
Near-Optimal Confidence Sequences for Bounded Random Variables

A. Competing Concentration Bounds
Theorem 5 (Hoeffding; Theorem 3.1.2 of Giné & Nickl (2016)). If X1, . . . , Xn are independent mean-zero random
variables satisfying PpB ď Xi ď Bq “ 1, then

P

˜

Sn ě

d

1

2
npB ´Bq2 log

ˆ

1

δ

˙

¸

ď δ, @δ P r0, 1s.

(There is a generalization of Hoeffding’s inequality that relaxes the boundedness assumption by a sub-Gaussian assumption;
see Zhao et al. (2016) for details.)

Theorem 6 (Adaptive Hoeffding; Corollary 1 of Zhao et al. (2016)). If X1, . . . , Xn are independent mean-zero random
variables satisfying PpB ď Xi ď Bq “ 1, then

P

˜

Dn ě 1 : Sn ě pB ´Bq

c

0.6n logplog1.1 n` 1q `
logp12{δq

1.8
n

¸

ď δ, @δ P r0, 1s.

Theorem 7 (Bernstein; Theorem 3.1.7 of Giné & Nickl (2016)). If X1, . . . , Xn, . . . are independent random variables
satisfying (2), then

P

¨

˝Sn ě

g

f

f

e2
n
ÿ

i“1

A2
i log

ˆ

1

δ

˙

`
1

9
B2 log2

ˆ

1

δ

˙

`
1

3
B log

ˆ

1

δ

˙

˛

‚ď δ, @δ P r0, 1s.

Theorem 8 (Empirical Bernstein; Eq. (5) of Mnih et al. (2008)). IfX1, X2, . . . are independent mean zero random variables
satisfying (2) with A1 “ A2 “ . . . “ A, then

P
ˆ

Dn ě 1 : Sn ě

b

2nη pA2
n logp3hpknq{p2δqq ` 3Bη logp3hpknq{p2δqq

˙

ď δ,

where pA2
n is the sample variance and kn is the constant defined in Theorem 2.

B. More Simulations
B.1. Hyperparameters of Stitching

In Section 3, we mentioned that there are two hyperparameters of our stitching methods: (1) the spacing parameter η ą 1
and (2) the power parameter c ą 1 for the stitching function hcpkq “ ζpcqpk ` 1qc where ζp¨q is the Riemann zeta function.

0 20000 40000 60000 80000 100000
n

0

100

200

300

400

500

600 η = 1.1

η = 1.5

Figure 7: The upper bound of Sn obtained by adaptive Bentkus bound in Theorem 2 for different values of η. Both the
variance A “

?
3{4 and the upper bound B “ 3{4 is known.

Figure 7 illustrates that the choice of η determines how the budget δ is distributed across different sample sizes.



Near-Optimal Confidence Sequences for Bounded Random Variables

0 20000 40000 60000 80000 100000
k

101

103

105

107

109

1011

1013

1015

h
c(
k

)
=
ζ

(c
)(
k

+
1)
c

c = 1.01

c = 1.1

c = 3.0

0 20000 40000 60000 80000 100000
n

0

100

200

300

400

500

600

700

800
c = 1.01

c = 1.1

c = 3.0

Figure 8: Left: The stitching function hcp¨q for different values of c. Right: The upper bound of Sn obtained by
A-Bentkus with different values of c. Both the variance A2 “ 3{16 and the upper bound B “ 3{4 is known.

Figure 8 shows both the stitching function hcp¨q and corresponding upper bound A-Bentkus obtains. For a fixed sample
size n, the bigger hcpknq is, the smaller budget δ{hcpknq it obtains and hence it needs a larger upper bound. Hence, the
faster hcp¨q grows, the more conservative upper bound (and corresponding, wider confidence interval) one will get.

B.2. Confidence Sequence for Bernoullip0.5q

In this section, we present a comparison of our confidence sequence with A-Hoeffding, E-Bernstein,
HRMS-Bernstein, and HRMS-Bernstein-GE on synthetic data from Bernoullip0.5q. In this case, Y1, Y2, . . . „
Bernoullip0.5q and the variance is 1{4. Hence in this case Hoeffding’s inequality is sharp and nothing can be gained by
variance exploitation. We observe this very fact in our experiment, where our method behaves as well as A-Hoeffding
for moderate to large sample sizes. Figures 9a and 9b show the comparison of confidence sequences in one replication and
comparison of average width over 1000 replications. As in the case of Bernoullip0.1q (Section 4.1), for small sample sizes,
A-Hoeffding and A-Bentkus behave very closely and are better than all other methods but for n moderately large, the
sharpness of A-Bentkus clearly pays off by outperforming A-Hoeffding and all other methods.
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Figure 9: Comparison of the 95% confidence sequences for the mean when Yi „ Bernoullip0.5q. Except A-Hoeffding,
all other methods estimate the variance. A-Bentkus is the confidence sequence in (17). HRMS-Bernstein-GE involves
a tuning parameter ρ which is chosen to optimize the boundary at n “ 500. (a) shows the confidence sequences from a single
replication. (b) shows the average widths of the confidence sequences over 1000 replications. The upper and lower bounds
for all the other methods are cut at 1 and 0 for a fair comparison. The failure frequency is 0.001 for HRMS-Bernstein-GE
and 0 for the others.
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B.3. Discussion for the Best Arm Identification Problem

In Section 4.3, we mentioned that a confidence sequence for which the radius Rα stays constant for a stretch of samples
yields a larger sample complexity. We present here more experimental details regarding this behavior.

In the following, we experiment with a single instance of best arm identification problem where the number of arms is 2
(i.e., K “ 2). The expected rewards are generated as the same as in Section 4.3, so that Arm 0 has mean µ0 “ 1 is the best
arm, and Arm 1 has mean µ1 « 0.34. For all the methods, we use the same data.
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(a) Confidence intervals of A-Hoeffding for two arms.
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(b) Confidence intervals of truncated A-Hoeffding.
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(c) Radius of A-Hoeffding (original and truncated) for two arms.
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(d) The difference of the radius for two arms: R0 ´R1. For positive
difference value, Arm 0 will be pulled. For negative difference
value, Arm 1 will be pulled.
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(e) The arms pulled at each iteration. ‘¨’: Arm 0 is pulled. ‘+’:
Arm 1 is pulled. A-Hoeffding and truncated A-Hoeffding
are marked in red and blue, respectively.

Figure 10: Identify the best arm out of two using A-Hoeffding and its truncated variant.
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We first explain this phenomenon using A-Hoeffding and its truncated variant. A-Hoeffding can result in confidence
intervals that are larger than r0, 1s. In the truncated version of A-Hoeffding, the upper confidence term of a confidence
interval will be capped at 1, and the lower confidence term will be cut at 0, so that all the confidence intervals stay in r0, 1s
throughout the experiment. We shall see that the truncated variant would result in stationary radius and yield larger sample
complexity compared with A-Hoeffding.

Figures 10a and 10b show the confidence intervals of each arm at each iteration, when A-Hoeffding and truncated
A-Hoeffding are plugged into Algorithm 2. The algorithm will stop when the confidence intervals of the two arms
completely separate (i.e., the lower bound of Arm 0 goes above the upper bound of Arm 1). Figure 10a and 10b show that
A-Hoeffding used 107 iterations, while the truncated A-Hoeffding used 132 iterations. One can observe that in the
initial stage of the algorithm, the confidence interval, without truncation, will likely get updated once a sample adds in,
which does not hold for the truncated version; compare the first 15 iterations in Figures 10a and 10b. Therefore, the radius
will not get updated for truncated A-Hoeffding, as shown in Figure 10c. Recall that Algorithm 2 samples an arm with
largest radius; when both radii are same, we sample the arm with smaller empirical mean. Due to the stationary radius, in
those iterations, truncated A-Hoeffding keeps sampling the same arm till an update happens.

In Figure 10d, we plot the difference between the radius for Arm 0 and Arm 1: R0 ´ R1. Arm 0 will be sampled if
this value is positive and vice versa. Again, if R0 is equal to R1, we shall sample the arm with lower empirical mean.
We can see the difference fluctuates evenly for A-Hoeffding, so that A-Hoeffding almost alternatively samples
each arm, and the confidence intervals of both arms gets updated alternatively as shown in Figure 10a. In contrast, for
truncated A-Hoeffding, the difference consistently stays above or below zero for some time, which means the same
arm gets sampled. See Figure 10e for the arms pulled at each iteration; the ‘+’ and ‘¨’ appear almost side-by-side with
A-Hoeffding and they appear disproportionately with truncated A-Hoeffding.

As mentioned, Algorithm 2 stops when the two confidence intervals separate, and it is not crucial for those intervals to be
shorter. Hence, it will stop fast if (i) the confidence interval gets updated by every sample and (ii) the updates are significant
for small number of samples (the early stage). Truncated A-Hoeffding underperforms in both aspects. This is also the
reason why the Berstein type of confidence sequences underperforms A-Hoeffding in this problem (c.f. Section 4.3).
Even though they are shorter for larger samples; A-Hoeffding is better with smaller samples.

Next, we investigate the performance for Bentkus type of methods. We write A-Bentkus to be the variant from Section 4.3,
that is, we output confidence interval trµlow˚

n , µup˚
n s, n ě 1u as in Theorem 4, but output radius Rn “ µup

n ´ µlow
n .

We write original A-Bentkus to be the one directly from Theorem 4, i.e., we output confidence interval trµlow˚
n , µup˚

n s, n ě
1u and radius Rn “ µup˚

n ´ µlow˚
n . Note that µup˚

n “ min1ďiďn µ
up
i is the cumulative minimum, which essentially serves

as the truncation of the upper confidence term, and similarly does the µlow˚
n . We refer the readers to Theorem 4 for the

details. Similar to the previous experiment, we shall see that the original A-Bentkus results in a larger sample complexity
than A-Bentkus. Figure 11a presents the results.
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(a) Confidence intervals of A-Bentkus (variant) for two arms.
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(b) Confidence intervals of A-Bentkus (original) for two arms.
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(c) Radius of A-Bentkus (original and variant) for two arms.
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(d) The difference of the radius for two arms: R0 ´R1. For positive
difference value, Arm 0 will be pulled. For negative difference
value, Arm 1 will be pulled.
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(e) The arms pulled at each iteration. ‘¨’: Arm 0 is pulled. ‘+’: Arm
1 is pulled. A-Bentkus and original A-Bentkus are marked in
red and blue, respectively.

Figure 11: Identify the best arm out of two using original A-Bentkus and the variant introduced in Section 4.3.

Patterns similar to the A-Hoeffding and its truncated version happen here too. Although A-Bentkus keeps sampling
the same arm in the beginning phase, it alternates the samples in the later stage. Comparing Figures 10e (A-Hoeffding)
and 11e (A-Bentkus), the sampling pattern of A-Hoeffding is more uniform, however, A-Bentkus still outperforms
A-Hoeffding due to its fast convergence.
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C. Computation of qpδ;n,A, Bq

In this section we provide some details on the computation of qpδ;n,A, Bq based on Bentkus (2004) and Pinelis (2009).
We will restrict to the case where A1 “ A2 “ ¨ ¨ ¨ “ An “ ¨ ¨ ¨ “ A.

For any random variable η, define

P2pu; ηq :“ inf
xďu

Erpη ´ xq2`s
pu´ xq2`

.

For any A,B, set pAB “ A2{pA2 `B2q. Define Bernoulli random variables R1, R2, . . . , Rn as

PpRi “ 1q “ pAB “ 1´ PpRi “ 0q.

Set Zn “
řn
i“1Ri. Zn is a binomial random variables with n trials and success probability pAB: Zn „ Bipn, pABq. For

0 ď k ď n, define

pk :“ P pZn ě kq , ek :“ E rZn1 tZn ě kus , vk :“ E
“

Z2
n1 tZn ě ku

‰

.

Proposition 2. For all u P R,

P2

˜

u;
n
ÿ

i“1

Gi

¸

“ P2

ˆ

Bu` nA2

A2 `B2
; Zn

˙

“ P2

ˆ

Bu` nA2

A2 `B2
;Zn

˙

.

Furthermore, for any x ě 0 and 1 ď k ď n´ 1,

P2 px;Znq “

$

’

’

’

’

&

’

’

’

’

%

1, if x ď npAB ,
npABp1´pABq

px´npABq2`npABp1´pABq
, if npAB ă x ď v0

e0
,

vkpk´e
2
k

x2pk´2xek`vk
, if vk´1´pk´1qek´1

ek´1´pk´1qpk´1
ă x ď vk´kek

ek´kpk
,

P pZn “ nq “ pnAB , if x ě vn´1´pn´1qen´1

en´1´pn´1qpn´1
“ n.

Formally, we can set P2px;Znq “ 0 for all x ą n because PpZn ą nq “ 0.

Proof. The result is mostly an implication of Proposition 3.2 of Pinelis (2009). It is clear that

Mn :“
n
ÿ

i“1

Gi
d
“

A2 `B2

B

˜

n
ÿ

i“1

Ri ´
nA2

A2 `B2

¸

,

where Ri „ BernoullipA2{pA2 `B2qq, that is,

P pRi “ 1q “ pAB “ 1´ PpRi “ 0q.

Proposition 3.2(vi) of Pinelis (2009) implies that

P2pu; Mnq :“ P2

ˆ

Bu` nA2

A2 `B2
; Zn

˙

.

Hence it suffices to find P2px; Znq for all x P R. The support of Zn is given by

supppZnq “ t0, 1, 2, . . . , nu.

Proposition 3.2(iv) of Pinelis (2009) (with α “ 2) implies that

P2 px;Znq “

#

1, if x ď npAB ,

P pZn “ nq , if x ě n.

Furthermore, x ÞÑ P2px;
řn
i“1Riq is strictly decreasing on pnpAB , nq. Define function F phq : RÑ R such that

F phq :“
ErZn pZn ´ hq`s
E pZn ´ hq`

. (18)
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For any npAB ă x ă n, let hx be the unique solution of

F phq “ x (19)

(Uniqueness here is established by Proposition 3.2(ii) of Pinelis (2009).) Then by Proposition 3.2(iii) of Pinelis (2009),

P2 px;Znq “
ErpZn ´ hxq2`s
px´ hxq2`

“
ErZn pZn ´ hxq`s ´ hxErpZn ´ hxq`s

px´ hxq2`

“
px´ hxqErpZn ´ hxq`s

px´ hxq2`

“
ErpZn ´ hxq`s
px´ hxq`

.

(20)

This holds for all nA2{pA2 `B2q ă x ă n. We will now discuss solving (19).

Proposition 3.2(i) of Pinelis (2009) implies that h ÞÑ F phq is continuous and increasing.

If h ď 0,

F phq “
ErZnpZn ´ hqs

ErZn ´ hs
“
npABp1´ pABq ` n

2p2AB ´ hnpAB
npAB ´ h

“ npAB `
npp1´ pABq

np´ h
.

This is strictly increasing on p´8, 0s, and F p0q “ npAB`p1´pABq. We get that for any npAB ă x ď npAB`p1´pABq,

F phq “ x ô hx “ npAB ´
npABp1´ pABq

x´ npAB
.

This further implies (from (20)) that

P2px;Znq “
ErZn ´ hxs
x´ hx

“
npABp1´ pABq

px´ npABq2 ` npABp1´ pABq
, for npAB ď x ď npAB ` p1´ pABq.

If 0 ă h ă n´ 1, set k “ rhs, in other words, k ´ 1 ă h ď k. Since tZn ě hu ô tZn ě ku, hence

ErZn pZn ´ hq`s “ ErZ2
n1tZn ě hus ´ hErZn1tZn ě hus

“ ErZ2
n1tZn ě kus ´ hErZn1tZn ě kus,

ErpZn ´ hq`s “ ErZn1tZn ě kus ´ hPpZn ě kq.

Therefore,

F phq “
ErZ2

n1tZn ě kus ´ hErZn1tZn ě kus

ErZn1tZn ě kus ´ hPpZn ě kq

“
vk ´ hek
ek ´ hpk

.

It is not difficult to verify that F p¨q is strictly increasing in pk ´ 1, ks and hence

hx “
vk ´ xek
ek ´ xpk

, if F pk ´ 1q ă x ď F pkq.

Substituting this hx in (20) yields the value of P2px; Znq, that is,

P2px; Znq “

ˆ

x´
vk ´ xek
ek ´ xpk

˙´1ˆ

ek ´
vk ´ xek
ek ´ xpk

pk

˙

“

ˆ

ek ´ xpk
2xek ´ x2pk ´ vk

˙ˆ

e2k ´ vkpk
ek ´ xpk

˙

“
e2k ´ vkpk

2xek ´ x2pk ´ vk
, whenever F pk ´ 1q ă x ď F pkq,
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Figure 12: Examples functions F phq and P2px;Znq when n “ 3, A “ 0.1 and B “ 1.0. We plot P2px;Znq in both linear
(second plot) and log (third plot) scales on the y-axis.

where F pkq “ vk´kek
ek´kpk

, 1 ď k ď n´ 1. Hence for 1 ď k ď n´ 1,

P2px;Znq “
vkpk ´ e

2
k

x2pk ´ 2xek ` vk
, whenever

vk´1 ´ pk ´ 1qek´1

ek´1 ´ pk ´ 1qpk´1
ă x ď

vk ´ kek
ek ´ kpk

.

Finally, we prove that F p¨q is a constant on rn´ 1, ns. It is clear that

F pn´ 1q “
vn´1 ´ pn´ 1qen´1

en´1 ´ pn´ 1qpn´1

“
ErZ2

n1tZn ě n´ 1us ´ pn´ 1qErZn1tZn ě n´ 1us

ErZn1tZn ě n´ 1us ´ pn´ 1qPpZn ě n´ 1q

“
pn2 ´ npn´ 1qqPpZn “ nq

pn´ pn´ 1qqPpZn “ nq
“ n.

Further if h ą n´ 1, then pZn ´ hq` ą 0 if and only if Zn “ h and hence from (18)

F phq “
ErZnpZn ´ hq`s
ErpZn ´ hq`s

“
npn´ hqPpZn “ nq

pn´ hqPpZn “ nq
“ n.

Therefore, the function F phq is constant on rn´ 1, ns.

For h ą n, we set F phq “ n since PpZn ą hq “ 0. To put all the pieces together, we have

F phq “

$

’

’

’

&

’

’

’

%

npAB `
npp1´pABq

np´h if h ă“ 0,
vrhs ´ herhs

erhs ´ hprhs

if 0 ă h ď n´ 1,

n if h ą n´ 1.

Consequently, for npAB ă x ă n,

hx “ F´1pxq “

#

npAB ´
npABp1´pABq

x´npAB
, if npAB ă x ď npAB ` p1´ pABq,

vk´xek
ek´xpk

, if F pk ´ 1q ă x ď F pkq, 1 ď k ď n´ 1.

As a graphical example, Figure 12 plots F phq and P2px;Znq when n “ 3, A “ 0.1 and B “ 1.0.
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C.1. Computation of the Quantile

Recall pAB “ A2{pA2 `B2q, Zn “
řn
i“1Ri, and

řn
i“1Gi is identically distributed as B´1pA2 `B2qpZn ´ npABq. We

will compute xδ such that
P2pxδ;Znq “ δ. (21)

This implies that

P2

˜

pA2 `B2qxδ ´ nA
2

B
;
n
ÿ

i“1

Gi

¸

“ δ, or equivalently, qpδ;n,A,Bq “
pA2 `B2qxδ ´ nA

2

B
.

Hence we concentrate on solving (21). Recall that for any x ě 0 and 1 ď k ď n´ 1,

P2 px;Znq “

$

’

’

’

’

&

’

’

’

’

%

1, if x ď npAB ,
npABp1´pABq

px´npABq2`npABp1´pABq
, if npAB ă x ď v0

e0
“ npAB ` p1´ pABq,

vkpk´e
2
k

x2pk´2xek`vk
, if vk´1´pk´1qek´1

ek´1´pk´1qpk´1
ă x ď vk´kek

ek´kpk
,

P pZn “ nq “ pnAB , if x ě vn´1´pn´1qen´1

en´1´pn´1qpn´1
“ n.

(22)

The function P2p¨;Znq is a non-increasing function and hence if δ ď pnAB , then we get xδ “ n` 10´8; this corresponds to
the last case in (22). If P2pv0{e0;Znq ď δ ď 1, then

xδ “ npAB `

c

p1´ δqnpABp1´ pABq

δ
;

this corresponds to the first and second case in (22); note that P2pv0{e0;Znq “ npABp1´ pABq{rp1´ pABq
2 ` npABp1´

pABqs. For the remaining cases, note that if there exists a 1 ď k ď n´ 1 such that

P2

ˆ

vk ´ kek
ek ´ kpk

;Zn

˙

ď δ ď P2

ˆ

vk´1 ´ pk ´ 1qek´1

ek´1 ´ pk ´ 1qpk´1
;Zn

˙

,

then
vk´1 ´ pk ´ 1qek´1

ek´1 ´ pk ´ 1qpk´1
ď xδ ď

vk ´ kek
ek ´ kpk

, (23)

and using the closed form expression of P2p¨;Znq on this interval, we get

xδ “
ek `

a

e2k ´ pkpvk ´ pvkpk ´ e
2
kq{δq

pk
. (24)

Using these calculations, one can find k looping over 1 ď k ď n´ 1 such that (23) holds. This approach has a complexity
of Opnq, assuming the availability of pk, ek, and vk.

We now describe an approach that reduces the complexity by finding quick-to-compute upper and lower bounds on xδ.
Lemmas 1.1 and 3.1 of Bentkus et al. (2006) show that

PpZn ě xq ď P2px;Znq ď
e2

2
P˝pZn ě xq, (25)

where P˝pZn ě xq represents the log-linear interpolation of P pZn ě xq, that is, for x P t0, 1, . . . , nu

P˝pZn ě xq “ PpZn ě xq, (26)

and for x P pk ´ 1, kq such that x “ p1´ λqpk ´ 1q ` λk,

P˝pZn ě xq “ pPpZn ě k ´ 1qq1´λpPpZn ě kqqλ.

Equation (2) of Bentkus (2002) further shows that

P˝pZn ě xq ď p1´ λqPpZn ě k ´ 1q ` λPpZn ě kq. (27)
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Hence, to find x “ xδ satisfying P2px;Znq “ δ, find k1 P t0, 1, . . . , nu such that

PpZn ě k1q ě δ.

This implies (from (25)) that P2pk1;Znq ě δ and because x ÞÑ P2px;Znq is decreasing, xδ ě k1. Further, find
k2 P t0, 1, . . . , nu such that

PpZn ě k2q ď 2δ{e2.
This implies (from (27)) that PopZn ě k2q “ PpZn ě k2q ď 2δ{e2. Hence using (26), we get P2pk2;Znq ď δ which
implies that xδ ď k2. Summarizing this discussion, we get that xδ satisfying P2pxδ;Znq “ δ also satisfies

k1 ď xδ ď k2, (28)

where
PpZn ě k1q ě δ and PpZn ě k2q ď 2δ{e2.

The bounds in (28) are not very useful because the closed form experssion (24) of xδ requires finding upper and lower
bounds for xδ in terms of pvk ´ kekq{pek ´ kpkq’s.

Now we note that
vk ě kek ě k2pk ñ

vk2 ´ k2ek2
ek2 ´ k2pk2

ě k2.

This combined with (28) proves that

k1 ď xδ ď k2 ď
vk2 ´ k2ek2
ek2 ´ k2pk2

.

The lower bound here is still not in terms of the ratios pvk ´ kekq{pek ´ kpkq. But given the upper bound, we can search for
k ď k2 (by running a loop from k2 to 0) such that

vk´1 ´ pk ´ 1qek´1

ek´1 ´ pk ´ 1qpk´1
ď xδ ď

vk ´ kek
ek ´ kpk

. (29)

Another approach is to make use of the lower bound in (28). Because k1 ď pvk1 ´ k1ek1q{pek1 ´ k1pk1q, there are two
possibilities:

1. k1 ď xδ ď pvk1 ´ k1ek1q{pek1 ´ k1pk1q;

2. k1 ď pvk1 ´ k1ek1q{pek1 ´ k1pk1q ă xδ .

In the first case, it suffices to search for k ď k1 such that (29). In the second case, we can search over k1 ` 1 ď k ď k2 as
before.

D. Proof of Theorem 1
It is clear that pSt,Ftqnt“1 with Ft “ σtX1, . . . , Xtu is a martingale because

E rSt|Ft´1s “ St´1 ` ErXts “ St´1.

Consider now the process
Dt :“ pSt ´ xq

2
` for a fixed x ą 0.

The function f : y ÞÑ py ´ xq2` is continuous and satisfies

f 1pyq “

#

0, if y ď x,

2py ´ xq, if y ą x,
and f2pyq “

#

0, if y ď x,

2, if y ą x.

Therefore, fp¨q is a convex function. This implies by Jensen’s inequality that

ErDt|Ft´1s “ ErfpStq|Ft´1s ě fpSt´1q.
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Hence pDt,Fqnt“1 is a submartingale. Doob’s inequality now implies that

P
ˆ

max
1ďtďn

St ě u

˙

paq
“ P

ˆ

max
1ďtďn

pSt ´ xq
2
` ě pu´ xq

2
`

˙

“ P
ˆ

max
1ďtďn

Dt ě pu´ xq
2
`

˙

pbq
ď

ErDns

pu´ xq2`
ď

ErpSn ´ xq2`s
pu´ xq2`

.

Here equality (a) holds for every x ď u and inequality (b) holds because of Doob’s inequality. Because x ď u is arbitrary,
we get

P
ˆ

max
1ďtďn

St ě u

˙

ď inf
xďu

ErpSn ´ xq2`s
pu´ xq2`

,

and condition (2) along with Theorem 2.1 of Bentkus et al. (2006) (or Pinelis (2006)) imply that

P
ˆ

max
1ďtďn

St ě u

˙

ď inf
xďu

Erp
řn
i“1Gi ´ xq

2
`s

pu´ xq2`
.

The definition (10) of qpδ;n,A, Bq readily implies

P
ˆ

max
1ďtďn

St ě qpδ;n,A, Bq
˙

ď δ.

This completes the proof of (11). We now prove the sharpness. Note that the condition

P
ˆ

max
1ďtďn

St ě nq̃pδ1{n;A,Bq

˙

ď δ for all δ P r0, 1s,

is equivalent to the existence of a function x ÞÑ Hpx;A,Bq such that

P
ˆ

max
1ďtďn

St ě nu

˙

ď Hnpu;A,Bq, for all u.

(The function δ ÞÑ q̃pδ1{n;A,Bq is the inverse of u ÞÑ Hnpu;A,Bq.) In particular, this implies that

P pSn ě nuq ď Hnpu;A,Bq for all u.

Now, Lemma 4.7 of Bentkus (2004) (also see Eq. (2.8) of Hoeffding (1963)) implies that

Hnpu;A,Bq ě

#

ˆ

1`
Bu

A2

˙´pA2
`Buq{pA2

`B2
q
´

1´
u

B

¯´pB2
´Buq{pB2

`A2
q

+n

“ inf
hě0

e´nhuE
”

eh
řn

i“1Gi

ı

,

where G1, . . . , Gn are independent random variables constructed through (6). Proposition 3.5 of Pinelis (2009) implies that

inf
hě0

e´nhuE
”

eh
řn

i“1Gi

ı

ě inf
xďnu

Erp
řn
i“1Gi ´ xq

2
`s

pnu´ xq2`
.

Summarizing the inequalities, we conclude

P pSn ě nuq ď inf
xďnu

Erp
řn
i“1Gi ´ xq

2
`s

pnu´ xq2`
ď inf
hě0

E
”

eh
řn

i“1Gi´hpnuq
ı

ď Hnpu;A,Bq @ u.

This proves that qpδ;n,A,Bq ď nq̃pδ1{n;A,Bq for any valid q̃p¨;A,Bq.
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E. Proof of Theorem 2
The proof is based on (11) and a union bound. It is clear that

P

˜

D t ě 1 :
t
ÿ

i“1

Xi ě qpδ{hpktq; ct,A, Bq
¸

“ P

˜

8
ď

k“0

#

D rηks ď t ď tηk`1u :
t
ÿ

i“1

Xi ě qpδ{hpktq; ct,A, Bq
+¸

“ P

˜

8
ď

k“0

#

D rηks ď t ď tηk`1u :
t
ÿ

i“1

Xi ě qpδ{hpkq; tηk`1u,A, Bq
+¸

ď

8
ÿ

k“0

P

˜

max
rηksďtďtηk`1u

t
ÿ

i“1

Xi ě qpδ{hpkq; tηk`1u,A, Bq
¸

ď

8
ÿ

k“0

δ

hpkq
ď δ.

F. Proof of Theorem 3
Theorem 2 implies that

P
ˆ

Dn ě 1 : Sn ě q

ˆ

δ1
hpknq

; cn, A,B

˙˙

ď δ1.

Lemma F.1 (below) proves
P
`

Dn ě 1 : A ě sAnpδ2q
˘

ď δ2.
In particular this implies that

P
ˆ

Dn ě 1 : A ě min
1ďsďn

sAspδ2q

˙

ď δ2.

Combining the inequalities above with a union bound (and Lemma H.2) proves the result.

Lemma F.1. Under the assumptions of Theorem 3, we have for any δ P r0, 1s,

P

˜

Dt ě 1 : V2tt{2u ´ tt{2uA2 ď ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

¸

ď δ, (30)

where Wi “ pX2i ´X2i´1q
2{2 and Vt :“

řtt{2u

i“1 Wi.

Proof. Fix x ě 0. Note that for any u ě ´x,

P
ˆ

max
1ďtďn

tV2t ´ tA
2u ď ´x

˙

“ P
ˆ

max
1ďtďn

pu´ tV2t ´ tA
2uq` ě pu` xq`

˙

,

ď
Erpu´ tV2n ´ 2nA2uq2`s

pu` xq2`
.

where the last inequality follows from the fact that tpu´ tV2t ´ tA2uutě1 is a submartingale. Therefore,

P
ˆ

max
1ďtďn

tV2t ´ tA
2u ď ´x

˙

ď inf
uě´x

Erpu´ tV2n ´ nA2uq2`s

pu` xq2`

“ inf
uě´x

Erpu` nA2 ´ V2nq
2
`s

pu` xq2`

“ inf
uěnA2´x

Erpu´ V2nq2`s
pu´ nA2 ` xq2

.
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Corollary 2.7 (Eq. (2.24)) of Pinelis (2016) implies that

inf
uěnA2´x

Erpu´ V2nq2`s
pu´ nA2 ` xq2

ď P2pE1,n ` Z
a

E2,n;nA2 ´ xq “ P2pE1,n ` Z
a

E2,n;E1,n ´ xq, (31)

where Ej,t “
řtt{2u

i“1 ErW j
i s for j “ 1, 2 and Z stands for a standard normal distribution. Inequality (31) is not the best

inequality to use and there is a more precise version; see Theorem 2.4(I) and Corollary 2.7 of Pinelis (2016). With the more
precise version, the following steps will lead to a refined upper bound on A; we will not pursue this direction here.

It now follows from Bentkus (2008) that

P2pE1,n ` Z
?
E2,n;E1,n ´ xq ď

e2

2
P

˜

Z ď ´
x

a

E2,n

¸

.

Because Xi P rB,Bs with probability 1, Wi ď pB ´Bq
2{2 and hence

E2,n “ E
n
ÿ

i“1

ErW 2
i s ď

pB ´Bq2

2

n
ÿ

i“1

ErWis “ pB ´Bq
2E1,n{2 “ npB ´Bq2A2{2.

This implies that

P
ˆ

max
1ďtďn

tV2t ´ tA
2u ď ´x

˙

ď
e2

2
P
ˆ

Z ď ´

?
2x

?
npB ´BqA

˙

.

Equating the right hand side to δ yields

P
ˆ

max
1ďtďn

tV2t ´ tA
2u ď ´

?
npB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2

˙˙

ď δ. (32)

Because of this maximal inequality, we can apply stitching and get (30). Note that

P

˜

Dt ě 1 : V2tt{2u ´ tt{2uA2 ď ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

¸

“ P

˜

Dt ě 2 : V2tt{2u ´ tt{2uA2 ď ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

¸

“ P

˜

8
ď

k“0

#

Drηks ď t ď tηk`1u : V2tt{2u ´ tt{2uA2 ď ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

+¸

ď

8
ÿ

k“0

P

˜

Drηks ď t ď tηk`1u : V2tt{2u ´ tt{2uA2 ď ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

¸

ď

8
ÿ

k“0

δ

hpkq
ď δ,

where the last inequality follows from (32) applied to t1 ď t ď tct{2uu.

Inequality (30) yields

P

˜

tA2 ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

´ V2t ď 0 @ t ě 1

¸

ě 1´ δ.

Inequality

tA2 ´

a

tct{2upB ´BqA
?

2
Φ´1

ˆ

1´
2δ

e2hpktq

˙

´ V2t ď 0

holds for A ą 0 if and only if

A ď g2,t `
b

g22,t ` g3,t,
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where

g2,t “

a

tct{2upB ´BqA

2
?

2t
Φ´1

ˆ

1´
2δ

e2hpktq

˙

and g3,t “
V2tt{2u

tt{2u
.

Hence a rewriting of (30) is

P
´

A ě g2,t `
b

g22,t ` g3,t @ t ě 1
¯

ě 1´ δ.

It is clear that g2,t “ Op1{
?
tq and ErV2tt{2u{tt{2us “ A2 and hence the upper bounds above grows like A `

Op
a

logphpktqq{tq.

G. Proof of Theorem 4
The assumption PpL ď Xi ď Uq “ 1 implies that PpL´ µ ď Xi ´ µ ď U ´ µq “ 1 and hence applying Theorem 2 with
Xi ´ µ and its upper bound U ´ µ yields

P

˜

Dn ě 1 :
n
ÿ

i“1

pXi ´ µq ě q

ˆ

δ1{2

hpknq
; cn, A, U ´ µ

˙

¸

ď
δ1
2
. (33)

Similarly applying Theorem 2 with µ´Xi and its upper bound µ´ L yields

P

˜

Dn ě 1 :
n
ÿ

i“1

pµ´Xiq ě q

ˆ

δ1{2

hpknq
; cn, A, µ´ L

˙

¸

ď
δ1
2
. (34)

Finally Lemma F.1 implies that
P
`

Dn ě 1 : A ě sA˚npδ2;U,Lq
˘

ď δ2. (35)
Now combining inequalities (33), (34), and (35) yields with probability ě 1´ δ1 ´ δ2, for all n ě 1

´
1

n
q

ˆ

δ1{2

hpknq
; cn, A, µ´ L

˙

ď
Sn
n
´ µ ď

1

n
q

ˆ

δ1{2

hpknq
; cn, A, U ´ µ

˙

, and A ď sA˚npδ2q.

On this event, we get by using U ´ µ ď U ´ L and µ´ L ď U ´ L,

µlow
0 ď µ ď µup

0 ,

and then recursively using µlow
n´1 ď µ ď µup

n´1,

´
1

n
q

ˆ

δ1{2

hpknq
; cn, sA˚npδ2q, µ

up
n´1 ´ L

˙

ď
Sn
n
´ µ ď

1

n
q

ˆ

δ1{2

hpknq
; cn, sA˚npδ2q, U ´ µ

low
n´1

˙

.

This proves the result.

H. Auxiliary Results
Define Mt, t ě 1 as Mt :“

řt
i“1Gi, with

P
`

Gi “ ´A
2
i {B

˘

“
B2

A2
i `B

2
and P pGi “ Bq “

A2
i

A2
i `B

2
.

Lemma H.1. For any t ě 1 and x P R, the map pA1, . . . , Atq ÞÑ ErpMt ´ xq
2
`s is non-decreasing.

Proof. Suppose we prove that for every y P R,

A1 ÞÑ ErpG1 ´ yq
2
`s is non-decreasing, (36)

then by conditioning on G2, . . . , Gt and taking y “ x`G2 ` ¨ ¨ ¨ `Gt, we get for A1 ď A11

ErpG1pA1q ´ yq
2
`s ď ErpG1pA

1
1q ´ yq

2
`s.
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Now taking expectations on both sides with respect to G2, . . . , Gt implies non-decreasingness of A1 ÞÑ ErpMt ´ xq2`s.
This implies the result.

To prove (36),

ErpG1 ´ yq
2
`s “

B2

A2
1 `B

2

ˆ

´
A2

1

B
´ y

˙2

`

`
A2

1

A2
1 `B

2
pB ´ yq2`.

Because A1 Ñ A2
1{B

2 is increasing, it suffices to show A2
1{B

2 ÞÑ ErpG1 ´ yq
2
`s is non-decreasing with respect to A2

1{B
2.

Set p “ A2
1{B

2 and define

gppq “
1

1` p
p´Bp´ yq

2
` `

p

1` p
pB ´ yq2`.

Differentiating with respect to p yields

Bgppq

Bp
“ ´

p´Bp´ yq2`
p1` pq2

´
2Bp´Bp´ yq`

1` p
`
pB ´ yq2`
p1` pq2

“
´p´Bp´ yq2` ´ 2Bp1` pqp´Bp´ yq` ` pB ´ yq

2
`

p1` pq2
.

If y ď ´Bp then y `Bp ă 0 and B ´ y ą Bp1` pq ą 0 and hence

Bgppq

Bp
“
´pBp` yq2 ` 2Bp1` pqpBp` yq ` pB ´ yq2

p1` pq2
“
B2 `B2p2 ` 2B2p

p1` pq2
ą 0.

If ´Bp ă y ă B then y `Bp ą 0 and B ´ y ą 0 and hence

Bgppq

Bp
“
pB ´ yq2

p1` pq2
ą 0.

If y ą B, then Bgppq{Bp “ 0. Hence Bgppq{Bp ě 0 for all p. This proves (36).

Recall the definition of qpδ; t,A, Bq from (10). In the case of equal variances, that is, A1 “ A2 “ . . . “ A, we write
A, qpδ; t, A,Bq for A, qpδ; t,A, Bq, respectively. We now prove that A ÞÑ qpδ; t2, A,Bq is an non-decreasing function.

Lemma H.2. For any t ě 1, the function A ÞÑ qpδ; t, A,Bq is an non-decreasing function.

Proof. Lemma H.1 proves that A ÞÑ ErpMt ´ xq
2
`s is non-decreasing. This implies that IpA;uq is also non-decreasing in

A, where

IpA;uq :“ inf
xďu

ErpMt ´ xq
2
`s

pu´ xq2`
.

Lemma 3.1 of Bentkus et al. (2006) proves that IpA;uq is also non-increasing in u. Fix A1 ď A2. From the definition of δ,

IpA1, qpδ; t, A1, Bqq “ δ and IpA2, qpδ; t, A2, Bqq “ δ.

Because IpA;uq is non-decreasing in A,

IpA2; qpδ; t, A2, Bqq “ δ “ IpA1; qpδ; t, A1, Bqq ď IpA2; qpδ; t, A1, Bqq

Hence IpA2; qpδ; t, A2, Bqq ď IpA2; qpδ; t, A1, Bqq and because IpA;uq is non-increasing in u, we conclude that
qpδ; t, A1, Bq ď qpδ; t, A2, Bq. This proves the result modulo the condition A ÞÑ ErpMt ´ xq

2
`s is non-decreasing.

Lemma H.3. For any δ P r0, 1s, qpδ; t, AB,B2q “ Bqpδ; t, A,Bq.

Proof. Recall that qpδ; t, AB,B2q is defined as the solution of

inf
xďu

ErpM 1
t ´ xq

2
`s

pu´ xq2`
“ δ,
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where M 1
t is defined as M 1

t “
řt
i“1G

1
i with

P
`

G1i “ ´pA
2B2q{B2

˘

“
B4

A2B2 `B4
“

B2

A2 `B2
and,

P
`

G1i “ B2
˘

“
A2B2

A2B2 `B4
“

A2

A2 `B2
.

This implies that G1i
d
“ BGi and hence M 1

t
d
“ BMt. Therefore,

ErpM 1
t ´ xq

2
`s “ ErpBMt ´ xq

2
`s “ B2ErpMt ´ x{Bq

2
`s,

and

inf
xďu

ErpM 1
t ´ xq

2
`s

pu´ xq2`
“ B2 inf

xďu

ErpMt ´ x{Bq
2
`s

B2pu{B ´ x{Bq2`
“ inf
xďu{B

ErpMt ´ xq
2
`s

pu{B ´ xq2`
.

The right hand side above equals δ, when u “ Bqpδ; t, A,Bq because the definition of qpδ; t, A,Bq implies that

inf
xďqpδ;t,A,Bq

ErpMt ´ xq
2
`s

pqpδ; t, A,Bq ´ xq2`
“ δ.

This completes the proof.

I. Alternative Empirical Bentkus Confidence Sequences with Estimated Variance
In Section 3.5, we presented one actionable version of Theorem 2, where we used an analytical upper bound on the variance
A2. In this section, we present an alternative empirical Bentkus confidence sequence that requires numerical computation. In
our initial experiments, we found solving for the upper bound of A in this way to be unstable. Because the proof technique
here is very analogues to that of the empirical Bernstein bound in Audibert et al. (2009, Eq. (48)-(50)), we present the
alternative bound below.

Define the empirical variance as

pA2
n :“ n´1

řn
i“1pXi ´ sXnq

2, where sXn “ n´1
řn
i“1Xi.

For any δ1, δ2 P r0, 1s, define

sAn :“ sup
!

a ě 0 : pA2
n ě a2 ´ B

n q
´

δ1
hpknq

; cn, a, B
¯

´ 1
n2 q

2
´

δ2
2hpknq

; cn, a, B
¯)

.

Lemma I.1 shows that sAn is an over-estimate of A uniformly over n and yields the following actionable bound. Recall that
Sn “

řn
i“1Xi “ n sXn.

Theorem 9. If X1, X2, . . . are mean-zero independent random variables satisfying VarpXiq “ A2 and Pp|Xi| ą Bq “ 0
for all i ě 1, then for any δ1, δ2 P r0, 1s,

P
ˆ

Dn ě 1 : |Sn| ě q

ˆ

δ2
2hpknq

; cn, sA
˚
n, B

˙

or A ě sA˚npδ1q

˙

ď δ1 ` δ2,

where sA˚n :“ min1ďsďn
sAs. Here kn and cn are same as those defined in Theorem 2.

This theorem is an analogue of the empirical Bernstein inequality Mnih et al. (2008, Eq. (5)). Furthermore, the upper bound
sAn on A is better than that in the Bernstein version Audibert et al. (2009, Eq. (49)-(50)); see Lemma I.2.

I.1. Proof of Theorem 9 and Comparison of Standard Deviation Estimation from Other Inequalities

Lemma I.1. If X1, X2, . . . are mean-zero independent random variables satisfying

VarpXiq “ A2 and Pp|Xi| ą Bq “ 0, for all i ě 1,

then for any δ P r0, 1s

P

¨

˝D t ě 1 : pA2
t ď A2 ´

B

t
q

ˆ

δ

hpktq
; ct, A,B

˙

´
1

t2

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď δ.
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Proof. Consider the random variable X2
i ´ ErX2

i s. These are mean zero and are bounded in absolute value by B2. Further
the variance can be bounded as

VarpX2
i ´ ErX2

i sq “ ErpX2
i ´ ErX2

i sq
2s ď B2Er|Xi|

2s “ B2A2.

Applying Theorem 2 with variables X2
i ´ ErX2

i s implies

P

˜

Dt ě 1 :
t
ÿ

i“1

´pX2
i ´ ErX2

i sq ě q

ˆ

δ

hpktq
; ct, AB,B

2

˙

¸

ď δ.

Lemma H.3 proves that

q

ˆ

δ

hpktq
; ct, AB,B

2

˙

“ Bq

ˆ

δ

hpktq
; ct, A,B

˙

.

Hence we get with probability at least 1´ δ, simultaneously for all t ě 1

t
ÿ

i“1

pXi ´ sXtq
2 “

t
ÿ

i“1

X2
i ´

1

t

˜

t
ÿ

i“1

Xi

¸2

ě

t
ÿ

i“1

ErX2
i s ´Bq

ˆ

δ

hpktq
; ct, A,B

˙

´
1

t

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Hence for any δ P r0, 1s,

P

¨

˝D t ě 1 : t pA2
t ď tA2 ´Bq

ˆ

δ

hpktq
; ct, A,B

˙

´
1

t

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď δ.

This completes the proof.

We will now prove Theorem 9. Theorem 2 implies that

P

˜

D t ě 1 :

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ě q

ˆ

δ2
2hpktq

; ct,A, B
˙

¸

ď δ2, (37)

Lemma I.1 implies that

P

¨

˝D t ě 1 : pA2
t ď

t

t´ 1
A2 ´

B

t´ 1
q

ˆ

δ1
hpktq

; ct, A,B

˙

´
1

tpt´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď δ1.

Hence with probability at least 1´ δ1 ´ δ2, simultaneously for all t ě 1,
ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

ď q

ˆ

δ2
2hpktq

; ct, A,B

˙

,

pA2
t ď

t

t´ 1
A2 ´

B

t´ 1
q

ˆ

δ1
hpktq

; ct, A,B

˙

´
1

tpt´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

i“1

Xi

ˇ

ˇ

ˇ

ˇ

ˇ

2

On this event, A ď sAt simultaneously for all t ě 1 which in turn implies that A ď min1ďsďt
sAs also holds simultaneously

for all t ě 1. Substituting this in (37) (along with Lemma H.2) implies the result.
Lemma I.2. Suppose δ ÞÑ q̃pδ1{n;A,Bq is a function such that

P
ˆ

max
1ďtďn

St ě nq̃pδ1{n;A,Bq

˙

ď δ, (38)

for all δ P r0, 1s and independent random variables X1, . . . , Xn satisfying (2). Define the (over)-estimator of A as

Ãt :“ sup

"

a ě 0 : pA2
t ě a2 ´

Bct
t
q̃
´

pδ{p3hpktqqq
1{ct ; a,B

¯

´
c2t
t2
q̃2

´

pδ{p3hpktqqq
1{ct ; a,B

¯

*

.

Then sAn ď Ãn.
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Proof. We have proved in Appendix D that (38) implies

q pδ;n, a,Bq ď nq̃
´

δ1{n; a,B
¯

,

for all n, a, and B. Hence if a satisfies

pA2
t ě a2 ´

B

t
q

ˆ

δ

3hpktq
; ct, a, B

˙

´
1

t2
q2

ˆ

δ

3hpktq
; ct, a, B

˙

,

then
pA2
n ě a2 ´

Bct
t
q̃
´

pδ{p3hpktqqq
1{ct ; a,B

¯

´
c2t
t2
q̃2

´

pδ{p3hpktqqq
1{ct ; a,B

¯

,

which implies the result.


