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A. Appendix Overview
Our code is available online at: https://anonymous.4open.science/r/12747e81-8505-43cb-b54e-e75e2344a397/. The sections
of our appendix are as follows:

A) Appendix Overview

B) Definition and discussion of extrapolation in machine learning

C) Illustrative examples of how REx works in toy settings

D) A summary of different types of causal model

E) Theory

F) The relationship between MM-REx vs. V-REx, and the role each plays in our work

G) Further results and details for experiments mentioned in main text

H) Experiments not mentioned in main text

I) Overview of other topics related to OOD generalization

B. Definition and discussion of extrapolation in machine learning
We define interpolation and extrapolation as follows: interpolation refers to making decisions or predictions about
points/domains within the convex hull of the training examples/domains and extrapolation refers to making decisions or
predictions about points/domains outside their convex hull.14 This generalizes the familiar sense of these terms for one-
dimensional functions. An interesting consequence of this definition is: for data of high intrinsic dimension, generalization
requires extrapolation (Hastie et al., 2009), even in the i.i.d. setting. This is because the volume of high-dimensional
manifolds concentrates near their boundary; see Figure 7.

Extrapolation in the space of risk functions. The same geometric considerations apply to extrapolating to new domains.
Domains can be highly diverse, varying according to high dimensional attributes, and thus requiring extrapolation to
generalize across. Thus Risk Extrapolation might often do a better job of including possible test domains in its perturbation
set than Risk Interpolation does.

14Surprisingly, we were not able to find any existing definition of these terms in the machine learning literature, although this definition
is proposed by King & Zeng (2006). They have also been used in this sense (Hastie et al., 2009; Haffner, 2001), but also to refer to
strong generalization capabilities more generally (Sahoo et al., 2018; Xu et al., 2021). Meanwhile, Mouli & Ribeiro (2021) argue that
extrapolation should be thought of in terms of generalizing to counterfactual domains; our view shows how this can sometimes be viewed
as extrapolating outside the convex hull in “domain space”.

https://anonymous.4open.science/r/12747e81-8505-43cb-b54e-e75e2344a397/
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Training points

Test point

Figure 7. Illustration of the importance of extrapolation for generalizing in high dimensional space. In high dimensional spaces, mass
concentrates near the boundary of objects. For instance, the uniform distribution over a ball in N + 1-dimensional space can be
approximated by the uniform distribution over the N -dimensional hypersphere. We illustrate this in 2 dimensions, using the 1-sphere (i.e.
the unit circle). Dots represent a finite training sample, and the shaded region represents the convex hull of all but one member of the
sample. Even in 2 dimensions, we can see why any point from a finite sample from such a distribution remains outside the convex hull of
the other samples, with probability 1. The only exception would be if two points in the sample coincide exactly.

C. Illustrative examples of how REx works in toy settings
Here, we work through two examples to illustrate:

1. How to understand extrapolation in the space of probability density/mass functions (PDF/PMFs)

2. How REx encourages robustness to covariate shift via distributing capacity more evenly across possible input distribu-
tions.

C.1. 6D example of REx

Here we provide a simple example illustrating how to understand extrapolations of probability distributions. Suppose
X ∈ {0, 1, 2} and Y ∈ {0, 1}, so there are a total of 6 possible types of examples, and we can represent their distributions
in a particular domain as a point in 6D space: (P (0, 0), P (0, 1), P (1, 0), P (1, 1), P (2, 0), P (2, 1)). Now, consider three
domains e1, e2, e3 given by

1. (a, b, c, d, e, f)

2. (a, b, c, d, e− k, f + k)

3. (2a, 2b, c(1− a+b
c+d ), d(1− a+b

c+d ), e, f)

The difference between e1 and e2 corresponds to a shift in P (Y |X = 2), and suggests that Y cannot be reliably predicted
across different domains when X = 2. Meanwhile, the difference between e1 and e3 tells us that the relative probability of
X = 0 vs. X = 1 can change, and so we might want our model to be robust to these sorts of covariate shifts. Extrapolating
risks across these 3 domains effectively tells the model: “don’t bother trying to predict Y when X = 2 (i.e. aim for
P̂ (Y = 1|X = 2) = .5), and split your capacity equally across the X = 0 and X = 1 cases”. By way of comparison,
IRM would also aim for P̂ (Y = 1|X = 2) = .5, whereas ERM would aim for P̂ (Y = 1|X = 2) = 3f+k

3e+3f (assuming
|D1| = |D2| = |D3|). And unlike REx, both ERM and IRM would split capacity between X = 0/1/2 cases according to
their empirical frequencies.

C.2. Covariate shift example

We now give an example to show how REx provides robustness to covariate shift. Covariate shift is an issue when a model
has limited capacity or limited data.
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Viewing REx as robust learning over the affine span of the training distributions reveals its potential to improve robustness to
distribution shifts. Consider a situation in which a model encounters two types of inputs: COSTLY inputs with probability
q and CHEAP inputs with probability 1− q. The model tries to predict the input – it outputs COSTLY with probability
p and CHEAP with probability 1 − p. If the model predicts right its risk is 0, but if it predicts COSTLY instead of
CHEAP it gets a risk u = 2, and if it predicts CHEAP instead of COSTLY it gets a risk v = 4. The risk has expectation
Rq(p) = (1 − p)(1 − q)u + pqv. We have access to two domains with different input probabilities q1 < q2. This is an
example of pure covariate shift.
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Figure 8. Each grey line is a riskRq(p) as functions of p for a specific value of q. The blue line is when q = ω. We highlight in red the
curve maxqRq(p) whose minimum is the saddle point marked by a purple star in p = ω.

We want to guarantee the minimal risk over the set of all possible domains:

min
p∈[0,1]

max
q∈[0,1]

Rq(p) = (1− p)(1− q)u+ pqv

as illustrated in Figure 8. The saddle point solution of this problem is p = ω = u/u+v andRq(p) = uv/u+v,∀q. From the
figure we see thatRq1(p) = Rq2(p) can only happen for p = ω, so the risk extrapolation principle will return the minimax
optimal solution.

If we use ERM to minimize the risk, we will pool together the domains into a new domain with COSTLY input probability
q̄ = (q1 + q2)/2. ERM will return p = 0 if q̄ > ω and p = 1 otherwise. Risk interpolation (RI) minp maxq∈{q1,q2}Rq(p)
will predict p = 0 if q1, q2 > ω, p = 1 if q1, q2 < ω and p = ω if q1 < ω < q2. We see that only REx finds the minimax
optimum for arbitrary values of q1 and q2.

D. A summary of different types of causal models
Here, we briefly summarize the differences between 3 different types of causal models, see Table 4. Our definitions and
notation follow Elements of Causal Inference: Foundations and Learning Algorithms (Peters et al., 2017).

A Causal Graph is a directed acyclic graph (DAG) over a set of nodes corresponding to random variables Z, where edges
point from causes (including noise variables) to effects. A Structural Causal Model (SCM), C, additionally specifies a
deterministic mapping fZ for every node Z, which computes the value of that node given the values of its parents, which
include a special noise variable NZ , which is sampled independently from all other nodes. This fZ is called the mechanism,
structural equation, or structural assignment for Z. Given an SCM, C, the entailed distribution of C, PC(Z) is defined
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via ancestral sampling. Thus for any Z ∈ Z, we have that the marginal distribution PC(Z|Z \ Z) = PC(Z|Pa(Z)).
A Causal Graphical Model (CGM) can be thought of as specifying these marginal distributions without explicitly
representing noise variables NZ . We can draw rough analogies with (non-causal) statistical models. Roughly speaking,
Causal Graphs are analogous to Graphical Models, whereas SCMs and CGMs are analogous to joint distributions.

Model Independences Distributions Interventions Counterfactuals

Graphical Model 3 7 7 7

Joint Distribution 3 3 7 7

Causal Graph 3 7 3 7

Causal Graphical Model 3 3 3 7

Structural Causal Model 3 3 3 3

Table 4. A comparison of causal and non-causal models.

E. Theory
E.1. Proofs of theorems 1 and 2

The REx principle (Section 3) has two goals:

1. Reducing training risks

2. Increasing similarity of training risks.

In practice, it may be advantageous to trade-off these two objectives, using a hyperparameter (e.g. β for V-REx or λmin for
MM-REx). However, in this section, we assume the 2nd criteria takes priority; i.e. we define “satisfying” the REx principle
as selecting a minimal risk predictor among those that achieve exact equality of risks across all the domains in a set E .

Recall our assumptions from Section 3.2 of the main text:

1. The causes of Y are observed, i.e. Pa(Y ) ⊆ X .

2. Domains correspond to interventions on X .

3. Homoskedasticity (a slight generalization of the additive noise setting assumed by Peters et al. (2016)). We say an
SCM C is homoskedastic (with respect to a loss function `), if the Bayes error rate of `(fY (x), fY (x)) is the same for
all x ∈ X .

And see Section 2.3 for relevant definitions and notation.

We begin with a theorem based on the setting explored by Peters et al. (2016). Here, εi
.
= Ni are assumed to be normally

distributed.

Theorem 1. Given a Linear SEM, Xi ←
∑
j 6=i β(i,j)Xj + εi, with Y .

= X0, and a predictor fβ(X)
.
=
∑
j:j>0 βjXj + εj

that satisfies REx (with mean-squared error) over a perturbation set of domains that contains 3 distinct do() interventions
for each Xi : i > 0. Then βj = β0,j ,∀j.

Proof. We adapt the proof of Theorem 4i from Peters et al. (2016) to show that REx will learn the correct model under
similar assumptions. Let Y ← γX + ε be the mechanism for Y , assumed to be fixed across all domains, and let Ŷ = βX be
our predictor. Then the residual is R(β) = (γ − β)X + ε. Define αi

.
= γi − βi, and consider an intervention do(Xj = x)

on the youngest node Xj with αj 6= 0. Then as in eqn 36/37 of Peters et al. (2016), we compare the residuals R of this
intervention and of the observational distribution:
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Robs(β) = αjXj +
∑
i 6=j

αiXi + ε Rdo(Xj=x)(β) = αjx+
∑
i 6=j

αiXi + ε (9)

We now compute the MSE risk for both domains, set them equal, and simplify to find a quadratic formula for x:

E

(αjXj +
∑
i 6=j

αiXi + ε)2

 = E

(αjx+
∑
i 6=j

αiXi + ε)2

 (10)

0 = α2
jx

2 + 2αjE[
∑
i6=j

αiXi + ε]x− E

(αjXj)
2 − 2αjXj(

∑
i 6=j

αiXi + ε)

 (11)

Since there are at most two values of x that satisfy this equation, any other value leads to a violation of REx, so that αj
needs to be zero – contradiction. In particular having domains with 3 different do-interventions on every Xi guarantees that
the risks are not equal across all domains.

Given the assumption that a predictor satisfies REx over all interventions that do not change the mechanism of Y , we can
prove a much more general result. We now consider an arbitrary SCM, C, generating Y and X , and let EI be the set of
domains corresponding to arbitrary interventions on X , similarly to Peters et al. (2016).

We emphasize that the predictor is not restricted to any particular class of models, and is a generic function f : X → P(Y ),
where P(Y ) is the set of distributions over Y . Hence, we drop θ from the below discussion and simply use f to represent
the predictor, andR(f) its risk.

Theorem 2. Suppose ` is a (strictly) proper scoring rule. Then a predictor that satisfies REx for a over EI uses fY (x) as its
predictive distribution on input x for all x ∈ X .

Proof. LetRe(f, x) be the loss of predictor f on point x in domain e, andRe(f) =
∫
P e(x)

Re(f, x) be the risk of f in e.

Define ι(x) as the domain given by the intervention do(X = x), and note that Rι(x)(f) = Rι(x)(f, x). We additionally
define X1

.
= Par(Y ).

The causal mechanism, fY , satisfies the REx principle over EI . For every x ∈ X , fY (x) = P (Y |do(X = x)) =
P (Y |do(X1 = x1)) = P (Y |X1 = x1) is invariant (meaning ‘independent of domain’) by definition; P (Y |do(X = x)) =
P (Y |do(X1 = x1)) = P (Y |X1 = x1) follows from the semantics of SEM/SCMs, and the fact that we don’t allow fY
to change across domains. Specifically Y is always generated by the same ancestral sampling process that only depends
on X1 and NY . Thus the risk of the predictor fY (x) at point x, Re(fY , x) = `(fY (x), fY (x)) is also invariant, soit
R(fY , x). Thus Re(fY ) =

∫
P e(x)

Re(fY , x) =
∫
P e(x)

R(fY , x) is invariant whenever R(fY , x) does not depend on x,
and the homoskedasticity assumption ensures that this is the case. This establishes that setting f = fY will produce equal
risk across domains.

No other predictor satisfies the REx principle over EI . We show that any other g achieves higher risk than fY for at least
one domain. This demonstrates both that fY achieves minimal risk (thus satisfying REx), and that it is the unique predictor
which does so (and thus no other predictors satisfy REx). We suppose such a g exists and construct an domain where it
achieves higher risk than fY . Specifically, if g 6= fY then let x ∈ X be a point such that g(x) 6= fY (x). And since ` is a
strictly proper scoring rule, this implies that `(g(x), fY (x)) > `(fY (x), fY (x)). But `(g(x), fY (x)) is exactly the risk of g
on the domain ι(do(X = x)), and thus g achieves higher risk than fY in ι(do(X = x)), a contradiction.

E.2. REx as DRO

We note that MM-REx is also performing robust optimization over a convex hull, see Figure 1. The corners of this
convex hull correspond to “extrapolated domains” with coefficients (λmin, λmin, ..., (1 − (m − 1)λmin)) (up to some
permutation). However, these domains do not necessarily correspond to valid probability distributions; in general, they
are quasidistributions, which can assign negative probabilities to some examples. This means that, even if the original
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Figure 9. The perturbation set for MM-REx can include “distributions” which assign invalid (e.g. negative) probabilities to some
data-points. The range of valid distributions P (X) is shown in grey, and P (X) for 4 different training domains are shown as red points.
The interior of the dashed line shows the perturbation set for λmin = −1/2.

risk functions were convex, the extrapolated risks need not be. However, in the case where they are convex, then existing
theorems, such as the convergence rate result of (Sagawa et al., 2019). This raises several important questions:

1. When is the affine combination of risks convex?

2. What are the effects of negative probabilities on the optimization problem REx faces, and the solutions ultimately
found?

Negative probabilities: Figure 9 illustrates this for a case where X = Z2
2, i.e. x is a binary vector of length 2.

Suppose x1, x2 are independent in our training domains, and represent the distribution for a particular domain by the
point (P (X1 = 1), P (X2 = 1)). And suppose our 4 training distributions have (P (X1 = 1), P (X2 = 1)) equal to
{(.4, .1), (.4, .9), (.6, .1), (.6, .9)}, with P (Y |X) fixed.

F. The relationship between MM-REx vs. V-REx, and the role each plays in our work
The MM-REx and V-REx methods play different roles in our work:

• We use MM-REx to illustrate that REx can be instantiated as a variant of robust optimization, specifically a generaliza-
tion of the common Risk Interpolation approach. We also find MM-REx provides a useful geometric intuition, since
we can visualize its perturbation set as an expansion of the convex hull of the training risks or distributions.

• We expect V-REx to be the more practical algorithm. It is simple to implement. And it performed better in our CMNIST
experiments; we believe this may be due to V-REx providing a smoother gradient vector field, and thus more stable
optimization, see Figure 3.1.

Note that despite our presentation moving from MM-REx to V-REx, we do not view V-REx as an approximation of MM-REx,
and we do not suggest or have any reason to believe MM-REx is a better objective in principle. Either method recovers the
REx principle as a limiting case, as we prove in Section F.1. We also provide a sequence of mathematical derivations that
sheds light on the relationship between MM-REx and V-REx in Section F.2. We can view these as a progression of steps for
moving from the robust optimization formulation of MM-REx to the penalty:

1. From minimax to closed form: We show how to arrive at the closed-form version of MM-REx provided in Eqn. 7.

2. Closed form as mean absolute error: The closed form of MM-REx is equivalent to a mean absolute error (MAE)
penalty term when there are only two training domains.

3. V-REx as mean squared error: V-REx is exactly equivalent to a mean squared error penalty term (always). Thus in
the case of only two training domains, the difference between MM-REx and V-REx is just a different choice of norm.
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F.1. V-REx and MM-REx enforce the REx principle in the limit

We prove that both MM-REx and V-REx recover the constraint of perfect equality between risks in the limit of λmin → −∞
or β →∞, respectively. For both proofs, we assume all training risks are finite.

Proposition 1. The MM-REx risk of predictor fθ,RMM−REx(θ)→∞ as λmin → −∞ unlessRd = Re for all training
domains d, e.

Proof. Suppose the risk is not equal across domains, and let the largest difference between any two training risks be
ε > 0. Then RMM−REx(θ) = (1 − mλmin) maxeRe(θ) + λmin

∑m
i=1Ri(θ) = maxeRe(θ) − mλmin maxeRe(θ) +

λmin

∑m
i=1Ri(θ) ≥ maxeRe(θ)− λminε, with the inequality resulting from matching up the m copies of λmin maxeRe

with the terms in the sum and noticing that each pair has a non-negative value (since Ri −maxeRe is non-positive and
λmin is negative), and at least one pair has the value −λminε. Thus sending λ→ −∞ sends this lower bound onRMM−REx

to∞ and henceRMM−REx →∞ as well.

Proposition 2. The V-REx risk of predictor fθ, RV−REx(θ) → ∞ as β → ∞ unless Rd = Re for all training domains
d, e.

Proof. Again, let ε > 0 be the largest difference in training risks, and let µ be the mean of the training risks. Then there must
exist an e such that |Re − µ| ≥ ε/2. And thus V ari(Ri(θ)) =

∑
i(Ri − µ)2 ≥ (ε/2)2, since all other terms in the sum are

non-negative. Since ε > 0 by assumption, the penalty term is positive and thusRV−REx(θ)
.
=
∑
iRi(θ) + βV ari(Ri(θ))

goes to infinity as β →∞.

F.2. Connecting MM-REx to V-REx

F.2.1. CLOSED FORM SOLUTIONS TO RISK INTERPOLATION AND MINIMAX-REX

Here, we show that risk interpolation is equivalent to the robust optimization objective of Eqn. 5. Without loss of generality,
let R1 be the largest risk, so Re ≤ R1, for all e. Thus we can express Re = R1 − de for some non-negative de, with
d1 = 0 ≥ de for all e. And thus we can write the weighted sum of Eqn. 7 as:

RMM(θ)
.
= max

Σeλe=1
λe≥λmin

m∑
e=1

λeRe(θ) (12)

= max
Σeλe=1
λe≥λmin

m∑
e=1

λe(R1(θ)− de) (13)

= R1(θ) + max
Σeλe=2
λe≥λmin

m∑
e=1

−λe(de) (14)

(15)

Now, since de are non-negative, −de is non-positive, and the maximal value of this sum is achieved when λe = λmin for all
e ≥ 2, which also implies that λ1 = 1− (m− 1)λmin. This yields the closed form solution provided in Eqn. 7. The special
case of Risk Interpolation, where λmin = 0, yields Eqn. 5.

F.2.2. MINIMAX-REX AND MEAN ABSOLUTE ERROR REX

In the case of only two training risks, MM-REx is equivalent to using a penalty on the mean absolute error (MAE) between
training risks. However, penalizing the pairwise absolute errors is not equivalent when there are m > 2 training risks, as we
show below. Without loss of generality, assume thatR1 < R2 < ... < Rm. Then (1/2 of) theRMAE penalty term is:
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∑
i

∑
j≤i

(Ri −Rj) = mRm −
∑
j≤m

Rj + (m− 1)Rm−1 −
∑

j≤m−1

Rj . . . (16)

=
∑
j

jRj −
∑
j

∑
i≤j

Ri (17)

=
∑
j

jRj −
∑
j

(m− j + 1)Rj (18)

=
∑
j

(2j −m− 1)Rj (19)

For m = 2, we have 1/2RMAE = (2 ∗ 1− 2− 1)R1 + (2 ∗ 2− 2− 1)R2 = R2 −R1. Now, adding this penalty term with
some coefficient βMAE to the ERM term yields:

RMAE
.
= R1 +R2 + βMAE(R2 −R1) = (1− βMAE)R1 + (1 + βMAE)R2 (20)

(21)

We wish to show that this is equal toRMM for an appropriate choice of learning rate γMAE and hyperparameter βMAE. Still
assuming thatR1 < R2, we have that:

RMM
.
= (1− λmin)R2 + λminR1 (22)

Choosing γMAE = 1/2γMM is equivalent to multiplyingRMM by 2, yielding:

2RMM
.
= 2(1− λmin)R2 + 2λminR1 (23)

Now, in order forRMAE = 2RMM, we need that:

2− 2λmin = 1 + βMAE (24)
2λmin = 1− βMAE (25)

(26)

And this holds whenever βMAE = 1− 2λmin. When m > 2, however, these are not equivalent, since RMM puts equal weight
on all but the highest risk, whereasRMAE assigns a different weight to each risk.

F.2.3. PENALIZING PAIRWISE MEAN SQUARED ERROR (MSE) YIELDS V-REX

The V-REx penalty (Eqn. 8) is equivalent to the average pairwise mean squared error between all training risks (up to a
constant factor of 2). Recall thatRi denotes the risk on domain i. We have:

1

2n2

∑
i

∑
j

(Ri −Rj)2
=

1

2n2

∑
i

∑
j

(
R2
i +R2

j − 2RiRj
)

(27)

=
1

2n

∑
i

R2
i +

1

2n

∑
j

R2
j −

1

n2

∑
i

∑
j

RiRj (28)

=
1

n

∑
i

R2
i −

(
1

n

∑
i

Ri

)2

(29)

= Var(R) . (30)

G. Further results and details for experiments mentioned in main text
G.1. CMNIST with covariate shift

Here we present the following additional results:
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1. Figure 1 of the main text with additional results using MM-REx, see G.1. These results used the “default” parameters
from the code of Arjovsky et al. (2019).

2. A plot with results on these same tasks after performing a random search over hyperparameter values similar to that
performed by Arjovsky et al. (2019).

3. A plot with the percentage of the randomly sampled hyperparameter combinations that have satisfactory (> 50%)
accuracy, which we count as “success” since this is better than random chance performance.

These results show that REx is able to handle greater covariate shift than IRM, given appropriate hyperparameters.
Furthermore, when appropriately tuned, REx can outperform IRM in situations with covariate shift. The lower success rate
of REx for high values of p is because it produces degenerate results (where training accuracy is less than test accuracy)
more often.

The hyperparameter search consisted of a uniformly random search of 340 samples over the following intervals of the
hyperparameters:

1. HiddenDim = [2**7, 2**12]

2. L2RegularizerWeight = [10**-2, 10**-4]

3. Lr = [10**-2.8, 10**-4.3]

4. PenaltyAnnealIters = [50, 250]

5. PenaltyWeight = [10**2, 10**6]

6. Steps = [201, 601]
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Figure 10. This is Figure 5 of main text with additional results using MM-REx. For each covariate shift variant (class imbalance, digit
imbalance, and color imbalance from left to right as described in "CMNIST with covariate shift" subsubsection of Section 4.1 in main
text) of CMNIST, the standard error (the vertical bars in plots) is higher for MM-REx than for V-REx.
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Figure 11. This is Figure 5 of main text (class imbalance, digit imbalance, and color imbalance from left to right as described in "CMNIST
with covariate shift" subsubsection of Section 4.1 in main text), but with hyperparameters of REx and IRM each tuned to perform as well
as possible for each value of p for each covariate shift type.
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Figure 12. This also corresponds to class imbalance, digit imbalance, and color imbalance from left to right as described in "CMNIST
with covariate shift" subsubsection of Section 4.1 in main text; but now the y-axis refers to what percentage of the randomly sampled
hyperparameter combinations we deemed to to be satisfactory. We define satisfactory as simultaneously being better than random guessing
and having train accuracy greater than test accuracy. For p less than .5, a larger percentage of hyperparameter combinations are often
satisfactory for REx than for IRM; for p greater than .5, a larger percentage of hyperparameter combinations are often satisfactory for
IRM than for REx because train accuracy is greater than test accuracy for more hyperparameter combinations for IRM. We stipulate that
train accuracy must be greater than test accuracy because test accuracy being greater than train accuracy usually means the model has
learned a degenerate prediction rule such as "not color".

G.2. SEMs from “Invariant Risk Minimization”

Here we present experiments on the (linear) structural equation model (SEM) tasks introduced by Arjovsky et al. (2019).
Arjovsky et al. (2019) construct several varieties of SCM where the task is to predict targets Y from inputs X1, X2, where
X1 are (non-anti-causal) causes of Y , and X2 are (anti-causal) effects of Y . We refer the reader to Section 5.1 and Figure 3
of Arjovsky et al. (2019) for more details. We use the same experimental settings as Arjovsky et al. (2019) (except we only
run 7 trials), and report results in Table 5.

These experiments include several variants of a simple SEM, given by:

X1 = N1

Y = W1→YX1 +NY

X2 = WY→2Y +N2

Where N1, NY , N2 are all sampled i.i.d. from normal distributions. The variance of these distributions may vary across
domains.

While REx achieves good performance in the domain-homoskedastic case, it performs poorly in the domain-
heteroskedastic case, where the amount of intrinsic noise, σ2

y in the target changes across domains.15 Intuitively, this is
because the irreducible error varies across domains in these tasks, meaning that the risk will be larger on some domains than
others, even if the model’s predictions match the expectation E(Y |Pa(Y )). We tried using a “baseline” (see Eqn. 5) of
re = V ar(Ye) (Meinshausen et al., 2015) to account for the different noise levels in Y , but this did not work.

We include a mathematical analysis of the simple SCM given above in order to better understand why REx succeeds in the
domain-homoskedastic, but not the domain-heteroskedastic case. Assuming that Y,X1, X2 are scalars, this SCM becomes

X1 = N1

Y = w1→yN1 +NY

X2 = wy→2w1→yN1 + wy→2NY +N2

We consider learning a model Ŷ = αX1 + βX2. Then the residual is:

Ŷ − Y = (α+ w1→y(βwy→2 − 1))N1 + (βwy→2 − 1)NY + βN2

Since all random variables have zero mean, the MSE loss is the variance of the residual. Using the fact that the noise
N1, NY , N2 are independent, this equals:

E[(Ŷ − Y )2] = (α+ w1→y(βwy→2 − 1))2σ2
1 + (βwy→2 − 1)2σ2

Y + β2σ2
2

15See Footnote 11.
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FOU(c) FOU(nc) FOS(c) FOS(nc)

IRM 0.001±0.000 0.001±0.000 0.001±0.000 0.000±0.000
REx, re = 0 0.001±0.000 0.008±0.002 0.007±0.002 0.000±0.000
REx, re = V(Ye) 0.816±0.149 1.417±0.442 0.919±0.091 0.000±0.000

POU(c) POU(nc) POS(c) POS(nc)

IRM 0.004±0.001 0.006±0.003 0.002±0.000 0.000±0.000
REx, re = 0 0.004±0.001 0.004±0.001 0.002±0.000 0.000±0.000
REx, re = V(Ye) 0.915±0.055 1.113±0.085 0.937±0.090 0.000±0.000

FEU(c) FEU(nc) FES(c) FES(nc)

IRM 0.0053±0.0015 0.1025±0.0173 0.0393±0.0054 0.0000±0.0000
REx, re = 0 0.0390±0.0089 19.1518±3.3012 7.7646±1.1865 0.0000±0.0000
REx, re = V(Ye) 0.7713±0.1402 1.0358±0.1214 0.8603±0.0233 0.0000±0.0000

PEU(c) PEU(nc) PES(c) PES(nc)

IRM 0.0102±0.0029 0.0991±0.0216 0.0510±0.0049 0.0000±0.0000
REx, re = 0 0.0784±0.0211 46.7235±11.7409 8.3640±2.6108 0.0000±0.0000
REx, re = V(Ye) 1.0597±0.0829 0.9946±0.0487 1.0252±0.0819 0.0000±0.0000

Table 5. Average mean-squared error between true and estimated weights on causal (X1) and non-causal (X2) variables. Top 2: When
the level of noise in the anti-causal features varies across domains, REx performs well (FOU, FOS, POU, POS). Bottom 2: When the
level of noise in the targets varies instead, REx performs poorly (FEU, FES, PEU, PES). Using the baselines re = V(Y ) does not solve
the problem, and indeed, hurts performance on the homoskedastic domains.

Thus when (only) σ2 changes, the only way to keep the loss unchanged is to set the coefficient in front of σ2 to 0, meaning
β = 0. By minimizing the loss, we then recover α = w1→y; i.e. in the domain-homoskedastic setting, the loss equality
constraint of REx yields the causal model. On the other hand, if (only) σY changes, then REx enforces β = 1/wy→2, which
then induces α = 0, recovering the anticausal model.

While REx (like ICP (Peters et al., 2016)) assumes the mechanism for Y is fixed across domains (meaning P (Y |Pa(Y )) is
independent of the domain, e), IRM makes the somewhat weaker assumption that E(Y |Pa(Y )) is independent of domain.
While it is plausible that an appropriately designed variant of REx could work under this weaker assumption, we believe
forbidding interventions on Y is not overly restrictive, and such an extension for future work.

G.3. Reinforcement Learning Experiments

Here we provide details and further results on the experiments in Section 4.1. We take tasks from the Deepmind Control
Suite (Tassa et al., 2018) and modify the original state, s, to produce observation, o = (s + ε, ηs′) including noise ε and
spurious features ηs′, where s′ contains 1 or 2 dimensions of s. The scaling factor takes values η = 1/2/3 for the two training
and test domains, respectively. The agent takes o as input and learns a representation using Soft Actor-Critic (Haarnoja
et al., 2018) and an auxiliary reward predictor, which is trained to predict the next 3 rewards conditioned on the next 3
actions. Since the spurious features are copied from the state before the noise is added, they are more informative for the
reward prediction task, but they do not have an invariant relationship with the reward because of the domain-dependent η.

The hyperparameters used for training Soft Actor-Critic can be found in Table 6. We used cartpole_swingup as a
development task to tune the hyperparameters of penalty weight (chosen from [0.01, 0.1, 1, 10]) and number of iterations
before the penalty is turned up (chosen from [5000, 10000, 20000]), both for REx and IRM. The plots with the hyperparameter
sweep are in Figure 13.
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Figure 13. Hyperparameter sweep for IRM and REx on cartpole_swingup. Green, blue, and orange curves correspond to REx,
ERM, and IRM, respectively. The subfigure titles state the penalty strength (“penalty”) and after how many iterations the penalty strength
was increased (“iters”). We chose a penalty factor of 1 and 10k iterations.

Parameter name Value
Replay buffer capacity 1000000
Batch size 1024
Discount γ 0.99
Optimizer Adam
Critic learning rate 10−5

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.005
Critic encoder soft-update rate τenc 0.005
Actor learning rate 10−5

Actor update frequency 2
Actor log stddev bounds [−5, 2]
Encoder learning rate 10−5

Decoder learning rate 10−5

Decoder weight decay 10−7

L1 regularization weight 10−5

Temperature learning rate 10−4

Temperature Adam’s β1 0.9
Init temperature 0.1

Table 6. A complete overview of hyperparameters used for reinforcement learning experiments.

H. Experiments not mentioned in main text
We include several other experiments which do not contribute directly to the core message of our paper. Here is a summary
of the take-aways from these experiments:

1. Our experiments in the CMNIST domain suggest that the IRM/V-REx penalty terms should be amplified exactly when
the model starts overfitting training distributions.

2. Our financial indicators experiments suggest that IRM and REx often perform remarkably similarly in practice.
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H.1. A possible approach to scheduling IRM/REx penalties

We’ve found that REx and IRM are quite sensitive to the choice of hyperparameters. In particular, hyperparameters
controlling the scheduling of the IRM/V-REx penalty terms are of critical importance. For the best performance, the penalty
should be increased the relative weight of the penalty term after approximately 100 epochs of training (using a so-called
“waterfall” schedule (Desjardins et al., 2015)). See Figure 14(b) for a comparison. We also tried an exponential decay
schedule instead of the waterfall and found the results (not reported) were significantly worse, although still above 50%
accuracy.

Given the methodological constraints of out-of-distribution generalization mentioned in (Gulrajani & Lopez-Paz, 2020),
this could be a significant practical issue for applying these algorithms. We aim to address this limitation by providing a
guideline for when to increase the penalty weight, based only on the training domains. We hypothesize that successful
learning of causal features using REx or IRM should proceed in two stages:

1. In the first stage, predictive features are learned.

2. In the second stage, causal features are selected and/or predictive features are fine-tuned for stability.

This viewpoint suggests that we could use overfitting on the training tasks as an indicator for when to apply (or increase) the
IRM or REx penalty.

The experiments presented in this section provide observational evidence consistent with this hypothesis. However, since
the hypothesis was developed by observing patterns in the CMNIST training runs, it requires further experimental validation
on a different task, which we leave for future work.

H.1.1. RESULTS AND INTERPRETATION

In Figure 14, we demonstrate that the optimal point to apply the waterfall in the CMNIST task is after predictive features
have been learned, but before the model starts to memorize training examples. Before predictive features are available,
the penalty terms push the model to learn a constant predictor, impeding further learning. And after the model starts to
memorize, it become difficult to distinguish anti-causal and causal features. This second effect is because neural networks
often have the capacity to memorize all training examples given sufficient training time, achieving and near-0 loss (Zhang
et al., 2016). In the limits of this memorization regime, the differences between losses become small, and gradients of the
loss typically do as well, and so the REx and IRMv1 penalties no longer provide a strong or meaningful training signal, see
Figure 15.

H.2. Domain Generalization: VLCS and PACS

Here we provide earlier experiments on the VLCS and PACS dataset. We removed these experiments from the main text of
our paper in favor of the more complete DomainBed results.

To test whether REx provides a benefit on more realistic domain generalization tasks, we compared REx, IRM and ERM
performance on the VLCS (Torralba & Efros, 2011) and PACS (Li et al., 2017) image datasets. Both datasets are commonly-
used for multi-source domain generalization. The task is to train on three domains and generalize to a fourth one at test
time.

Since every domain in PACS is used as a test set when training on the other three domains, it is not possible to perform
a methodologically sound evaluation on PACS after examining results on any of the data. Thus to avoid performing any
tuning on test distributions, we use VLCS to tune hyperparameters and then apply these exact same settings to PACS and
report the final average over 10 runs on each domain.

We use the same architecture, training procedure and data augmentation strategy as the (formerly) state-of-the-art Jigsaw
Puzzle approach (Carlucci et al., 2019) (except with IRM or V-REx intead of JigSaw as auxilliary loss) for all three methods.
As runs are very noisy, we ran each experiment 10 times, and report average test accuracies extracted at the time of the
highest validation accuracy on each run. Results on PACS are in Table 8. On PACS we found that REx outperforms IRM
and IRM outperforms ERM on average, while all are worse than the state-of-the-art Jigsaw method.
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Figure 14. Stability penalties should be applied around when traditional overfitting begins, to ensure that the model has learned predictive
features, and that penalties still give meaningful training signals. Top: Test accuracy as a function of epoch at which penalty term weight
is increased (learning rate is simultaneously decreased proportionally). Choosing this hyperparameter correctly is essential for good
performance. Middle: Generalization gap on a validation set with 85% correlation between color and label (the same as the average
training correlation). The best test accuracy is achieved by increasing the penalty when the generalization gap begins to increase. The
increase clearly indicates memorization because color and shape are only 85%/75% correlated with the label, and so cannot be used
to make predictions with higher than 85% accuracy. Bottom: Accuracy on training/test sets, as well as an auxilliary grayscale set.
Training/test performance reach 85%/15% after a few epochs of training, but grayscale performance improves, showing that meaningful
features are still being learned.

We use all hyperparameters from the original Jigsaw codebase.16 We use Imagenet pre-trained AlexNet features and chose
batch-size, learning rate, as well as penalty weights based on performance on the VLCS dataset where test performance
on the holdout domain was used for the set of parameters producing the highest validation accuracy. The best performing

16https://github.com/fmcarlucci/JigenDG

https://github.com/fmcarlucci/JigenDG
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Figure 15. Given sufficient training time, empirical risk minimization (ERM) minimizes both REx and IRMv1 penalty terms on Colored
MNIST (without including either term in the loss function). This is because the model (a deep network) has sufficient capacity to fit the
training sets almost perfectly. This prevents these penalties from having the intended effect, once the model has started to overfit. The
y-axis is in log-scale.

parameters on VLCS were then applied to the PACS dataset without further changes. We searched over batch-sizes in
{128, 384}, over penalty strengths in {0.0001, 0.001, 0.01, 0.1, 1, 10}, learning rates in {0.001, 0.01} and used average
performance over all 4 VLCS domains to pick the best performing hyperparameters. Table 7 shows results on VLCS with
the best performing hyperparameters.

The final parameters for all methods on PACS were a batch size of 384 with 30 epochs of training with Adam, using a
learning rate of 0.001, and multiplying it by 0.1 after 24 epochs (this step schedule was taken from the Jigsaw repo).The
penalty weight chosen for Jigsaw was 0.9; for IRM and REx it was 0.1.We used the same data-augmentation pipeline as the
original Jigsaw code for ERM, IRM, Jigsaw and REx to allow for a fair comparison.

VLCS CALTECH SUN PASCAL LABELME Average

REx (ours) 96.72 63.68 72.41 60.40 73.30
IRM 95.99 62.85 71.71 59.61 72.54
ERM 94.76 61.92 69.03 60.55 71.56
Jigsaw (SOTA) 96.46 63.84 70.49 60.06 72.71

Table 7. Accuracy (percent) of different methods on the VLCS task. Results are test accuracy at the time of the highest validation
accuracy, averaged over 10 runs. On VLCS REx outperforms all other methods. Numbers are shown in strike-through because we selected
our hyperparameters based on highest test set performance; the goal of this experiment was to find suitable hyperparameters for the PACS
experiment.

H.3. Financial indicators

We find that IRM and REx seem to perform similarly across different splits of the data in a prediction task using financial
data. The dataset is split into five years, 2014–18, containing 37 publicly reported financial indicators of several thousand
publicly listed companies each. The task is to predict if a company’s value will increase or decrease in the following year
(see Appendix for dataset details.) We consider each year a different domain, and create 20 different tasks by selecting
all possible combinations of domains where three domains represent the training sets, one domain the validation set, and
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PACS Art Painting Cartoon Sketch Photo Average

REx (ours) 66.27±0.46 68.8±0.28 59.57±0.78 89.60±0.12 71.07
IRM 66.46±0.31 68.60±0.40 58.66±0.73 89.94±0.13 70.91
ERM 66.01±0.22 68.62±0.36 58.38±0.60 89.40±0.18 70.60

Jigsaw (SOTA) 66.96±0.39 66.67±0.41 61.27±0.73 89.54±0.19 71.11

Table 8. Accuracy (percent) of different methods on the PACS task. Results are test accuracy at the time of the highest validation accuracy,
averaged over 10 runs. REx outperforms ERM on average, and performs similar to IRM and Jigsaw (the state-of-the-art).
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Figure 16. Financial indicators tasks. The left panel indicates the set of training domains; the middle and right panels show the test
accuracy on the respective domains relative to ERM (a black dot corresponds to a training domain; a colored patch indicates the test
accuracy on the respective domain.)

another one the test set. We train an MLP using the validation set to determine an early stopping point, with β = 104. The
per-task results summarized in fig. 16 indicate substantial differences between ERM and IRM, and ERM and REx. The
predictions produced by IRM and REx, however, only differ insignificantly, highlighting the similarity of IRM and REx.
While performance on specific tasks differs significantly between ERM and IRM/REx, performance averaged over tasks is
not significantly different.

H.3.1. EXPERIMENT DETAILS

We use v1 of the dataset published on 17 and prepare the data as described in.18 We further remove all the variables that are
not shared across all 5 years, leaving us with 37 features, and whiten the data through centering and normalizing by the
standard deviation.

On each subtask, we train an MLP with two hidden layers of size 128 with tanh activations and dropout (p=0.5) after each
layer. We optimize the binary cross-entropy loss using Adam (learning rate 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8), and an
L2 penalty (weight 0.001). In the IRM/REx experiments, the respective penalty is added to the loss (β = 1) and the original
loss is scaled by a factor 10−4 after 1000 iterations. Experiments are run for a maximum of 9000 training iterations with
early stopping based on the validation performance. All results are averaged over 3 trials. The overall performance of the
different models, averaged over all tasks, is summarized in Tab. 9. The difference in average performance between ERM,
IRM, and REx is not statistically significant, as the error bars are very large.

I. Overview of other topics related to OOD generalization
Domain adaptation (Ben-David et al., 2010a) shares the goal of generalizing to new distributions at test time, but allows
some access to the test distribution. A common approach is to make different domains have a similar distribution of features
(Pan et al., 2010). A popular deep learning method for doing so is Adversarial Domain Adaptation (ADA) (Ganin et al.,
2016; Tzeng et al., 2017; Long et al., 2018; Li et al., 2018), which seeks a “invariant representation” of the inputs, i.e. one

17https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
18https://www.kaggle.com/cnic92/explore-and-clean-financial-indicators-dataset

https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
https://www.kaggle.com/cnic92/explore-and-clean-financial-indicators-dataset


Out-of-Distribution Generalization via Risk Extrapolation

Overall accuracy Min acc. Max acc.

ERM 54.6± 4.6 47.6 66.2
IRM 55.3± 5.9 45.9 67.5
REx 55.5± 6.0 47.2 68.0

Table 9. Test accuracy of models trained on the financial domain dataset, averaged over all 20 tasks, as well as min./max. accuracy across
the tasks.

whose distribution is domain-independent. Recent works have identified fundamental shortcomings with this approach,
however (Zhao et al., 2019; Johansson et al., 2019; Arjovsky et al., 2019; Wu et al., 2020).

Complementary to the goal of domain generalization is out-of-distribution detection (Hendrycks & Gimpel, 2016;
Hendrycks et al., 2018), where the goal is to recognize examples as belonging to a new domain. Three common deep
learning techniques that can improve OOD generalization are adversarial training (Goodfellow et al., 2014; Hendrycks
& Dietterich, 2019), self-supervised learning (van den Oord et al., 2018; Hjelm et al., 2018; Hendrycks et al., 2019b;
Albuquerque et al., 2020) and data augmentation (Krizhevsky et al., 2012; Zhang et al., 2017; Cubuk et al., 2018; Shorten
& Khoshgoftaar, 2019; Hendrycks et al., 2019a; Carlucci et al., 2019). These methods can also been combined effectively in
various ways (Tian et al., 2019; Bachman et al., 2019; Gowal et al., 2019). Data augmentation and self-supervised learning
methods typically use prior knowledge such as 2D image structure. Several recent works also use prior knowledge to
design augmentation strategies for invariance to superficial features that may be spuriously correlated with labels in object
recognition tasks (He et al., 2019; Wang et al., 2019; Gowal et al., 2019; Ilse et al., 2020). In contrast, REx can discover
which features have invariant relationships with the label without such prior knowledge.


