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Abstract

Normalizing flows are among the most popular
paradigms in generative modeling, especially for
images, primarily because we can efficiently eval-
uate the likelihood of a data point. This is desir-
able both for evaluating the fit of a model, and
for ease of training, as maximizing the likelihood
can be done by gradient descent. However, train-
ing normalizing flows comes with difficulties as
well: models which produce good samples typi-
cally need to be extremely deep – which comes
with accompanying vanishing/exploding gradi-
ent problems. A very related problem is that
they are often poorly conditioned: since they are
parametrized as invertible maps from Rd → Rd,
and typical training data like images intuitively is
lower-dimensional, the learned maps often have
Jacobians that are close to being singular.

In our paper, we tackle representational aspects
around depth and conditioning of normalizing
flows: both for general invertible architectures,
and for a particular common architecture, affine
couplings. We prove that Θ(1) affine coupling
layers suffice to exactly represent a permutation or
1×1 convolution, as used in GLOW, showing that
representationally the choice of partition is not a
bottleneck for depth. We also show that shallow
affine coupling networks are universal approxima-
tors in Wasserstein distance if ill-conditioning is
allowed, and experimentally investigate related
phenomena involving padding. Finally, we show
a depth lower bound for general flow architectures
with few neurons per layer and bounded Lipschitz
constant.
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1. Introduction
Deep generative models are one of the lynchpins of unsu-
pervised learning, underlying tasks spanning distribution
learning, feature extraction and transfer learning. Paramet-
ric families of neural-network based models have been im-
proved to the point of being able to model complex distri-
butions like images of human faces. One paradigm that
has received a lot attention is normalizing flows, which
model distributions as pushforwards of a standard Gaussian
(or other simple distribution) through an invertible neural
network G. Thus, the likelihood has an explicit form via
the change of variables formula using the Jacobian of G.
Training normalizing flows is challenging due to a couple
of main issues. Empirically, these models seem to require a
much larger size than other generative models (e.g. GANs)
and most notably, a much larger depth. This makes training
challenging due to vanishing/exploding gradients. A very
related problem is conditioning, more precisely the smallest
singular value of the forward map G. It’s intuitively clear
that natural images will have a low-dimensional structure,
thus a close-to-singular G might be needed. On the other
hand, the change-of-variables formula involves the determi-
nant of the Jacobian of G−1, which grows larger the more
singular G is.

While recently, the universal approximation power of vari-
ous types of invertible architectures has been studied if the
input is padded with a sufficiently large number of all-0
coordinates (Dupont et al., 2019; Huang et al., 2020) or
arbitrary partitions and permutations are allowed (Teshima
et al., 2020), precise quantification of the cost of invertibility
in terms of the depth required and the conditioning of the
model has not been fleshed out.

In this paper, we study both mathematically and empirically
representational aspects of depth and conditioning in nor-
malizing flows and answer several fundamental questions.

2. Related Work
On the empirical side, flow models were first popularized by
(Dinh et al., 2014), who introduce the NICE model and the
idea of parametrizing a distribution as a sequence of trans-
formations with triangular Jacobians, so that maximum like-
lihood training is tractable. Quickly thereafter, (Dinh et al.,
2016) improved the affine coupling block architecture they
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introduced to allow non-volume-preserving (NVP) transfor-
mations, (Papamakarios et al., 2017) introduced an autore-
gressive version, and finally (Kingma & Dhariwal, 2018)
introduced 1x1 convolutions in the architecture, which they
view as relaxations of permutation matrices—intuitively,
allowing learned partitions for the affine blocks. Subse-
quently, there have been variants on these ideas: (Grathwohl
et al., 2018; Dupont et al., 2019; Behrmann et al., 2018)
viewed these models as discretizations of ODEs and intro-
duced ways to approximate determinants of non-triangular
Jacobians, though these models still don’t scale beyond
datasets the size of CIFAR10. The conditioning/invertibility
of trained models was experimentally studied in (Behrmann
et al., 2019), along with some “adversarial vulnerabilities”
of the conditioning. Mathematically understanding the rela-
tive representational power and statistical/algorithmic impli-
cations thereof for different types of generative models is
still however a very poorly understood and nascent area of
study.

Most closely related to our results are the recent works of
(Huang et al., 2020), (Zhang et al.) and (Teshima et al.,
2020). The first two prove universal approximation results
for invertible architectures (the former affine couplings, the
latter neural ODEs) if the input is allowed to be padded with
zeroes. The latter proves universal approximation when
GLOW-style permutation layers are allowed through a con-
struction that operates on one dimension at a time. This is
very different than how flows are trained in practice, which
is typically with a partition which splits the data roughly in
half. It also requires the architectural modification of GLOW
to work. As we’ll discuss in the following section, our re-
sults prove universal approximation even without padding
and permutations, but we focus on more fine-grained impli-
cations to depth and conditioning of the learned model and
prove universal approximation in a setting that is used in
practice. Another work (Kong & Chaudhuri, 2020) studies
the representational power of Sylvester and Householder
flows, normalizing flow architectures which are quite differ-
ent from affine coupling networks. In particular, they prove
a depth lower bound for local planar flows with bounded
weights; for planar flows, our general Theorem 5 can also
be applied, but the resulting lower bound instances are very
different (ours targets multimodality, theirs targets tail be-
havior).

More generally, there are various classical results that show
a particular family of generative models can closely ap-
proximate most sufficiently regular distributions over some
domain. Some examples are standard results for mixture
models with very mild conditions on the component dis-
tribution (e.g. Gaussians, see (Everitt, 2014)); Restricted
Boltzmann Machines and Deep Belief Networks (Montú-
far et al., 2011; Montufar & Ay, 2011); GANs (Bailey &
Telgarsky, 2018).

3. Overview of Results
3.1. Results About Affine Coupling Architectures

We begin by proving several results for a particularly com-
mon normalizing flow architectures: those based on affine
coupling layers (Dinh et al., 2014; 2016; Kingma & Dhari-
wal, 2018). The appeal of these architecture comes from
training efficiency. Although layerwise invertible neural
networks (i.e. networks for which each layer consists of
an invertible matrix and invertible pointwise nonlinearity)
seem like a natural choice, in practice these models have
several disadvantages: for example, computing the determi-
nant of the Jacobian is expensive unless the weight matrices
are restricted.

Consequently, it’s typical for the transformations in a flow
network to be constrained in a manner that allows for effi-
cient computation of the Jacobian determinant. The most
common building block is an affine coupling block, orig-
inally proposed by (Dinh et al., 2014; 2016). A coupling
block partitions the coordinates [d] into two parts: S and
[d] \ S, for a subset S with |S| containing around half the
coordinates of d. The transformation then has the form:

Definition 1. An affine coupling block is a map f : Rd →
Rd, s.t. . f(xS , x[d]\S) = (xS , x[d]\S � s(xS) + t(xS)),
s(x) > 0,∀x ∈ Rd.

Of course, the modeling power will be severely constrained
if the coordinates in S never change: so typically, flow
models either change the set S in a fixed or learned way
(e.g. alternating between different partitions of the channel
in (Dinh et al., 2016) or applying a learned permutation
in (Kingma & Dhariwal, 2018)). As a permutation is a
discrete object, it is difficult to learn in a differentiable
manner – so (Kingma & Dhariwal, 2018) simply learns
an invertible linear function (i.e. a 1x1 convolution) as
a differentiation-friendly relaxation thereof. In order to
preserve the invertibility of an affine coupling, s is typically
restricted to be strictly positive.

3.1.1. UNIVERSAL APPROXIMATION WITH
ILL-CONDITIONED AFFINE COUPLING
NETWORKS

First, we address universal approximation of normalizing
flows and its close ties to conditioning. Namely, a recent
work (Theorem 1 of (Huang et al., 2020)) showed that deep
affine coupling networks are universal approximators if we
allow the training data to be padded with sufficiently many
zeros. While zero padding is convenient for their analysis
(in fact, similar proofs have appeared for other invertible ar-
chitectures like Augmented Neural ODEs (Zhang et al.)), in
practice models trained on zero-padded data often perform
poorly (see Appendix D). Another work (Teshima et al.,
2020) proves universal approximation with the optional per-
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mutations and |S| = d− 1 needed for the nonconstructive
proof. We remove that requirement in two ways, first by
giving a construction that gives universal approximation
without permutations in 3 composed couplings and second
by showing that the permutations can be simulated by a
constant number of alternating but fixed coupling layers.

First we show that neither padding nor permutations nor
depth is necessary representationally: shallow models with-
out zero padding are already universal approximators in
Wasserstein.

Theorem 1 (Universal approximation without padding).
Suppose that P is the standard Gaussian measure in Rn with
n even and Q is a distribution on Rn with bounded support
and absolutely continuous with respect to the Lebesgue mea-
sure. Then for any ε > 0, there exists a network g consisting
of 3 alternating affine couplings, with maps s, t represented
by feedforward ReLU networks such that W2(g#P,Q) ≤ ε.

Remark 1. A shared caveat of the universality construction
in Theorem 1 with the construction in (Huang et al., 2020) is
that the resulting network is poorly conditioned. In the case
of the construction in (Huang et al., 2020), this is obvious
because they pad the d-dimensional training data with d ad-
ditional zeros, and a network that takes as input a Gaussian
distribution in R2d (i.e. has full support) and outputs data
on d-dimensional manifold (the space of zero padded data)
must have a singular Jacobian almost everywhere.1 In the
case of Theorem 1, the condition number of the network
blows up at least as quickly as 1/ε as we take the approxi-
mation error ε→ 0, so this network is also ill-conditioned
if we are aiming for a very accurate approximation.

Remark 2. Based on Theorem 3, the condition number
blowup of either the Jacobian or the Hessian is necessary for
a shallow model to be universal, even when approximating
well-conditioned linear maps (see Remark 6). The network
constructed in Theorem 1 is also consistent with the lower
bound from Theorem 5, because the network we construct
in Theorem 1 has a large Lipschitz constant and uses many
parameters per layer.

3.1.2. THE EFFECT OF CHOICE OF PARTITION ON DEPTH

Next, we ask how much of a saving in terms of the depth
of the network can one hope to gain from using learned
partitions (ala GLOW) as compared to a fixed partition.
More precisely:

Question 1: Can models like Glow (Kingma & Dhariwal,
2018) be simulated by a sequence of affine blocks with a
fixed partition without increasing the depth by much?

1Alternatively, we could feed a degenerate Gaussian supported
on a d-dimensional subspace into the network as input, but there is
no way to train such a model using maximum-likelihood training,
since the prior is degenerate.

We answer this question in the affirmative at least for equally
sized partitions (which is what is typically used in practice).
We show the following surprising fact: consider an arbitrary
partition (S, [2d] \ S) of [2d], such that S satisfies |S| = d,
for d ∈ N. Then for any invertible matrix T ∈ R2d×2d, the
linear map T : R2d → R2d can be exactly represented by a
composition of O(1) affine coupling layers that are linear,
namely have the form Li(xS , x[2d]\S) = (xS , Bix[2d]\S +
AixS) or Li(xS , x[2d]\S) = (CixS + Dix[2d]\S , x[2d]\S)

for matrices Ai, Bi, Ci, Di ∈ Rd×d, s.t. each Bi, Ci is
diagonal. For convenience of notation, without loss of gen-
erality let S = [d]. Then, each of the layers Li is a matrix

of the form
[
I 0
Ai Bi

]
or
[
Ci Di

0 I

]
, where the rows and

columns are partitioned into blocks of size d.

With this notation in place, we show the following theorem:

Theorem 2. For all d ≥ 4, there exists a k ≤ 24 such that
for any invertible T ∈ R2d×2d with det(T ) > 0, there exist
matrices Ai, Di ∈ Rd×d and diagonal matrices Bi, Ci ∈
Rd×d≥0 for all i ∈ [k] such that

T =

k∏
i=1

[
I 0
Ai Bi

] [
Ci Di

0 I

]

Note that the condition det(T ) > 0 is required, since
affine coupling networks are always orientation-preserving.
Adding one diagonal layer with negative signs suffices to
model general matrices. In particular, since permutation
matrices are invertible, this means that any applications of
permutations to achieve a different partition of the inputs
(e.g. like in Glow (Kingma & Dhariwal, 2018)) can in prin-
ciple be represented as a composition of not-too-many affine
coupling layers.

It’s a reasonable to ask how optimal the k ≤ 24 bound is –
we supplement our upper bound with a lower bound, namely
that k ≥ 3. This is surprising, as naive parameter counting
would suggest k = 2 might work. Namely, we show:

Theorem 3. For all d ≥ 4 and k ≤ 2, there exists an in-
vertible T ∈ R2d×2d with det(T ) > 0, s.t. for all Ai, Di ∈
Rd×d and for all diagonal matrices Bi, Ci ∈ Rd×d≥0 , i ∈ [k]
it holds that

T 6=
k∏
i=1

[
I 0
Ai Bi

] [
Ci Di

0 I

]

Beyond the relevance of this result in the context of how
important the choice of partitions is, it also shows a lower
bound on the depth for an equal number of nonlinear affine
coupling layers (even with quite complex functions s and
t in each layer) – since a nonlinear network can always be
linearized about a (smooth) point to give a linear network
with the same number of layers.
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Corollary 4. There exists a continuous function f which
cannot be exactly represented by a depth-4 affine coupling
network with arbitrary continuously differentiable functions
as the s and t functions in each block.

The proof is in Appendix B.3. In other words, studying
linear affine coupling networks lets us prove a depth lower
bound/depth separation for nonlinear networks for free.

Finally, in Section 5.3, we include an empirical investigation
of our theoretical results on synthetic data, by fitting random
linear functions of varying dimensionality with linear affine
networks of varying depths in order to see the required
number of layers. The results there suggest that the constant
in the upper bound is quite loose – and the correct value for
k is likely closer to the lower bound – at least for random
matrices.

Remark 3 (Significance of Theorem 2 for Approximation
in Likelihood/KL). All of the universality results in the liter-
ature for normalizing flows, including Theorem 1, prove uni-
versality in the Wasserstein distance or in the related sense
of convergence of distributions. A stronger and probably
much more difficult problem is to prove universality under
the KL divergence instead: i.e. to show for a well-behaved
distribution P , there exists a sequence Qn of distributions
generated by normalizing flow models such that

KL(P,Qn)→ 0. (1)

This is important because Maximum-Likelihood training
attempts to pick the model with the smallest KL divergence
to the empirical distribution, not the smallest Wasserstein
distance, and the minimizers of these two objectives can
be extremely different. For P = N(0,Σ), Theorem 2 cer-
tainly implies (1) for bounded depth linear affine couplings,
and thus gives the first proof that global optimization of the
max-likelihood objective with unlimited data of a normal-
izing flow model would successfully learn a Gaussian with
arbitrary nondegenerate Σ; see Appendix B.4.

3.2. Results about General Architectures

In order to guarantee that the network is invertible, nor-
malizing flow models place significant restrictions on the
architecture of the model. The most basic and general ques-
tion we can ask is how this restriction affects the expressive
power of the model — in particular, how much the depth
must increase to compensate.

More precisely, we ask:

Question 2: is there a distribution over Rd which can be
written as the pushforward of a Gaussian through a small,
shallow generator, which cannot be approximated by the
pushforward of a Gaussian through a small, shallow layer-
wise invertible neural network?

Given that there is great latitude in terms of the choice of
layer architecture, while keeping the network invertible, the
most general way to pose this question is to require each
layer to be a function of p parameters – i.e. f = f1 ◦ f2 ◦
· · · ◦ f` where ◦ denotes function composition and each
fi : Rd → Rd is an invertible function specified by a vector
θi ∈ Rp of parameters. This framing is extremely general:
for instance it includes layerwise invertible feedforward
networks in which fi(x) = σ⊗d(Aix+ bi), σ is invertible,
Ai ∈ Rd×d is invertible, θi = (Ai, bi) and p = d(d+ 1). It
also includes popular architectures based on affine coupling
blocks which we discussed in more detail in the previous
subsection.

We answer this question in the affirmative: namely, we
show for any k that there is a distribution over Rd which
can be expressed as the pushforward of a network with
depth O(1) and size O(k) that cannot be (even very ap-
proximately) expressed as the pushforward of a Gaussian
through a Lipschitz layerwise invertible network of depth
smaller than k/p.

Towards formally stating the result, let θ = (θ1, . . . , θ`) ∈
Θ ⊂ Rd′ be the vector of all parameters (e.g. weights,
biases) in the network, where θi ∈ Rp are the parameters
that correspond to layer i, and let fθ : Rd → Rd denote the
resulting function. Define R so that Θ is contained in the
Euclidean ball of radius R.

We say the family fθ is L-Lipschitz with respect to its pa-
rameters and inputs, if

∀θ, θ′ ∈ Θ : Ex∼N (0,Id×d) ‖fθ(x)− fθ′(x)‖ ≤ L‖θ − θ′‖

and ∀x, y ∈ Rd, ‖fθ(x)− fθ(y)‖ ≤ L‖x− y‖. 2 We will
discuss the reasonable range for L in terms of the weights
after the Theorem statement. We show3:
Theorem 5. For any k = exp(o(d)), L = exp(o(d)), R =
exp(o(d)), we have that for d sufficiently large and any
γ > 0 there exists a neural network g : Rd+1 → Rd
with O(k) parameters and depth O(1), s.t. for any family
{fθ, θ ∈ Θ} of layerwise invertible networks that are L-
Lipschitz with respect to its parameters and inputs, have p
parameters per layer and depth at most k/p we have

∀θ ∈ Θ,W1((fθ)#N , g#N ) ≥ 10γ2d

Furthermore, for all θ ∈ Θ, KL((fθ)#N , g#N ) ≥ 1/10

and KL(g#N , (fθ)#N ) ≥ 10γ2d
L2 .

2Note for architectures having trainable biases in the input
layer, these two notions of Lipschitzness should be expected to
behave similarly.

3In this Theorem and throughout, we use the stan-
dard asymptotic notation f(d) = o(g(d)) to indicate that
lim supd→∞

f(d)
g(d)

= 0. For example, the assumption k, L,R =

exp(o(d)) means that for any sequence (kd, Ld, Rd)
∞
d=1 such that

lim supd→∞
max(log kd,logLd,logRd)

d
= 0 the result holds true.
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Remark 4. First, note that while the number of parameters
in both networks is comparable (i.e. it’s O(k)), the invert-
ible network is deeper, which usually is accompanied with
algorithmic difficulties for training, due to vanishing and
exploding gradients. For layerwise invertible generators, if
we assume that the nonlinearity σ is 1-Lipschitz and each
matrix in the network has operator norm at most M , then
a depth ` network will have L = O(M `)4 and p = O(d2).
For an affine coupling network with g, h parameterized by
H-layer networks with p/2 parameters each, 1-Lipschitz
activations and weights bounded by M as above, we would
similarly have L = O(M `H).

Remark 5. We make a couple of comments on the “hard”
distribution g we construct, as well as the meaning of the
parameter γ and how to interpret the various lower bounds
in the different metrics. The distribution g for a given γ will
in fact be close to a mixture of k Gaussians, each with mean
on the sphere of radius 10γ2d and covariance matrix γ2Id.
Thus this distribution has most of it’s mass in a sphere of
radius O(γ2d) — so the Wasserstein guarantee gives close
to a trivial approximation for g. The KL divergence bounds
are derived by so-called transport inequalities between KL
and Wasserstein for subgaussian distributions (Bobkov &
Götze, 1999). The discrepancy between the two KL diver-
gences comes from the fact that the functions g, fθ may
have different Lipschitz constants, hence the tails of g#N
and f#N behave differently. In fact, if the function fθ had
the same Lipschitz constant as g, both KL lower bounds
would be on the order of a constant.

Practical takeaways from our results. Theorem 2 sug-
gests the (representational) value of 1x1 convolutions as in
(Kingma & Dhariwal, 2018) is limited, as we can simulate
them with a (small) constant number of affine couplings.
Theorem 1 shows that though affine couplings are universal
approximators (even without padding), such constructions
may result in poorly conditioned networks, even if the tar-
get distributions they are approximating are nondegenerate.
Finally, Theorem 5 makes quantitative the intuition that nor-
malizing flow models with small layers may need to be deep
to model complex distributions.

4. Proof Sketch of Theorem 1: Universal
Approximation with Ill-Conditioned Affine
Coupling Networks

In this section, we sketch the proof of Theorem 1 to show
how to approximate a distribution in Rn using three layers
of affine coupling networks, where the dimension n = 2d
is even. The partition in the affine coupling network is
between the first d coordinates and second d coordinates in

4Note, our theorem applies to exponentially large Lipschitz
constants.

R2d.

The first element in the proof is a well-known theorem from
optimal transport called Brenier’s theorem, which states
that for Q a probability measure over Rn satisfying weak
regularity conditions (see Theorem 8 in Section A), there
exists a map ϕ : Rn → Rn such that if X ∼ N(0, In×n),
then the pushforward ϕ#(X) is distributed according to Q.

The proof then proceeds by using a lattice-based encoding
and decoding scheme. Concretely, let ε > 0 be a small
constant, to be taking sufficiently small. Let ε′ ∈ (0, ε) be a
further constant, taken sufficiently small with respect to ε
and similar for ε′′ wrt ε′. Let the input to the affine coupling
network be X = (X1, X2) such that X1 ∼ N(0, Id×d)
and X2 ∼ N(0, Id×d). Let f(x) be the map which rounds
x ∈ Rd to the closest grid point in the lattice εZd and define
g(x) = x − f(x). Note that for a point of the form z =
f(x)+ ε′y for y which is not too large, we have that f(z) =
f(x) and g(z) = y. Suppose the optimal transportation map
from Brenier’s Theorem is ϕ(x) = (ϕ1(x), ϕ2(x)) where
ϕ1, ϕ2 : Rd → Rn correspond to the two halves of the
output. Now we consider the following sequence of maps,
all which form an affine coupling layer:

(X1, X2)

7→ (X1, ε
′X2 + f(X1))

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′),

ε′X2 + f(X1))

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′),

ϕ2(f(X1), X2) +O(ε′′/ε′)).

To explicitly see why the above are affine coupling layers,
in the first step we take s1(x) = log(ε′)~1 and t1(x) = f(x).
In the second step, we take s2(x) = log(ε′′)~1 and t2 is
defined by t2(x) = f(ϕ1(f(x), g(x))) + ε′ϕ2(f(x), g(x)).
In the third step, we take s3(x) = log(ε′′)~1 and define
t3(x) = g(x)

ε′ . Taking sufficiently good approximations to
all of the maps allows to approximate this map with neural
networks, which we formalize in Appendix A.

4.1. Experimental Results

On the empirical side, we explore the effect that different
types of padding has on the training on various synthetic
datasets. For Gaussian padding, this means we add to the d-
dimensional training data point an additional d dimensions
sampled from N(0, Id). We consistently observe that zero
padding has the worst performance and Gaussian padding
has the best performance. For zero padding, we concatenate
an additional d dimensions with value zero to the training
data, as in the universality construction in (Huang et al.,
2020). In both cases we then train the models using maxi-
mum likelihood, treating the augmented part of the samples
as if it was generated as part of the training samples. In
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Figure 1 we show the performance of a simple RealNVP
architecture trained via max-likelihood on a mixture of 4
Gaussians, as well as plot the condition number of the Ja-
cobian during training for each padding method. The latter
gives support to the fact that conditioning is a major culprit
for why zero padding performs so badly. In Appendix D.2
we provide figures from more synthetic datasets.

5. Proof Sketch of Theorems 2 and 3:
Simulating Linear Functions with Affine
Couplings

In this section, we will prove Theorems 3 and 2. Before
proceeding to the proofs, we will introduce a bit of helpful
notation. We let GL+(2d,R) denote the group of 2d× 2d
matrices with positive determinant (see (Artin, 2011) for
a reference on group theory). The lower triangular linear
affine coupling layers are the subgroup AL ⊂ GL+(2d,R)
of the form

AL =

{[
I 0
A B

]
: A,B ∈ Rd×d

}
,

with B diagonal with positive entries and likewise the upper
triangular linear affine coupling layers are the subgroup
AU ⊂ GL+(2d,R) of the form

AU =

{[
C D
0 I

]
: C,D ∈ Rd×d

}
,

with C diagonal with positive entries.

Finally, define A = AL ∪ AU ⊂ GL+(2d,R). This set is
not a subgroup because it is not closed under multiplication.
Let Ak denote the kth power of A, i.e. all elements of the
form a1 · · · ak for ai ∈ A.

5.1. Upper Bound

The main result of this section is the following:

Theorem 6 (Restatement of Theorem 2). There exists an
absolute constant 1 < K ≤ 47 such that for any d ≥ 1,
GL+(2d,R) = AK .

In other words, any linear map with positive determi-
nant (“orientation-preserving”) can be implemented using a
bounded number of linear affine coupling layers. Note that
there is a difference in a factor of two between the counting
of layers in the statement of Theorem 2 and the counting of
matrices in Theorem 6, because each layer is composed of
two matrices.

In group-theoretic language, this says that A generates
GL+(2d,R) and furthermore the diameter of the corre-
sponding (uncountably infinite) Cayley graph is upper
bounded by a constant independent of d. The proof re-
lies on the following two structural results. The first one is

Figure 1. Fitting a 4-component mixture of Gaussians using a Real-
NVP model with no padding, zero padding and Gaussian padding.

Figure 2. Fitting 32-dimensional linear maps on a using n-layer
linear affine coupling networks. The squared Frobenius error is
normalized by 1/d2 so it is independent of dimensionality. We
shade the standard error regions of these losses across the seeds
tried.
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about representing permutation matrices, up to sign, using a
constant number of linear affine coupling layers:

Lemma 1. For any permutation matrix P ∈ R2d×2d, there
exists P̃ ∈ A21 with |P̃ij | = |Pij | for all i, j.

The second one proves how to represent using a constant
number of linear affine couplings matrices with special
eigenvalue structure:

Lemma 2. Let M be an arbitrary invertible d× d matrix
with distinct real eigenvalues and S be a d × d lower tri-
angular matrix with the same eigenvalues as M−1. Then[
M 0
0 S

]
∈ A4.

Given these Lemmas, we briefly describe the strategy to
prove Theorem 6. Every matrix has a an LUP factoriza-
tion (Horn & Johnson, 2012) into a lower-triangular, upper-
triangular, and permutation matrix. Lemma 1 takes care of
the permutation part, so what remains is building an arbi-
trary lower/upper triangular matrix; because the eigenvalues
of lower-triangular matrices are explicit, a careful argument
allows us to reduce this to Lemma 2. All the proofs are in
Section B.

5.2. Lower Bound

We proceed to the lower bound. Note, a simple parameter
counting argument shows that for sufficiently large d, at
least four affine coupling layers are needed to implement
an arbitrary linear map (each affine coupling layer has only
d2 + d parameters whereas GL+(2d,R) is a Lie group of
dimension 4d2). Perhaps surprisingly, it turns out that four
affine coupling layers do not suffice to construct an arbitrary
linear map. We prove this in the following Theorem.

Theorem 7 (Restatement of Theorem 3). For d ≥ 4, A4 is
a proper subset of GL+(2d,R). In other words, there exists
a matrix T ∈ GL+(2d,R) which is not in A4.

Again, this translates to the result in Theorem 3 because
each layer corresponds to two matrices — so this shows
two layers are not enough to get arbitrary matrices. The
key observation is that matrices in ALAUALAU satisfy
a strong algebraic invariant which is not true of arbitrary
matrices. This invariant can be expressed in terms of the
Schur complement (Zhang, 2006):

Lemma 3. Suppose that T =

[
X Y
Z W

]
is an invertible

2d × 2d matrix and suppose there exist matrices A,E ∈
Rd×d, D,H ∈ Rd×d and diagonal matrices B,F ∈ Rd×d,
C,G ∈ Rd×d such that

T =

[
I 0
A B

] [
C D
0 I

] [
I 0
E F

] [
G H
0 I

]
.

Then the Schur complement T/X := W − ZX−1Y is

similar to X−1C: more precisely, if U = Z − AX then
T/X = UX−1CU−1.

The proof of this Lemma is presented in Appendix B, as
well as the resulting proof of Theorem 7. We remark that
the obstruction is reasonably general; it can be shown, for
example, that for a random choice of X and W from the
Ginibre ensemble, that T cannot typically be expressed in
A4. So there are significant restrictions on what matrices
can be expressed with even four affine coupling layers.

Remark 6 (Connection to Universal Approximation). As
mentioned earlier, this lower bound shows that the map
computed by general 4-layer affine coupling networks is
quite restricted in its local behavior (it’s Jacobian cannot be
arbitrary). This implies that smooth 4-layer affine coupling
networks, where smooth means the Hessian (of each coordi-
nate of the output) is bounded in spectral norm by a fixed
constant, cannot be universal function approximators as they
cannot even approximate some linear maps. In contrast, if
we allow the computed function to be very jagged then three
layers are universal (see Theorem 1).

5.3. Experimental results

We also verify the bounds from this section. At least on
randomly chosen matrices, the number of layers required
is closer to the lower bound. Precisely, we generate (syn-
thetic) training data of the form Az, where z ∼ N (0, I)
for a fixed d × d square matrix A with random standard
Gaussian entries and train a linear affine coupling net-
work with n = 1, 2, 4, 8, 16 layers by minimizing the loss
Ez∼N (0,I)

[
(fn(z)−Az)2

]
. We are training this “super-

vised” regression loss instead of the standard unsupervised
likelihood loss to minimize algorithmic (training) effects
as the theorems are focusing on the representational as-
pects. The results for d = 16 are shown in Figure 2, and
more details are in Section D. To test a different distribu-
tion other than the Gaussian ensemble, we also generated
random Toeplitz matrices with constant diagonals by sam-
pling the value for each diagonal from a standard Gaussian
and performed the same regression experiments. We found
the same dependence on number of layers but an overall
higher error, suggesting that that this distribution is slightly
‘harder’. We provide results in Section D. We also regress
a nonlinear RealNVP architecture on the same problems
and see a similar increase in representational power though
the nonlinear models seem to require more training to reach
good performance.

Additional Remarks Finally, we also note that there are
some surprisingly simple functions that cannot be exactly
implemented by a finite affine coupling network. For in-
stance, an entrywise tanh function (i.e. an entrywise non-
linearity) cannot be exactly represented by any finite affine
coupling network, regardless of the nonlinearity used. De-
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tails of this are in Appendix E.

6. Proof Sketch of Theorem 5: Depth Lower
Bounds on Invertible Models

In this section we sketch the proof of Theorem 5, leaving
full details to Appendix C. The intuition behind the k/p
bound on the depth relies on parameter counting: a depth
k/p invertible network will have k parameters in total (p
per layer)—which is the size of the network we are trying
to represent. Of course, the difficulty is that we need more
than fθ, g simply not being identical: we need a quantitative
bound in various probability metrics.

The proof will proceed as follows. First, we will exhibit
a large family of distributions (of size exp(kd)), s.t. each
pair of these distributions has a large pairwise Wasserstein
distance between them. Moreover, each distribution in this
family will be approximately expressible as the pushforward
of the Gaussian through a small neural network. Since the
family of distributions will have a large pairwise Wasserstein
distance, by the triangle inequality, no other distribution can
be close to two distinct members of the family.

Second, we can count the number of “approximately dis-
tinct” invertible networks of depth l: each layer is described
by pweights, hence there are lp parameters in total. The Lip-
schitzness of the neural network in terms of its parameters
then allows to argue about discretizations of the weights.

Formally, we show the following lemma:

Lemma 4 (Large family of well-separated distributions).
For every k = o(exp(d)), for d sufficiently large and
γ > 0 there exists a family D of distributions, s.t. |D| ≥
exp(kd/20) and:

1. Each distribution p ∈ D is a mixture of k Gaussians with
means {µi}ki=1, ‖µi‖2 = 20γ2d and covariance γ2Id.

2. ∀p ∈ D and ∀ε > 0, we have W1(p, g#N ) ≤ ε for a
neural network g with at most O(k) parameters.5

3. For any p, p′ ∈ D, W1(p, p′) ≥ 20γ2d.

The proof of this Lemma relies on two steps: first, construc-
tion of a large family of statistically different mixtures of
Gaussians, and second a generator for such mixtures given
by pushing forward a Gaussian through a neural network.

For the first part, concentration of measure implies that there
exists an exponentially large family of well-separated points
on a high dimensional sphere. Given this, to design a family
of mixtures of Gaussians with large pairwise Wasserstein
distance, it suffices to construct a large family of size k

5The size of g doesn’t indeed depend on ε. The weights in the
networks will simply grow as ε becomes small.

subsets for the means such that no pair of sets overlap too
much. This can be done leveraging tools from coding theory
(essentially the Gilbert-Varshamov bound (Gilbert, 1952;
Varshamov, 1957)).

To handle part 2 of Lemma 7, we also show that a mixture
of k Gaussians can be approximated as the pushforward of
a Gaussian through a network of size O(k). As input, the
network will use a sample from a standard Gaussian in Rd+1.
We will subsequently use the first coordinate to implement
a “mask” that most of the time masks all but one randomly
chosen coordinate in [k]. The remaining coordinates are
used to produce a sample from each of the components in
the Gaussian, and the mask is used to select only one of
them.

With this lemma in hand, we finish the Wasserstein lower
bound with a standard epsilon-net argument, using the pa-
rameter Lipschitzness of the invertible networks by showing
the number of “different” invertible neural networks is on
the order of O

(
(LR)d

′
)

. This is Lemma 11 in Appendix C.
Finally, KL divergence bounds can be derived from the
Bobkov-Götze inequality (Bobkov & Götze, 1999), which
lower bounds KL divergence by the squared Wasserstein
distance. The details are in Appendix C.

7. Conclusion
Normalizing flows are one of the most heavily used gener-
ative models across various domains, though we still have
a relatively narrow understanding of their relative pros and
cons compared to other models. In this paper, we tack-
led representational aspects of two issues that are frequent
sources of training difficulties, depth and conditioning. We
hope this work will inspire more theoretical study of fine-
grained properties of different generative models.
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