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Abstract
Lipschitz constants of neural networks have been
explored in various contexts in deep learning,
such as provable adversarial robustness, estimat-
ing Wasserstein distance, stabilising training of
GANs, and formulating invertible neural net-
works. Such works have focused on bounding
the Lipschitz constant of fully connected or con-
volutional networks, composed of linear maps
and pointwise non-linearities. In this paper, we
investigate the Lipschitz constant of self-attention,
a non-linear neural network module widely used
in sequence modelling. We prove that the stan-
dard dot-product self-attention is not Lipschitz
for unbounded input domain, and propose an al-
ternative L2 self-attention that is Lipschitz. We
derive an upper bound on the Lipschitz constant of
L2 self-attention and provide empirical evidence
for its asymptotic tightness. To demonstrate the
practical relevance of our theoretical work, we
formulate invertible self-attention and use it in
a Transformer-based architecture for a character-
level language modelling task.

1. Introduction
Lipschitz continuity is a strong form of continuity for func-
tions. Loosely speaking, a function is Lipschitz continuous
if changing its input by a certain amount cannot change
its output by more than K times that amount. The con-
stant K is a hard constraint on how rapidly the function’s
output can vary, and the smallest such K is known as the
function’s Lipschitz constant. For example, f1(x) =

√
|x|

and f2(x) = exp(x) for x ∈ R are not Lipschitz contin-
uous, because their output can change arbitrarily fast as
x approaches 0 and +∞ respectively. On the other hand,
g1(x) = tanh(x) and g2(x) = αx are Lipschitz continuous,
because their rate of change (derivative) is bounded.

In deep learning, we often use Lipschitz continuity as a
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constraint for neural networks, to control how much a net-
work’s output can change relative to its input. Such Lips-
chitz constraints are useful in several contexts. For example,
Lipschitz constraints can endow models with provable ro-
bustness against adversarial pertubations (Cisse et al., 2017;
Tsuzuku et al., 2018; Anil et al., 2019), and guaranteed gen-
eralisation bounds (Sokolić et al., 2017). Moreover, the dual
form of the Wasserstein distance is defined as a supremum
over Lipschitz functions with a given Lipschitz constant,
hence Lipschitz-constrained networks are used for estimat-
ing Wasserstein distances (Peyré & Cuturi, 2019). Further,
Lipschitz-constrained networks can stabilise training for
GANs, an example being spectral normalisation (Miyato
et al., 2018). Finally, Lipschitz-constrained networks are
also used to construct invertible models and normalising
flows. For example, Lipschitz-constrained networks can be
used as a building block for invertible residual networks and
hence flow-based generative models (Behrmann et al., 2019;
Chen et al., 2019). Additionally, Neural ODEs (Chen et al.,
2018; Grathwohl et al., 2019) are typically defined using
vector fields parameterized via Lipschitz networks, so that
the flow generated by the vector field is guaranteed to exist
for all times.

Nonetheless, designing Lipschitz-continuous neural net-
works and computing (or even upper-bounding) their Lip-
schitz constant is a hard problem. Previous work mostly
focused on fully-connected and convolutional networks, not
only because they are common in deep learning, but also be-
cause they are relatively simple to analyze, as compositions
of linear maps and pointwise non-linearities. Even in this
case however, exact evaluation of the Lipschitz constant of
fully-connected and convolutional networks is NP-hard (Vir-
maux & Scaman, 2018) and obtaining a tight upper bound
remains a challenging task (Virmaux & Scaman, 2018; Fa-
zlyab et al., 2019; Latorre et al., 2020).

Fully-connected and convolutional networks are not the
only neural networks worthy of interest. Recently, self-
attention (Vaswani et al., 2017) has become a popular
alternative to recurrent neural networks. Self-attention
is a key component of the Transformer (Vaswani et al.,
2017), that has found success as a building block in models
of various data modalities, starting with natural-language
processing (Vaswani et al., 2017; Devlin et al., 2019;
Brown et al., 2020) and extending to computer vision



The Lipschitz Constant of Self-Attention

(Zhang et al., 2019; Parmar et al., 2019), audio generation
(Huang et al., 2019), and reinforcement learning (Parisotto
et al., 2020). However, so far no previous work has anal-
ysed the Lipschitz properties of self-attention, and thus it
has been unclear whether self-attention is a viable option
in applications that require Lipschitz constraints. In this
work, we address this gap in the theory of self-attention by
providing a thorough analysis of its Lipschitz properties. In
particular, we make the following contributions:

• We prove that the widely used dot-product self-attention
is not Lipschitz, and therefore not suitable to use in appli-
cations requiring Lipschitz constraints.

• We formulate L2 self-attention as an alternative, and show
that it is Lipschitz.

• We derive a theoretical upper bound on the Lipschitz con-
stant of L2 self-attention, and provide empirical evidence
of the asymptotic tightness of the bound.

• As a practical demonstration of the theory, we use this
bound to formulate invertible self-attention, and explore
its use in a Transformer architecture for character-level
language modelling. We compare its test log-likelihood
and stability to dot-product self-attention.

2. Lipschitz Constant of
Fully-Connected/Convolutional Layers

We first define the notion of Lipschitz continuity, and pro-
ceed to define the Lipschitz constant.

Definition 2.1. Given two metric spaces (X , dX ) and
(Y, dY), a function f : X → Y is called Lipschitz con-
tinuous (or K-Lipschitz) if there exists a constant K ≥ 0
such that

dY(f(x), f(x
′)) ≤ KdX (x,x′) for all x,x′ ∈ X . (1)

The smallest such K is the Lipschitz constant of f , denoted
Lip(f).

In this paper, we focus on the common case where X =
Rn, Y = Rm, and dX , dY are induced by a p-norm
‖x‖p := (

∑
i |xi|p)1/p. We will primarily consider the

cases p = 2 and p = ∞, where ‖x‖∞ := maxi |xi|. To
emphasise the dependence of the Lipschitz constant on the
choice of p-norm, we will often denote it by Lipp(f). In
this case, it follows directly from Definition 2.1 that the
Lipschitz constant is given by

Lipp(f) = sup
x6=x′∈Rn

‖f(x)− f(x′)‖p
‖x− x′‖p

. (2)

Next, we outline some basic results that are useful for esti-
mating Lipschitz constants, also covered in related works

(Virmaux & Scaman, 2018; Behrmann et al., 2019). We
describe how these results are used to provide bounds on
the Lipschitz constant of fully-connected networks (FCN)
and convolutional neural networks (CNN), using the fact
that both are compositions of linear maps and pointwise
non-linearities. To begin with, the following theorem sug-
gests a way to bound Lipp(f) for a differentiable Lipschitz
function f :

Theorem 2.1 (Federer, 1969). Let f : Rn → Rm be differ-
entiable and Lipschitz continuous under a choice of p-norm
‖ · ‖p. Let Jf (x) denote its total derivative (Jacobian) at x.
Then Lipp(f) = supx∈Rn ‖Jf (x)‖p where ‖Jf (x)‖p is the
induced operator norm on Jf (x).

Hence if f is a linear map represented by a matrix W then

Lipp(f) = ‖W‖p := sup
‖x‖p=1

‖Wx‖p

=

{
σmax(W ), if p = 2

maxi
∑
j |Wij | if p =∞

where ‖W‖p is the operator norm on matrices induced by
the vector p-norm, and σmax(W ) is the largest singular
value of W . Under this choice of norm, many common
non-linearities (including relu, sigmoid, tanh, elu)
are 1-Lipschitz. ‖W‖2 = σmax(W ) is usually estimated via
power iteration; we provide details on how this is done in
Appendix B.

Since we now know the Lipschitz constants of the compo-
nents of both FCN and CNN, we can bound their Lipschitz
constants by applying the following lemma:

Lemma 2.1 (Federer, 1969). Let g, h be two composable
Lipschitz functions. Then g ◦h is also Lipschitz with Lip(g ◦
h) ≤ Lip(g) Lip(h).

Corollary 2.1. For a fully-connected network (FCN) or a
convolutional neural network (CNN) f = WK ◦ ρK−1 ◦
WK−1 ◦ . . . ◦ ρ1 ◦ W1, we have Lipp(f) ≤

∏
k ‖Wk‖p

under a choice of p-norm with 1-Lipschitz non-linearities
ρk.

The above bound is not necessarily tight; there are various
works that compute tighter bounds for FCN and CNN (e.g.
Virmaux & Scaman, 2018; Fazlyab et al., 2019; Latorre
et al., 2020).

3. Lipschitz Constant of Self-Attention
3.1. Dot-product self-attention is not Lipschitz

Moving on, we investigate whether self-attention is Lips-
chitz. We first consider the widely used (scaled) dot-product
multihead self-attention as formulated by Vaswani et al.
(2017). Let x1, . . . ,xN be a sequence ofN elements, where
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xi ∈ RD for i = 1, . . . , N . We represent this sequence as a
matrix X:

X =

— x>1 —
...

— x>N —

 ∈ RN×D, (3)

Dot-product multihead self-attention (DP-MHA) is a map
from RN×D to RN×D consisting of H ‘heads’, where H
is chosen to divide D. Each head is a map from RN×D to
RN×D/H defined by

DP(X) := softmax

(
XWQ(XWK)>√

D/H

)
XWV

= PXWV ,

where WQ,WK ,WV ∈ RD×D/H are learnable parame-
ters specific to each head, and P ∈ RN×N is the output
of the softmax (we suppress the dependence of P on X
to reduce clutter below). The input to the softmax is an
N ×N matrix of pairwise dot products (hence dot-product
self-attention), and the softmax is applied to each row of
this matrix. Finally, the outputs of all heads are concate-
nated into an N × D matrix and are right multiplied by
WO ∈ RD×D, thus DP-MHA is defined by

MHADP (X) :=
[
DP1(X), . . . ,DPH(X)

]
WO. (4)

In what follows, we will prove that MHA as defined above
is not Lipschitz, assuming that the MHA map is non-trivial,
i.e. WQ,WK ,WV ,WO 6= 0. It is sufficient to show that
a single head DP is not Lipschitz, since MHA is a linear
combination of the outputs of each head. Also note that P
is a stochastic matrix, i.e. its entries are non-negative and
its rows sum to 1. Since the rows of X are the xi’s, a linear
transformation of each xi by some matrix A is equivalent
to right multiplication of X by A>. So right multiplication
of X by WV is a linear map and thus Lipschitz. Therefore,
we are interested in the mapping f(X) = PX; this is not
a linear mapping because P itself is a non-linear function
of X . In fact, we show that f is not Lipschitz, thus proving
the first main result of the paper:
Theorem 3.1. DP-MHA is not Lipschitz for any vector p-
norm ‖ · ‖p with p ∈ [1,∞].

Summary of Proof. We use Theorem 2.1, noting that if the
supremum of the norm of the Jacobian is infinite, then the
mapping is not Lipschitz. In particular, we show that when
xi = 0 for some i, some elements of the Jacobian of f
grow proportionally to the sample variance of x 6=i, which is
unbounded.

Proof. We show the proof for the case D = H = 1
(i.e. X ∈ RN×1, a column vector, and xi ∈ R) for readabil-
ity. See Appendix C for the general case, which follows the
same logic.

The mapping f can be written as

f(X) = PX =softmax
(
aXX>

)
X =

 f1(X)
...

fN (X)

 ∈ RN×1,

where fi(X) =

N∑
j=1

Pijxj ∈ R

and a = WKWQ ∈ R (we assume a 6= 0 such that self-
attention is non-trivial). Hence f can be interpreted as a
map of each xi to a point in the convex hull of x1, ..., xN .
Since f is a map from RN×1 to RN×1, its Jacobian is

Jf =

J11 . . . J1N
...

. . .
...

JN1 . . . JNN

 ∈ RN×N , (5)

where Jij =
∂fi(X)
∂xj

∈ R. By taking partial derivatives we
can show that

Jij = aX>P (i) [EjiX + δijX] + PijI

where

• Eij ∈ RN×N is a binary matrix with zeros everywhere
except the (i, j)th entry

• δij ∈ {0, 1} is the Kronecker delta

• P (i) := diag(Pi:)− P>i: Pi: ∈ RN×N .

See Appendix A for useful identities in deriving the above
Jacobian.

So for i = j:

Jii = aX>P (i)eiiX + aX>P (i)X + Pii (6)

Let us investigate the scalar X>P (i)X . We observe that it
is in fact a variance of a discrete distribution. Specifically:

X>P (i)X =
∑
k Pikx

2
k − (

∑
k Pikxk)

2
= Var(X), (7)

where X is a discrete distribution with support at the inputs
{x1, . . . , xN} and probability mass function given by their
softmax probabilities P(X = xj) = Pij . A consequence of
this interpretation is that P (i) is positive semi-definite (PSD)
since X>P (i)X = Var(X) ≥ 0, with equality if and only
if the xj are all equal.

We use this observation to show that Jii is unbounded, and
so ‖Jf‖p is unbounded, hence DP-MHA is not Lipschitz.
Consider the case xi = 0. Then

P>i: = softmax (XAxi) =
1

N
1,
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i.e. we have uniform attention regardless of x 6=i. The
first term of Jii in Equation (6) disappears since eiiX =
[0, . . . , xi, . . . , 0] = 0, and the last term becomes 1

N I . Now
consider the second term aX>P (i)X = aVar(Xl). Note X
is uniformly distributed, since P(X = xj) = Pij = 1/N .
Hence the second term is equal to a times the sample vari-
ance of x1, . . . , xN , which can be arbitrarily large. Hence
Jii can become arbitrarily large, so the full Jacobian Jf is
unbounded.

High-level intuition for proof. At xi = 0, fi(X) =
1
N

∑
k xk, the mean of the inputs. The rate of change of fi

is governed by how fast the softmax saturates when xi is
perturbed, which is determined by how spread out the x6=i
are. The more spread out they are (the higher the sample
variance), the greater the rate of saturation of the softmax,
and the faster the rate of change of fi. Since the sample
variance of x 6=i can be arbitrarily large, the rate of change
of fi can also be arbitrarily large, i.e. the entries of the Jaco-
bian (and hence its p-norm) can become arbitrarily large. In
Appendix D, we show that adding bias terms to x>i W

Q and
x>j W

K does not resolve the issue.

The implications of this result are the following. (1) There
can be undesirable behaviour (e.g. training instabilities) for
the Transformer when some inputs are close to zero and
others have large magnitude. (2) Dot-product self-attention
(and hence the standard Transformer) is not a suitable choice
when we require a Lipschitz neural network, such as for
formulating invertible residual networks (Behrmann et al.,
2019). Therefore, to use self-attention and Transformers in
such applications, a Lipschitz formulation of self-attention
is required, together with an explicit (ideally tight) upper
bound to its Lipschitz constant, to quantify how much the
output can change with respect to changes in the input.

One method to make dot-product self-attention Lipschitz is
by ensuring its inputs are bounded. Indeed, if the input space
is compact, e.g. [0, 1]N×D, any continuously differentiable
function is Lipschitz, including dot-product self-attention.
However, as we further discuss in Section 6, such an ap-
proach has its own challenges, since it makes the Lipschitz
constant depend on the input range. Instead, in the next sec-
tion we formulate a version of self-attention that is provably
Lipschitz on all of RN×D, allowing us to derive an upper
bound that holds for any subset of RN×D.

3.2. L2 self-attention: a Lipschitz formulation of
self-attention

The pathology in dot-product self-attention arises because
the softmax probabilities Pi: are constant with respect to
x 6=i when xi = 0. This behaviour can be undesirable as
we want Pij to vary according to xj , regardless of whether
xi is zero or not. Hence we propose an alternative form of

self-attention based on L2 distance:

Pij ∝ exp(Lij) := exp

(
−
∥∥x>i WQ − x>j W

K
∥∥2
2√

D/H

)
,

(8)

with the normalisation constant ensuring that
∑
j Pij = 1.

We will refer to it as L2 self-attention. It is reminiscent
of the standard squared-exponential kernel, but with soft-
max normalisation that ensures that each row of the kernel
matrix sums to 1. Normalisation is usually necessary to
deal with inputs of varying length N (Wang et al., 2018),
hence we keep the softmax for L2 self-attention. Similarly
to dot-product self-attention, L2 self-attention can be com-
puted efficiently with matrix operations; see Appendix E for
details, with a comparison of wall-clock runtimes between
different choices of attention.

We first state the mathematical formulation of L2 multihead
self-attention (L2-MHA) before proving the main result —
the upper bound of its Lipschitz constant with respect to ‖·‖p
for p = 2,∞. The full L2-MHA map F : RN×D → RN×D
is defined as

F (X) :=
[
f1(X)WV,1, . . . , fH(X)WV,H

]
WO

where fh(X) := PhXAh.

In the above, WV,h ∈ RD×D/H , WO ∈ RD×D, Ph is de-
fined as in Equation (8) with WQ,h = WK,h ∈ RD×D/H ,
and Ah := WQ,hWQ,h>

/
√
D/H ∈ RD×D. There are

two changes from the usual form of multihead self-attention:

(1) We require WQ,h =WK,h for each head fh(X) to be
Lipschitz. In Lemma F.1 of Appendix F we show that
L2-MHA is not Lipschitz for arbitrary WQ,h, WK,h,
and that tying WQ,h =WK,h is sufficient for L2-MHA
to be Lipschitz, with intuition for why tying is sufficient.

(2) In each head of the self-attention fh(X), right mul-
tiplication by Ah has been included for the theorem
below to hold (details are in the proof). In practice,
there is little harm done by this extra linear transfor-
mation, since when the heads are combined together in
F , each fh(X) is additionally transformed by WV,h, a
free parameter.

The second main result of the paper is the following:

Theorem 3.2. L2-MHA is Lipschitz, with the following
bound on Lip∞(F ):

Lip∞(F ) ≤

(
4φ−1(N − 1) +

1√
D/H

)
‖WO>

‖∞

max
h
‖WQ,h‖∞‖WQ,h>

‖∞max
h
‖WV,h>

‖∞
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and the following bound on Lip2(F ):

Lip2(F ) ≤
√
N√
D/H

(
4φ−1(N − 1) + 1

)
(√∑

h ‖WQ,h‖22 ‖WV,h‖22
)
‖WO‖2

where φ(x) := x exp(x + 1) is an invertible univariate
function on x > 0, and N is the input sequence length.

Specifically, φ−1(N − 1) = W0(
N
e ) where W0 is the

Lambert W -function, which grows sub-logarithmically as
O(logN − log logN) (Corless et al., 1996). Hence the
above bounds can be simplified to O(logN) for p =∞ and
O(
√
N logN) for p = 2.

Proof. See Appendix F, which uses the key observation
that X>P (i)X is a covariance matrix (c.f. Equation (7))
to bound ‖JF ‖p, the norm of the Jacobian of F . Ap-
pendix G shows how the argument can be modified to prove
the analogous result for the case with masking in the self-
attention.

These bounds are complemented by the concurrent work
of Vuckovic et al. (2020), which provides a O(

√
D logN)

bound on Lip1(F ) using measure-theoretic tools.

4. Application: Invertible Self-Attention
4.1. Invertible residual network

Consider the residual function g(x) := x+f(x). Behrmann
et al. (2019) give the following sufficient condition for its
invertibility: if f is a contraction with respect to some
metric, i.e. if Lip(f) < 1, and the metric space on which
f is defined is complete, then g is invertible. (A Eu-
clidean space with a metric induced by a p-norm ‖ · ‖p
for p ∈ [1,∞] is always complete.) Specifically, the in-
verse g−1(y) is the unique fixed point of the recursion
xi+1 := y− f(xi), since by the definition of the inverse we
have y = g−1(y) + f(g−1(y)). Because f is a contraction,
Banach’s Fixed Point Theorem guarantees that this fixed
point exists and is unique for all y, and that the recursion
converges for all initial values x0 (often set to y in practice)
exponentially fast. Hence the inverse can be computed to
arbitrary accuracy (up to numerical precision in practice) by
the above fixed-point iteration.

Note that a composition of such invertible residual blocks
is also invertible. Behrmann et al. (2019) use this observa-
tion to design invertible ResNets: they take f to be a CNN
normalised by an upper bound on Lip(f) given by Corol-
lary 2.1, making the resulting function contractive. For the
2-norm ‖ · ‖2, a hyperparameter c < 1 is chosen and each
linear map (convolution) W in the CNN is multiplied by

c/‖W‖2 if c < ‖W‖2 where ‖W‖2 is estimated by power
iteration (c.f. Appendix B). This multiplicative factor deter-
mines the scale of the Lipschitz constant of the normalised
function.

4.2. Invertible self-attention

LayerNorm

Input

MHA

Dropout

LayerNorm

FCN

Dropout

Output

Figure 1. Transformer
block.

The standard use case of
self-attention is with a skip
connection inside the Trans-
former. A Transformer block
is composed of residual blocks
of multihead self-attention
(MHA) and fully-connected
(FCN) layers (Figure 1).
Hence similarly to invertible
ResNets, we can normalise
L2-MHA by the upper bounds
given in Theorem 3.2 to obtain
Contractive-L2-MHA
f , with which we can ob-
tain invertible self-attention
g(x) = x + f(x). Since
Dropout is also part of the
residual branch along with
Contractive-L2-MHA,
we should check that it is
also contractive. At test
time, Dropout multiplies
inputs by the dropout keep
probability p < 1, so it is a
contraction with Lipschitz
constant p at evaluation time.
At training time, Dropout
amounts to setting some inputs to zero, while keeping
other inputs constant. This can be expressed as right
multiplication by a diagonal binary matrix M , and for such
matrices we can verify ‖M‖p := sup‖x‖p=1 ‖Mx‖p ≤ 1.
Notice that LayerNorm is not part of the residual branch,
hence its Lipschitz continuity is not relevant for invertibility;
rather, we can replace it with an invertible normalisation
such as ActNorm (Kingma & Dhariwal, 2018). However,
architectures that place LayerNorm inside the residual
branch (termed pre-LN as opposed to the traditional
post-LN in Figure 1) have become more prevalent in the
literature (Wang et al., 2019; Xiong et al., 2020), and in this
case it makes sense to investigate its Lipschitz continuity.
We show that LayerNorm is Lipschitz in Appendix N,
with a bound on its Lipschitz constant.

In the next section, we investigate the properties of in-
vertible self-attention and how it compares with the stan-
dard dot-product self-attention; we replace DP-MHA in the
Transformer with Contractive-L2-MHA, hence replac-
ing the residual self-attention module with invertible self-
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attention. We are not interested in the modified Transformer
per se, but rather in comparing the properties of invertible
self-attention to standard self-attention — we only use the
Transformer as a testbed for this purpose, since self-attention
is commonly used in a Transformer. Given the theoretical
focus of the paper, we believe that a more challenging ap-
plication of invertible self-attention, such as normalising
flow-based modelling, would be more suitable as a separate
paper focused on that particular application.

5. Experimental Results
5.1. Asymptotic tightness of the upper bound on

Lip∞(F )

100 200 500 1000
N

4
6
8

10
12
14
16
18
20

UB

LB: top 1 out of 50 random init

LB: top 5 out of 50 random init

Figure 2. Lower and upper bound on Lip∞(f) for L2-MHA f ,
with H = D = 1 and varying N .

A tight bound on the Lipschitz constant of self-attention is
desirable for all listed applications in Section 1; it leads to
tighter generalisation bounds, lighter constraints for prov-
able robustness, and better expressiveness in residual flow
models. Hence we investigate the tightness of our bound
on the Lipschitz constant of L2-MHA. The Lipschitz con-
stant is a supremum over the space of inputs X ∈ RN×D
(c.f. Equation (2)) and approximating it requires solving
an intractable optimisation problem. Hence it is infeasi-
ble to estimate accurately in general, especially when X
is high-dimensional. However, we may compute a lower
bound on the Lipschitz constant by maximising the norm of
the Jacobian ‖Jf (X)‖ with respect to X until convergence.
This local optimum will form a lower bound by Theorem
2.1, and we can expect this lower bound to be fairly tight
for the low-dimensional case, provided the optimisation is
thorough.

We use this observation to provide empirical evidence for
the asymptotic tightness of the upper bound on Lip∞(f)
in Theorem 3.2. In Figure 2, we show the upper bound as
well as the lower bound on Lip∞(f) obtained by optimis-
ing ‖Jf (X)‖∞ with respect to X for L2-MHA f with 50
different random initialisations of X , with H = D = 1
and N varying between 100 and 1000. See Appendix H for
further details. Note that we use a log-scale for the x-axis,

and recall that the upper bound is O(logN − log logN),
dominated by the O(logN) term for large N . Hence the
plot for the upper bound shows a linear trend. We also
observe that the slope of the lower bound is very similar,
providing empirical evidence that the O(logN − log logN)
upper bound is asymptotically tight.

There are at least two possible explanations for the gap be-
tween the upper and lower bounds. (1) The lower bound
is only a local optimum — the true Lipschitz constant is
a global optimum across inputs, which can be difficult to
attain especially for high values of N . (2) The multiplica-
tive constant of the upper bound may be loose. Assuming
asymptotic tightness, it remains an open question whether
the multiplicative constant can be tightened. We show the
analogous plot for Lip2(F ) and discuss the results in Ap-
pendix J. Additionally in Appendix K, we show that opti-
mising ‖Jf (X)‖∞ w.r.t. X for DP-MHA f causes the norm
to diverge, providing empirical verification of Theorem 3.1,
that DP-MHA is indeed not Lipschitz.

5.2. Numerical invertibility of MHA residual map
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c = 0.90
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Figure 3. Invertibility of g(x) = x+ cf(x) where f is L2-MHA
(left) and DP-MHA (right).

Recall from Section 4.1 that g(x) = x+ f(x) is invertible
if f is contractive. Hence if f is Contractive-L2-MHA,
g is necessarily invertible. However, technically we do not
disprove the invertibility of DP-MHA, since the converse
does not hold in general i.e. if f is DP-MHA, which we have
shown is not Lipschitz hence not contractive, it may still be
the case that g is invertible. To verify that DP-MHA (with the
skip connection) is not invertible in practice, we compare the
numerical invertibility of the residual map g(x) = x+cf(x)
between the cases where f is L2-MHA and DP-MHA in Fig-
ure 3. For each, we take MHA with 8 heads and randomly
initialised weights, and quantify the maximum reconstruc-
tion error across a batch of 128 inputs whose outputs are
inverted via the fixed-point iteration described in Section
4.1. We use N = 64, D = 64, and c ∈ {0.5, 0.7, 0.9} (see
Appendix I for analogous results for a wider range of N
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Figure 4. Test NLL curves during training for various LSTM/Transformer models on PTB character level language modelling.

and D and for DP-MHA with trained weights). To highlight
the difference between the two types of self-attention, recall
in the proof of Theorem 3.1 (showing that DP-MHA is not
Lipschitz) that when one of the inputs xi is 0, some terms of
the Jacobian grow with the sample variance of x 6=i. Hence
we check numerical invertibility at a set of N inputs where
xi = 0 and x 6=i are chosen uniformly at random.

In Figure 3, we see that DP-MHA is not invertible whereas
L2-MHA is invertible for sufficiently small c. This shows
how not having the theoretical guarantee of f being con-
tractive can cost us invertibility in practice. We note that
the figure shows local invertibility at the sampled inputs,
as opposed to global invertibility across the whole input
space, yet this clearly highlights the difference between the
two choices of self-attention. Experiments with the globally
invertible self-attention obtained by normalising with the
Lipschitz upper bound are provided in the next section.

5.3. Expressiveness of L2-MHA and invertible
self-attention

A natural question to ask is: how does the expressiveness
of L2-MHA and Contractive-L2-MHA (that leads to
invertible self-attention with the skip connection) compare
with the original DP-MHA? We expect that the Lipschitz
constraint will limit the expressiveness of the Transformer,
and would like to find out by how much. We investigate this
by comparing the performance of the original Transformer
and the Transformer with invertible self-attention (c.f. Fig-
ure 1) at character-level language modelling on the Penn
Treebank dataset (Marcus et al., 1993). We compare the test
negative log-likelihood (NLL) of a baseline LSTM, the orig-
inal Transformer (DP-MHA), and a series of models between
the original Transformer and the Transformer with invert-
ible self-attention (Contractive-L2-MHA), making one
change at a time and tuning the hyperparameters on a val-
idation set. For Contractive-L2-MHA, we normalise
F =L2-MHA by the bound on Lip∞(F ) as it is tighter than

the bound on Lip2(F ). During training we backpropagate
through these contractive blocks F/Lip∞(F ) (including
the denominator) to update the model parameters. We found
that only backpropagating through the numerator (i.e. apply-
ing stop-gradient to denominator) gave slightly worse
performance. See Appendix H for experimental details.

The results are shown in Figure 4. The first plot shows
the best performing LSTM reaching a test NLL of around
1.0, and the second plot shows the best performing Trans-
former reaching a slightly improved performance for 3–
5 layers of Transformer blocks. We observe instabili-
ties in training for a higher number of layers, requiring
careful tuning of the learning rate schedule for stability
at the cost of performance, a commonly observed phe-
nomenon in the literature of deep Transformer architec-
tures (Bapna et al., 2018; Parisotto et al., 2020). The third
plot shows results for the Transformer with DP-MHA re-
placed with L2-MHA but without tying WQ and WK , and
we observe a very similar test performance. The fourth plot
shows the change when we further tie the query and key
weights (making WQ =WK); we see that there is a small
degradation in performance. Here the number of trainable
parameters has been reduced, but in Appendix L we show
that matching parameter count does not help performance,
suggesting that the reduction in performance when tying
queries and keys is not solely due to having fewer parame-
ters. We note that performance saturates at around 5 layers
for each Transformer model so far. On the rightmost plot
we show results when further dividing self-attention in each
block by the upper bound on Lip∞(F ), to obtain invertible
self-attention. This does give reduced performance for the
same number of layers, but we can attain similar perfor-
mance with more layers, no longer saturating at 5 layers.

Thus we conclude the following. (1) Replacing the dot-
product with the L2 distance incurs hardly any loss in ex-
pressiveness. (2) Tying the query and key weights to obtain
Lipschitz self-attention incurs a small loss in expressiveness.



The Lipschitz Constant of Self-Attention

Number of Layers 2 4 6 8 10 12 14 16 18
Transformer (DP) 1.061 1.032 1.021 1.017 1.025 - - - -

Transformer (L2), WQ =WK 1.168 1.040 1.023 1.024 1.019 1.008 1.018 1.027 1.034
Transformer (Contractive-L2) 1.246 1.135 1.103 1.079 1.072 1.060 1.039 1.029 1.031

Table 1. Test NLL for Transformer models trained with fixed learning rate on PTB character level language modelling.

(3) Dividing by the upper bound on Lip∞(F ) to obtain
invertible self-attention incurs a noticeable loss in expres-
siveness, but also has a stabilising effect on the optimisation
of the Transformer, thus allowing one to compensate for the
apparent loss in expressiveness by increasing the number of
layers.

5.4. Training Stability of DP-MHA vs L2-MHA

In Figure 5, we compare the output variance of trained
L2-MHA against trained DP-MHA, with weights from the
one-layer Transformer (L2), WQ = WK model and (DP)
model used for Figure 4 respectively. We take the same
distribution of inputs as used for the numerical invertibility
experiment in Section 5.2, and show the histogram of inputs
and outputs after flattening the input/output tensors. We
see that the range of outputs remains similar to the range
of inputs for Lipschitz L2-MHA, whereas for DP-MHA the
outputs have a much wider range, because the Jacobian
norm is large for DP-MHA at these inputs.
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Figure 5. Histogram showing distribution of inputs/outputs of
trained L2-MHA and DP-MHA

In practice, this leads to instabilities in training for DP-MHA,
hence requiring careful tuning of the learning rate schedule
for training deeper Transformer models: linear warmup and
square root decay, as detailed in Appendix H. We investigate
the behaviour of the different Transformer models on the
above PTB task when using a fixed learning rate. We
observe that DP-MHA fails to train at all beyond 10 layers,
whereas both L2-MHA (WQ = WK) (i.e. Lipschitz L2-
MHA but not contractive) and Contractive-L2-MHA
shows stable training for up to 18 layers (see Appendix M
for the training curves). This was the deepest model we
could fit on a single GPU, and we expect to be able to train
even deeper models with these two. In Table 1 we show the
best Test NLL across training for each of the Transformer
models. Note that for DP-MHA training becomes unstable
beyond 10 layers, so we are only able to provide results up

to 10 layers. The generalisation performance of the best
model for each setting of self-attention is similar.

6. Conclusion and Discussion
We have shown that the widely used dot-product self-
attention is not Lipschitz, and that the proposed L2 self-
attention is Lipschitz, by deriving an O(logN − log logN)
Lipschitz bound for p = ∞ and an O(

√
N(logN −

log logN)) bound for p = 2, where N is the input se-
quence length. We also provided empirical evidence of the
asymptotic tightness of the bound for p =∞. We demon-
strated that Lipschitz-constrained self-attention can be used
to formulate invertible self-attention, which we experimen-
tally evaluated on a character-level language modelling task.
And finally, we also showed that L2-MHA is more stable
during training, allowing the use of fixed learning rate for
stable training of deep architectures.

Our approach to Lipschitz self-attention has been to re-
place the dot-product kernel with an L2 kernel. An alterna-
tive would be to constrain the inputs of self-attention to be
bounded; if the input space is compact, e.g. [0, 1]N×D, any
continuously differentiable function is Lipschitz, including
dot-product self-attention. However, while being simple to
implement, this solution has its own difficulties. First, it
makes the Lipschitz constant depend on the range of the
input, and thus obtaining a tight bound would require non-
trivial mathematical work. We stress that a guarantee that
the function is Lipschitz does not tell us anything about
its Lipschitz constant; without a tight Lipschitz bound, the
true Lipschitz constant can be very large, at which point it
is unhelpful that the function is Lipschitz. Second, since
self-attention is typically applied at multiple layers within
a model (e.g. Transformer), the input to each self-attention
will live in a different compact set that depends on the pa-
rameters of the previous layers, complicating the analysis
for subsequent layers. A solution is to constrain the inputs
of each layer to be in the same compact set, e.g. by passing
them through a sigmoid non-linearity. This however can
have undesirable side effects such as vanishing gradients
when the sigmoids are saturated. Despite these difficulties,
this could be a worthwhile alternative route for obtaining
Lipschitz self-attention to explore in the future.

Having a provably Lipschitz self-attention module at our
disposal makes it possible to use Transformer-based ar-
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chitectures in applications requiring Lipschitz constraints,
while enjoying theoretical guarantees. A natural appli-
cation of Lipschitz self-attention is for residual flows
(Behrmann et al., 2019), and for parameterising Neural
ODEs (Chen et al., 2018) where a Lipschitz vector field
guarantees the existence of a unique solution to the ODE for
all times. These models can be used for density estimation
and generative modelling of sets. Another interesting direc-
tion for future work would be to analyse different variants
of self-attention based on kernels other than dot-product and
L2, as (Tsai et al., 2019) do from an experimental perspec-
tive, for which we believe the mathematical tools developed
in this paper may aid the analysis.
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