−i,β: Learning rates
1: Randomly initialize φi

0

2: while φi
0 has not converged do

3: Sample a meta-train batch of φ−i
0 ∼ p(φ−i

0 )

4: for each φ−i
0 do

5: Randomly initialize φ̂−i
0

6: for � = 0, . . ., L do
7: Sample and store trajectory τφ� ∼ p(τφ� |φ�)

8: Approximate φ̂−i
� = f(φ̂−i

� , τφ� , η̂
−i) using oppo-

nent modeling (Algorithm 4)
9: Compute φ�+1 = f(φ�, τφ� ,α) from inner-loop opti-

mization (Equation (3))
10: Compute φ̂−i
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11: end for
12: end for
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14: end while

Algorithm 4 Opponent Modeling

1: function Opponent Modeling(φ̂−i
� , τφ� , η̂

−i)

2: while φ̂−i
� has not converged do

3: Compute log-likelihood Llikelihood = f(φ̂−i
� , τφ�) based

on Equation (21)
4: Update φ̂−i

� ← φ̂−i
� + η̂−i∇

φ̂
−i
�

Llikelihood

5: end while
6: return φ̂−i

�
7: end function

We explain Meta-MAPG with opponent modeling (OM) for settings where a meta-agent cannot access the policy parameters
of its peers during meta-training. Our decentralized meta-training method in Algorithm 3 replaces the other agents’
true policy parameters φ−i

1:L with inferred parameters φ̂−i
1:L in computing the peer learning gradient. Specifically, we

follow Foerster et al. (2018a) for opponent modeling and estimate φ̂−i
� from τφ�

using log-likelihood Llikelihood (Line 8
in Algorithm 3):

Llikelihood =

H�

t=0

logπ−i(a−i
t |st, φ̂−i

� ), (21)

where st,a
−i
t ∈ τφ�

. A meta-agent can obtain φ̂−i
1:L by iteratively applying the opponent modeling procedure until

the maximum chain length of L. We also apply the inner-loop update with the Differentiable Monte-Carlo Estimator
(DiCE) (Foerster et al., 2018c) to the inferred policy parameters of peer agents (Line 10 in Algorithm 3). By applying
DiCE, we can save the sequential dependencies between φi

0 and updates to the policy parameters of peer agents φ̂−i
1:L in a

computation graph and compute the peer learning gradient efficiently via automatic-differentiation (Line 13 in Algorithm 3).
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E. Additional Implementation Details
E.1. Network Structure

Our neural networks for the policy and value function consist of a fully-connected input layer with 64 units followed by a
single-layer LSTM with 64 units and a fully-connected output layer. We reset the LSTM states to zeros at the beginning of
trajectories and retain them until the end of episodes. The LSTM policy outputs a probability for the categorical distribution
in the iterated games (i.e., IPD, RPS). For the 2-Agent HalfCheetah domain, the policy outputs a mean and variance for the
Gaussian distribution. We empirically observe that no parameter sharing between the policy and value network results in
more stable learning than sharing the network parameters.

E.2. Optimization

We detail additional important notes about our implementation:

• We apply the linear feature baseline (Duan et al., 2016a) and generalized advantage estimation (GAE) (Schulman et al.,
2016) during the inner-loop and outer-loop optimization, respectively, to reduce the variance in the policy gradient.

• We use DiCE (Foerster et al., 2018c) to compute the peer learning gradient efficiently. Specifically, we apply DiCE during
the inner-loop optimization and save the sequential dependencies between φi

0 and φ−i
1:L in a computation graph. Because the

computation graph has the sequential dependencies, we can compute the peer learning gradient by the backpropagation of
the meta-value function via the automatic-differentiation toolbox.

• Learning from diverse peers can potentially cause conflicting gradients and unstable learning. In IPD, for instance, a
strategy to adapt against cooperating peers can be completely opposite to the adaptation strategy against defecting peers,
resulting in conflicting gradients. To address this potential issue, we use the projecting conflicting gradients (PCGrad) (Yu
et al., 2020) during the outer-loop optimization. We also have tested the baseline methods with PCGrad.

• We use a distributed training to speed up the meta-optimization. Each thread interacts with a Markov chain of policies
until the chain horizon and then computes the meta-optimization gradients using Equation (4). Then, similar to Mnih et al.
(2016), each thread asynchronously updates the shared meta-agent’s policy and value network parameters.

F. Additional Baseline Details
We train all adaptation methods based on a meta-training set until convergence. We then measure the adaptation performance
on a meta-testing set using the best-learned policy determined by a meta-validation set.

F.1. Meta-PG

We have improved the Meta-PG baseline itself beyond its implementation in the original work (Al-Shedivat et al., 2018) to
further isolate the importance of the peer learning gradient term. Specifically, compared to Al-Shedivat et al. (2018), we
make the following theoretical contributions to build on:

1) Underlying problem statement: Al-Shedivat et al. (2018) bases their problem formulation off that of multi-task /
continual single-agent RL. In contrast, ours is based on a general stochastic game between n agents (Shapley, 1953).

2) A Markov chain of joint policies: Al-Shedivat et al. (2018) treats an evolving peer agent as an external factor, resulting
in the absence of the sequential dependencies between a meta-agent’s current policy and the peer agents’ future policies in
the Markov chain. However, our important insight is that the sequential dependencies exist in general multiagent settings as
the peer agents are also learning agents based on trajectories by interacting with a meta-agent (see Figure 1b).

3) Meta-objective: The meta-objective defined in Al-Shedivat et al. (2018) is based on single-agent settings. In contrast,
our meta-objective is based on general multiagent settings (see Equations (2) and (3)).

4) Meta-optimization gradient: Compared to Al-Shedivat et al. (2018), our meta-optimization gradient inherently
includes the additional term of the peer learning gradient that considers how an agent can directly influence peer’s learning.

5) Importance sampling: Compared to Al-Shedivat et al. (2018), we avoid using the importance sampling during meta-
testing by modifying the meta-value function. Specifically, the framework uses a meta-value function on a pair consecutive
joint policies, denoted V i

φ�:�+1
(s0,φ

i
0), which assumes initializing every φi

� from φi
0. However, as noted in Al-Shedivat et al.

(2018), this assumption requires interacting with the same peers multiple times and is often impossible during meta-testing.



A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning

To address this issue, the framework uses the importance sampling correction during meta-testing. However, the correction
generally suffers from high variance (Wang et al., 2016b). As such, we effectively avoid using the correction by initializing
from φi

0 only once at the beginning of Markov chains for both meta-training and meta-testing.

F.2. LOLA-DiCE

We used an open-source PyTorch implementation for LOLA-DiCE: https://github.com/alexis-jacq/LOLA DiCE. We make
minor changes to the code, such as adding the LSTM policy and value function.

G. Additional Experiment Details
G.1. IPD

We choose to represent the peer agent j’s policy as a tabular representation to effectively construct the population of initial
personas p(φ−i

0 ) for the meta-learning setup. Specifically, the tabular policy has a dimension of 5 that corresponds to the
number of states in IPD. Then, we randomly sample a probability between 0.5 and 1.0 and a probability between 0 and 0.5
at each state to construct the cooperating and defecting population, respectively. As such, the tabular representation enables
us to sample as many as personas but also controllable distribution p(φ−i

0 ) by merely adjusting the probability range. We
sample a total of 480 initial personas, including cooperating personas and defecting personas, and split them into 400 for
meta-training, 40 for meta-validation, and 40 for meta-testing. Figure 7a and Figure 7b visualize in and out of distribution,
respectively, where we used the principal component analysis (PCA) with two components.

(a) (b)
Figure 7. (a) and (b) Visualization of j’s initial policy for in distribution and out of distribution meta-testing, respectively, where the out
of distribution split has a smaller overlap between the policies used for meta-training/validation and those used for meta-testing.

G.2. RPS

In RPS, we follow the same meta-learning setup as in IPD, except we sample a total of 720 initial opponent personas,
including rock, paper, and scissors personas, and split them into 600 for meta-training, 60 for meta-validation, and 60 for
meta-testing. Additionally, because RPS has three possible actions, we sample a rock preference probability between 1/3
and 1 for building the rock persona population, where the rock probability is larger than the other two action probabilities.
We follow the same procedure for constructing the paper and scissors persona population.

G.3. 2-Agent HalfCheetah

Figure 8. Visualization of a teammate j’s
initial expertise in the 2-Agent HalfChee-
tah domain, where the meta-test distribu-
tion has a sufficient difference to meta-
train/val.

We used an open source implementation for multiagent-MuJoCo benchmark:
https://github.com/schroederdewitt/multiagent mujoco. Agents in our experiments
receive state observations that include information about all the joints. For the meta-
learning setup, we pre-train a teammate j with an LSTM policy that has varying
expertise in moving to the left direction. Specifically, we train the teammate up
to 500 train iterations and save a checkpoint at each iteration. Intuitively, as the
number of train iteration increases, the teammate gains more expertise. We then
use the checkpoints from 0 to 300 iterations as the meta-train/val (randomly split
them into 275 for meta-training and 25 for meta-validation) and from 475 and 500
iterations as the meta-test distribution (see Figure 8). We construct the distribution
with the gap to ensure that the meta-testing distribution has a sufficient difference
to the meta-train/val so that we can test the generalization of our approach. As in
IPD and RPS, the teammate j updates its policy based on the policy gradient with
the linear feature baseline.
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H. Analysis on Joint Policy Dynamics
H.1. IPD

Figure 9. Action probability dynamics with Meta-PG in IPD with a cooperating persona peer

Figure 10. Action probability dynamics with LOLA-DiCE in IPD with a cooperating persona peer

Figure 11. Action probability dynamics with REINFORCE in IPD with a cooperating persona peer

Figure 12. Action probability dynamics with Meta-MAPG in IPD with a cooperating persona peer
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H.2. RPS

Figure 13. Action Probability Dynamics with Meta-PG in RPS with a scissors persona opponent

Figure 14. Action Probability Dynamics with LOLA-DiCE in RPS with a scissors persona opponent

Figure 15. Action Probability Dynamics with REINFORCE in RPS with a scissors persona opponent

Figure 16. Action Probability Dynamics with Meta-MAPG in RPS with a scissors persona opponent
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I. Hyperparameter Details
We report our hyperparameter values that we used for each of the methods in our experiments:

I.1. Meta-MAPG and Meta-PG

Hyperparameter Value
Trajectory batch size K 4, 8, 16, 32, 64
Number of parallel threads 5
Actor learning rate (inner) 1.0, 0.1
Actor learning rate (outer) 1e-4
Critic learning rate (outer) 1.5e-4
Episode horizon H 150
Max chain length L 7
GAE λ 0.95
Discount factor γ 0.96

Table 1. IPD

Hyperparameter Value
Trajectory batch size K 64
Number of parallel threads 5
Actor learning rate (inner) 0.01
Actor learning rate (outer) 1e-5
Critic learning rate (outer) 1.5e-5
Episode horizon H 150
Max chain length L 7
GAE λ 0.95
Discount factor γ 0.90

Table 2. RPS

Hyperparameter Value
Trajectory batch size K 64
Number of parallel threads 5
Actor learning rate (inner) 0.005
Actor learning rate (outer) 5e-5
Critic learning rate (outer) 5.5e-5
Episode horizon H 200
Max chain length L 2
GAE λ 0.95
Discount factor γ 0.95

Table 3. 2-Agent HalfCheetah
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I.2. LOLA-DiCE

Hyperparameter Value
Trajectory batch size K 4, 8, 16, 32, 64
Actor learning rate 1.0, 0.1
Critic learning rate 1.5e-3
Episode horizon H 150
Max chain length L 7
Number of Look-Ahead 1, 3, 5
Discount factor γ 0.96

Table 4. IPD

Hyperparameter Value
Trajectory batch size K 64
Actor learning rate 0.01
Critic learning rate 1.5e-5
Episode horizon H 150
Max chain length L 7
Number of Look-Ahead 1
Discount factor γ 0.90

Table 5. RPS

Hyperparameter Value
Trajectory batch size K 64
Actor learning rate 0.005
Critic learning rate 5.5e-5
Episode horizon H 200
Max chain length L 2
Number of Look-Ahead 1
Discount factor γ 0.95

Table 6. 2-Agent HalfCheetah

I.3. REINFORCE

Hyperparameter Value
Trajectory batch size K 4, 8, 16, 32, 64
Actor learning rate 1.0, 0.1
Episode horizon H 150
Max chain length L 7
Discount factor γ 0.96

Table 7. IPD

Hyperparameter Value
Trajectory batch size K 64
Actor learning rate 0.01
Episode horizon H 150
Max chain length L 7
Discount factor γ 0.90

Table 8. RPS
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Hyperparameter Value
Trajectory batch size K 64
Actor learning rate 0.005
Episode horizon H 200
Max chain length L 2
Discount factor γ 0.95

Table 9. 2-Agent HalfCheetah


