
A Distribution-Dependent Analysis of Meta Learning

A. Parameters of the Posterior Distribution
Recall that

pn(θn | D) ∝ pG(Yn |Xnθn, σ
2I)pG(θn |α,Σ) .

We first give a handy proposition for the posterior distribution over the parameters θn.
Proposition A.1.

ln pn(θn) = −1

2
(θn − µ)T −1(θn − µ) + const(θn)

where covariance is

T =

(
Σ−1 +

1

σ2
X>nXn

)−1

and mean is

µ = T
(

Σ−1α+
1

σ2
X>n Yn

)
.

Proof. The log-likelihood is the following chain of identities:

ln pn(θn) = −
∑mn
j=1(x>n,jθn − Yn,j)2

2σ2
− 1

2
(θn −α)>Σ−1(θn −α) + const(θn)

= −
∑mn
j=1(θ>n xn,jx

>
n,jθn − 2Yn,jx

>
n,jθn)

2σ2

= −1

2
(θ>n Σ−1θn − 2α>Σ−1θn) + const(θn)

= −1

2

(
θ>n T

−1θn − 2

(
Σ−1α+

1

σ2
X>n Yn

)>
θn

)
+ const(θn)

= −1

2
(θn − µ)T −1(θn − µ) + const(θn) .

First note that the first consequence of Proposition A.1 is a MLE for θn,

θ̂MLE
n = T

(
Σ−1α+

1

σ2
X>n Yn

)
.

The second consequence is the following corollary which is obtained by taking Y = θ>n x+ ε and simply observing that the
mean of a pn(θn | D) is µ, and so E[Y | D] = x>µ while the variance is V[Y | D] = E[(x>θn + ε)2 | D] − E[(x>θn +
ε) | D]2 = x>T x+ σ2.

Proposition 4.6 (restated). Let Y = θ>n x+ ε for ε ∼ N (0, σ2) and some x ∈ Rd. Then,

E[Y | D] = x>T
(

Σ−1α+
1

σ2
X>n Yn

)
and V[Y | D] = x>T x+ σ2 .

B. Proof of the Lower Bounds
Our task reduces to establishing lower bounds on

E
[(
x>T Σ−1(α− α̂)

)2]
(10)

for any choice of estimator α̂, which in combination with Lemma 4.5 will prove Theorem 4.1. In the next section we first
prove a lower bound for any unbiased estimator relying on the Cramér-Rao inequality. In what follows, in Appendix B.2, we
will show a general bound in Lemma B.4 valid for any estimator (possibly biased) using a hypothesis testing technique
(see, e.g. (Lattimore & Szepesvári, 2018, Chap. 13)). Finally, in Lemma B.5 we prove a high-probability lower bound
on Eq. (10).
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B.1. Lower Bound for Unbiased Estimator α̂
Theorem B.1 (Cramér-Rao inequality). Suppose that α ∈ Rd is an unknown deterministic parameter with a probability
density function f(x |α) and that α̂ is an unbiased estimator of α. Moreover assume that for all i, j ∈ [d], x : f(x |α) > 0,
∂2

∂αi∂αj
ln f(x |α) exists and is finite, and ∂2

∂αi∂αj

∫
α̂f(x |α) dx =

∫
α̂
(

∂2

∂αi∂αj
f(x |α)

)
dx.

Then, for the Fisher information matrix defined as

F = −E
[
∇α ln f(X |α)∇α ln f(X |α)>

]
we have

E
[
(α̂− E[α̂])(α̂− E[α̂])>

]
� F−1 .

Lemma B.2. For any unbiased estimator α̂ of α in Eq. (2) we have

E
[(
x>T Σ−1(α− α̂)2

)]
≥ x>T Σ−1(Ψ>KΨ)−1Σ−1T x. (11)

Proof. Recall that according to the equivalence (2) Y ∼ N (Ψα,K) and the unknown parameter is α. To compute the
Fisher information matrix we first observe that

∇α ln pG (Y ; Ψα,K) = Ψ>K−1(Y −Ψα)

and so

F = E
[
∇α ln pG (Y ; Ψα,K)∇α ln pG (Y ; Ψα,K)

>
]

= Ψ>K−1E
[
(Y −Ψα)(Y −Ψα)>

]
K−1Ψ

= Ψ>K−1Ψ.

Thus, by Theorem B.1 we have

E
[
(α− α̂)(α− α̂)>

]
� (Ψ>K−1Ψ)−1 .

Finally, left-multiplying by x>T Σ−1 and right-multiplying the above by Σ−1T x gives us the statement.

B.2. Lower Bound for Any Estimator α̂
The proof of is based on the following lemma.
Lemma B.3 (Bretagnolle & Huber 1979). Let P and Q be probability measures on the same measurable
space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp(−DKL(P,Q)), (12)

where DKL(P,Q) =
∫

Ω
ln (P (ω)/Q(ω)) dP (ω) denotes Kullback-Leibler divergence between P and Q and Ac = Ω \A

is the complement of A.
Lemma B.4. For any estimator α̂ of α in Eq. (2) we have

E
[(
x>T Σ−1(α̂−α)

)2] ≥ x>Mx

16
√
e

.

Proof. Throughout the proof let q = Σ−1T x. Consider two meta-learning problems with target distributions P and Q
characterized by two means: αP = 0 and αQ = ∆(Ψ>K−1Ψ)−1q where ∆ > 0 is a free parameter to be tuned later
on. Thus, according to our established equivalence (2), in these two cases targets are generated by respective models
P = N (0,K) and Q = N (∆Ψ(Ψ>K−1Ψ)−1q,K).
Recall our abbreviationM = T Σ−1(Ψ>K−1Ψ)−1Σ−1T . Markov’s inequality gives

EP
[
(α̂>q −α>P q)2

]
= EP

[
(α̂>q)2

]
≥ ∆2

4

(
x>Mx

)2 P(|α̂>q| ≥ ∆

2
x>Mx

)
, while

EQ
[
(α̂>q −α>Qq)2

]
≥ ∆2

4

(
x>Mx

)2 Q(|α>Qq − α̂>q| ≥ ∆

2
x>Mx

)
≥ ∆2

4

(
x>Mx

)2 Q(|α̂>q| < ∆

2
x>Mx

)
,
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where the last inequality comes using the fact that |a − b| ≥ |a| − |b| for a, b ∈ R and observing that α>Qq = x>Mx.
Summing both inequalities above and applying Lemma B.3 we get

EP
[
(α̂>q −α>P q)2

]
+ EQ

[
(α̂>q −α>Qq)2

]
≥ ∆2

8

(
x>Mx

)2 · exp (−DKL(P,Q))

(a)
=

∆2

8

(
x>Mx

)2 · exp

(
−∆2

2
x>Mx

)
,

where step (a) follows from KL-divergence between multivariate Gaussians with the same covariance matrix. Now, using a
basic fact that 2 max {a, b} ≥ a+ b, we get that for any measure P given by parameter α we have

E
[
(α̂>q −α>q)2

]
≥ ∆2

16

(
x>Mx

)2 · exp

(
−∆2

2
x>Mx

)
.

The statement then follows by choosing ∆2 = (x>Mx)−1.

Now we prove a high-probability version of the just given inequality.

Lemma B.5. For any estimator α̂ of α in Eq. (2) and any δ ∈ (0, 1) we have

P
((
x>T Σ−1(α̂−α)

)2 ≥ ln

(
1

4
· 1

1− δ

)
x>Mx

)
≥ 1− δ .

Proof. The proof is very similar to the proof of Lemma B.4 except we will not apply Markov’s inequality and focus directly
on giving a lower bound the deviation probabilities rather than expectations. Thus, similarly as before introduce mean
parameters αP = 0 and αQ = ∆(Ψ>K−1Ψ)−1q/

(
x>Mx

)
and their associated probability measures P = N (0,K)

and Q = N
(

∆Ψ(Ψ>K−1Ψ)−1q
x>Mx

,K
)

.

Note that

P
(
|α̂>q| ≥ ∆

2

)
= P

(
|α>P q − α̂>q| ≥

∆

2

)
,

Q
(
|α>Qq − α̂>q| ≥

∆

2

)
≥ Q

(
|α̂>q| < ∆

2

)
and so by using Lemma B.3 we obtain an exponential tail bound

P
(
|α>P q − α̂>q| ≥

∆

2

)
+ Q

(
|α>Qq − α̂>q| ≥

∆

2

)
≥ exp(−DKL(P ||Q)) =

1

2
exp

(
− ∆2

x>Mx

)
.

Setting the r.h.s. in the above to 2(1− δ) where δ is an error probability, and solving for ∆ gives us tuning

∆2 = 2 ln

(
1

4
· 1

1− δ

)
x>Mx .

Thus, we get

P
((
α>P q − α̂>q

)2 ≥ ln

(
1

4
· 1

1− δ

)
x>Mx

)
+ Q

(
|α>Qq − α̂>q| ≥ ln

(
1

4
· 1

1− δ

)
x>Mx

)
≥ 2(1− δ)

and using the fact that 2 max(a, b) ≥ a+ b we get that for any probability measure P given by parameter α we have

P
((
α>P q − α̂>q

)2 ≥ ln

(
1

4
· 1

1− δ

)
x>Mx

)
≥ 1− δ .
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C. Proof of the Upper Bounds
Theorem 4.2 (restated). For the estimator θ̂n(α̂MLE) and for any x ∈ Rd we have

E [L(x)] = x>Mx+ x>T x+ σ2.

Moreover for the same estimator, with probability at least 1− δ, δ ∈ (0, 1) we have

L(x) ≤ 2 ln

(
2

δ

)
x>Mx+ x>T x+ σ2.

Proof. Recall that
α̂MLE = (Ψ>K−1Ψ)−1Ψ>K−1Y .

The first result follows from Lemma 4.5 where we have to give an identity for

E
[(
x>T Σ−1(α− α̂MLE)

)2]
(13)

and the missing piece is a covariance of the estimator α̂MLE

E
[
(α− α̂MLE)(α− α̂MLE)>

]
= (Ψ>K−1Ψ)−1Ψ>K−1Cov(Y ,Y )K−1Ψ(Ψ>K−1Ψ)−1

= (Ψ>K−1Ψ)−1 . (14)

To prove the second result we have to give a high probability upper bound on Eq. (13).
Let q = Σ−1T x and observe that q>α̂MLE is Gaussian (since Y is composed of Gaussian entries) with mean q>α by
equivalence (2), and covariance (Ψ>K−1Ψ)−1 by Eq. (14). Then, by Gaussian concentration for any error probability
δ ∈ (0, 1) we have

P

(
(q>α− q>α̂MLE)2 ≥

√
2q>(Ψ>K−1Ψ)−1q ln

(
2

δ

))
≤ δ

which completes the proof.

D. Derivation of EM Steps
Recall that our goal is to solve

max
E′

∫
ln (p(ϑ,D | E ′)) dp(ϑ | D, Êt) .

First, we will focus on the integral. The chain rule readily gives

ln p(Θ,D | E ′) = ln p(Θ | D, E ′) + ln p(Θ | E ′) .

Using the same reasoning and notation as in the proof of Proposition A.1 we get∫
ln p(ϑ | D, E ′) dp(ϑ | D, Êt) =

n∑
i=1

mi∑
j=1

(
1

2
ln

(
1

σ2

)
− 1

2σ2

∫
(Yi,j − x>i,jϑi)2 dp(ϑi | D, Êt)

)
+ const(E ′)

=

n∑
i=1

mi∑
j=1

(
1

2
ln

(
1

σ2

)
− 1

2σ2
(Yi,j − x>i,jµi)2 − x>i,jT ixi,j

)
+ const(E ′) ,

using the fact that
∫

(Yi,j − x>i,jϑi)2 dp(ϑi | D, Êt) = (Yi,j − x>i,jµi)2 + x>i,jT ixi,j where we took θi ∼ N (µi,T i)
according to Proposition A.1.
Now we compute the expected log-likelihood of the vector of task parameters:∫

ln p(ϑ | E ′) dp(ϑ | D, Êt) =
n

2
ln det Σ−1 − 1

2

n∑
i=1

∫
(ϑi −α)>Σ−1(ϑi −α) dp(ϑi | D, Êt) + const(E ′) .
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M-step for σ2. Now, note that since the likelihood of the vector of task variables Θ does not depend on the parameter σ2

we can solve for σ2 based on the first order condition of the problem above. Differentiating the above equation with respect
to σ−2 (and ignoring the constant) gives

n∑
i=1

mi∑
j=1

(
σ2 −

(
(Yi,j − x>i,jµi)2 + x>i,jT ixi,j

))
. (15)

while setting the derivative to zero gives

σ2 =
1

n

n∑
i=1

1

mi

mi∑
j=1

(
(Yi,j − x>i,jµi)2 + x>i,jT ixi,j

)
. (16)

M-step for α. Differentiating the objective w.r.t. α (and ignoring the constant) gives
∑n
i=1 Σ−1(E[θi]−α) from which

we get

α =

n∑
i=1

µi . (17)

M-step for Σ. Differentiating the expected log-likelihood of the vector of task parameters with respect toA = Σ−1 gives

n∑
i=1

tr(ΣdA)− tr

∫ (
(ϑi −α)(ϑi −α)>dA

)
dp(ϑi | D, Êt) (18)

from which we get

Σ =
1

n

n∑
i=1

E[(θi −α)(θi −α)>]. (19)

Finally, computing the expectation

n∑
i=1

(
E[θiθ

>
i ]− 2µiα

> +αα>
)

=

n∑
i=1

(
(µi −α)(µi −α)> + T i

)
(20)

shows the update for Σ.

E. Selecting λ in Biased Regression
The parameter λ is selected via random search in the following way. For each of the 50 samples of λ from log-uniform
distribution on interval [0; 100] we perform the following procedure to estimate the risk L̂. Firstly, we split the training tasks
into K = 10 groups S1, . . . ,SK of (approximately) equal size and compute the estimates α̂k using the data S\k from all
of the groups excluding the group k: S\k := ∪i6=kSi. For each of the estimated values α̂k we perform adaptation to and
testing on the tasks in the group Sk using the given value of λ. We split the samples of each task data Di ∈ Sk randomly
into adaptation and test sets 10 times each time such that the size of adaptation set is close to the size of adaptation sets used
with the actual test data. For each of the splits we compute an estimate of the parameter vector θ̂k,i,l where k is the index of
the group which was not used to estimate α̂k, i is the index of a task data Di ∈ Sk, l is the index of a random split of the
samples in that task into adaptation and test sets. With this parameter vector and using the test set of the task Di ∈ Sk we
can also estimate the loss L̂k,i,l after which all the loss values are averaged:

L̂ =
1

K

K∑
k=1

1

|S\k|
∑

i:Di∈S\k

1

10

10∑
l=1

L̂k,i,l.

At the end we select the value of λ which lead to the smallest value of L̂ using this cross-validation procedure.

F. Supplementary Statements
Proposition F.1. ForM (see Eq. (5)) we have

M = σ4 ·
(
ΣX>nXn + σ2I

)−1
A−1

(
ΣX>nXn + σ2I

)−1
,
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where we denote

A =

n∑
i=1

X>i (XiΣX
>
i + σ2I)−1Xi .

Proof. Recall that
M = T Σ−1

(
Ψ>K−1Ψ

)−1
Σ−1T

and observe that

K−1 =


(X1ΣX

>
1 + σ2I)−1 0 . . . 0
0 (X2ΣX

>
2 + σ2I)−1 . . . 0

...
. . .

...
0 0 . . . (XnΣX>n + σ2I)−1

 ,
which in turn implies

Ψ>K−1Ψ =

n∑
i=1

X>i (XiΣX
>
i + σ2I)−1Xi .

On the other hand,

T Σ−1 =

(
Σ−1 +

1

σ2
X>nXn

)−1

Σ−1

= σ2
(
σ2I + ΣX>nXn

)−1
.

Combining the above gives the statement.

Lemma F.2. In the following assume thatX>i Xi = mi
d I for all i. Let λj(Σ) be the jth eigenvalue of Σ. Then,

λj(M) = σ4 · d2

(mnλj(Σ) + dσ2)
2 ·

HM
(
λj(Σ) + dσ2

mi

)n
i=1

n
,

where HM(zi)
n
i=1 denotes the harmonic mean of sequence (zi)

n
i=1. Moreover,

λj(T ) =
dσ2λj(Σ)

dσ2 +mnλj(Σ)
.

Finally, the eigenvectors ofM and T coincide with the eigenvectors of Σ.

Proof. We first characterize eigenvalues of matrixM . By Proposition F.1,

M = σ4 ·
(
ΣX>nXn + σ2I

)−1
A−1

(
ΣX>nXn + σ2I

)−1
.

We start withA−1, and by the spectral theorem, Σ = UΛU> for some unitary U and diagonal Λ:

A−1 =

(
n∑
i=1

X>i (XiΣX
>
i + σ2I)−1Xi

)−1

=

(
n∑
i=1

(ΣX>i Xi + σ2I)−1X>i Xi

)−1

=

(
n∑
i=1

(
Σ · mi

d
+ σ2I

)−1 mi

d

)−1

=

(
n∑
i=1

(
UΛU> · mi

d
+ σ2I

)−1 mi

d

)−1

= U

(
n∑
i=1

(
Λ +

dσ2

mi
· I
)−1

)−1

U> .
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Now, (
ΣX>nXn + σ2I

)−1
=
(
Σ · mn

d
+ σ2I

)−1

=
(
UΛU> · mn

d
+ σ2I

)−1

= U
(
Λ · mn

d
+ σ2I

)−1

U>.

Thus,

M = U

((
Λ · mn

d
+ σ2I

)2 n∑
i=1

(
Λ +

dσ2

mi

)−1
)−1

U> .

and moreover the jth eigenvalue ofM is

λj(M) =
1(

mn
d λj(Σ) + σ2

)2 · 1∑n
i=1

1

λj(Σ)+ dσ2

mi

=
1(

mn
d λj(Σ) + σ2

)2 · HM
(
λj(Σ) + dσ2

mi

)n
i=1

n
.

where recall that HM(zi)
n
i=1 denotes the harmonic mean of sequence (zi)

n
i=1.

Using the same arguments as above

T =

(
Σ−1 +

1

σ2
X>nXn

)−1

=
(
UΛ−1U> +

mn

dσ2

)−1

and so

λj(T ) =
1

1
λj(Σ) + mn

dσ2

=
dσ2λj(Σ)

dσ2 +mnλj(Σ)
.

Finally, in both cases ofM and T we observe that their eigenvectors are eigenvectors of Σ.

Corollaries 4.3 and 4.4 (restated). In the following assume that X>i Xi = mi
d I for all i. For Σ = τ2I , any x ∈ Rd,

and any c > 0,

cx>Mx+ x>T x+ σ2 = c · Hτ2

n
· d2σ4

(τ2mn + dσ2)
2 · ‖x‖

2 +
dσ2τ2

τ2mn + dσ2
· ‖x‖2 + σ2 ,

where Hτ2 is a harmonic mean of the sequence
(
τ2 + dσ2

mi

)n
i=1

.

Moreover, let Σ be a PSD matrix of rank s ≤ d with eigenvalues λ1 ≥ . . . ≥ λs > 0. Then for any x ∈ Rd and any c > 0,

cx>Mx+ x>T x+ σ2 ≥ c · Hλs

n
· d2σ4

(λ1mn + dσ2)
2 · ‖x‖

2
P>s Ps

+
dσ2λs

λsmn + dσ2
· ‖x‖2P>s Ps + σ2

where Ps = [u1, . . . ,us]
> and (uj)

s
j=1 are eigenvectors of Σ.

Proof. Recalling that by Proposition F.1,

M = σ4 ·
(
ΣX>nXn + σ2I

)−1
A−1

(
ΣX>nXn + σ2I

)−1
.

and using Lemma F.2 with Σ = τ2I we get the first result.
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Now we turn to the low-rank case. We start by considering a PSD matrix Σε with s eigenvalues λ1 ≥ . . . ≥ λs > 0 and
remaining d− s are ε > 0. Denote also byMε, T ε matrices w.r.t. Σε. The idea is to lower bound x>Mεx and x>T εx
and then analyze a limiting behavior as ε→ 0.
By Lemma F.2,Mε, T ε, and Σε share the same eigenvectors u1, . . . ,us, and so

cx>Mεx+ x>T εx = c

d∑
j=1

(
u>j x

)2
λj(Mε) +

d∑
j=1

(
u>j x

)2
λj(T ε)

= c ·
s∑
j=1

Hλj

n
· σ4(
λj

mn
d + σ2

)2 (u>j x)2 + c · Hε

n
· σ4(
εmnd + σ2

)2︸ ︷︷ ︸
(a)

 d∑
j=s+1

(
u>j x

)2

+

s∑
j=1

σ2λj
λj

mn
d + σ2

(
u>j x

)2
+

σ2ε

εmnd + σ2

 d∑
j=s+1

(
u>j x

)2 .

Now,

lim
ε→0

(
cx>Mεx+ x>T εx

)
= c ·

s∑
j=1

Hλj

n
· σ4(
λj

mn
d + σ2

)2 (u>j x)2 +
dσ2

M

d∑
j=s+1

(
u>j x

)2
+

s∑
j=1

σ2λj
λj

mn
d + σ2

(
u>j x

)2
≥ c · Hλs

n
· σ4(
λ1

mn
d + σ2

)2 s∑
j=1

(
u>j x

)2
+

σ2λs
λs

mn
d + σ2

s∑
j=1

(
u>j x

)2
,

where we note that the limit of term (a) is handled as

lim
ε→0

1∑n
i=1

1

ε+ dσ2

mi

· σ4(
εmnd + σ2

)2 =
dσ2

M
≥ 0 .

G. Further Experimental Details and Results
In this section we provide extra figures for our experimental results. Fig. 1 is complemented with Fig. 7, adding a second
example in addition to the one shown in the previous figure.
For completeness, the pseudocode of MoM is given in Algorithm 2.

Algorithm 2 MoM Estimator for Learning Linear Features of (Tripuraneni et al., 2020)

Input: ((x1,j , y1,j))
m1

j=1 , . . . ,
(
(xmn−1,j , ymn−1,j)

)mi−1

j=1
— training examples from n− 1 past tasks, s — problem rank.

UDV > ← SVD
(

1
M−mn

∑n−1
i=1

∑mn
j=1 y

2
i,jxi,jx

>
i,j

)
B̂ ← [D1,1u1, . . . , Ds,sus]

return B̂
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Figure 7. Two sets of examples of predictions on the synthetic, ‘Fourier’ meta-learning problem. Top and bottom rows correspond to
different (random) instances; the top row in fact replicates Fig. 1. Training data is shown in bold, small dots show test data. We also
show the predictions for two learners (at every input) and the target function. The column correspond to outputs obtained training on
n ∈ {10, 50, 100} tasks.


