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Abstract

We propose an iterative algorithm for low-rank
matrix completion that can be interpreted as an
iteratively reweighted least squares (IRLS) al-
gorithm, a saddle-escaping smoothing Newton
method or a variable metric proximal gradient
method applied to a non-convex rank surrogate.
It combines the favorable data-efficiency of previ-
ous IRLS approaches with an improved scalability
by several orders of magnitude. We establish the
first local convergence guarantee from a minimal
number of samples for that class of algorithms,
showing that the method attains a local quadratic
convergence rate. Furthermore, we show that the
linear systems to be solved are well-conditioned
even for very ill-conditioned ground truth matri-
ces. We provide extensive experiments, indicating
that unlike many state-of-the-art approaches, our
method is able to complete very ill-conditioned
matrices with a condition number of up to 1010

from few samples, while being competitive in its
scalability.

1. Introduction
In different areas of machine learning and signal processing,
low-rank models have turned out to be a powerful tool for
the acquisition, storage and computation of information. In
many of these applications, an important sub-problem is to
infer the low-rank model from partial or incomplete data
(Davenport & Romberg, 2016; Chi et al., 2019).

This problem is called low-rank matrix completion: Given
a matrix X0 ∈ Rd1×d2 of rank-r and an index set Ω ⊂
[d1]× [d2], the task is to reconstruct X0 just from the knowl-

1Department of Applied Mathematics & Statistics, Johns Hop-
kins University, Baltimore, USA 2Department of Mathematics
and Department of Electrical and Computer Engineering, Tech-
nical University of Munich, Munich, Germany, e-mail: clau-
dio.verdun@tum.de. Correspondence to: Christian Kümmerle
<kuemmerle@jhu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

edge of Ω and PΩ(X0), where PΩ : Rd1×d2 → Rm is the
subsampling operator that maps a matrix to the set of entries
indexed by Ω. It is well-known that this can be reformu-
lated (Recht et al., 2010) as the NP-hard rank minimization
problem

min
X∈Rd1×d2

rank(X) subject to PΩ(X) = PΩ(X0). (1)

From an optimization point of view, (1) is particularly diffi-
cult to handle due to two properties: its non-convexity and
its non-smoothness. A widely studied approach in the liter-
ature replaces the rank(X) by the (convex) nuclear norm
‖X‖∗ =

∑d
i=1 σi(X) (Fazel et al., 2003), which is the tight-

est convex envelope of the rank, as an objective. For this
approach, a mature theory has been developed that includes
performance guarantees for a near-optimal sample complex-
ity (Candès & Tao, 2010; Chen, 2015) and robustness to
noise (Candès & Plan, 2010; Chen et al., 2020b).

However, from a practical point of view, using such a con-
vex relaxation to find a low-rank completion is computa-
tionally very demanding, as even first-order solvers have
an per-iteration arithmetic complexity that is at least cubic
in the dimensions of X0 (Chi et al., 2019). Thus, convex
relaxations are of little use in large-scale applications of
the model such as in recommender systems (Koren et al.,
2009), where even storing the dense matrix X0 ∈ Rd1×d2 is
prohibitive. Another important, but less well-known issue is
that a convex relaxation is typically not as data efficient as
certain other algorithms (Tanner & Wei, 2013; Bauch et al.,
2021), i.e., nuclear norm minimization typically necessitates
a larger amount of samplesm than other methods, measured
by the quotient ρ := m/(d1 + d2 − r) (oversampling ratio)
between m and the number of degrees of freedom of X0, to
identify X0 correctly (Amelunxen et al., 2014).

To overcome these drawbacks, a variety of alternative ap-
proaches have been proposed and studied. Among the most
popular ones are “non-convex” algorithms based on matrix
factorization (Burer & Monteiro, 2003) with objective

J(U,V):=
∥∥PΩ(UV∗)−PΩ(X0)

∥∥2

F
+
λ

2

(
‖U‖2F +‖V‖2F

)
(2)

for λ ≥ 0, which use (projected) gradient descent on the
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two factor matrices (Sun & Luo, 2016; Zheng & Lafferty,
2016; Ma et al., 2020), or related methods. These methods
are much more scalable than those optimizing a convex rank
surrogate, while also allowing for a theoretical analysis, see
(Chi et al., 2019) for a recent survey. Furthermore, among
the most data-efficient methods for low-rank completion are
those that minimize a smooth objective over the Riemannian
manifold of fixed rank matrices (Vandereycken, 2013; Wei
et al., 2020; Boumal & Absil, 2015; Bauch et al., 2021).
These approaches are likewise scalable and often able to
reconstruct the low-rank matrix from fewer samples m than
a convex formulation, but strong performance guarantees
have remained elusive so far.

In many instances of our problem, such as in the discretiza-
tion of PDE-based inverse problems with Fredholm equa-
tions (Cloninger et al., 2015) or in spectral estimation prob-
lems modeled by structured low-rank matrices, it is an ad-
ditional difficulty that the matrix of interest X0 is severely
ill-conditioned, i.e., κ = σ1(X0)/σr(X

0) might be very
large (up to κ = 1015 in spectral estimation (Fannjiang &
Liao, 2012)).

Our contribution. In this paper, we propose and analyze
the algorithm Matrix Iteratively Reweighted Least Squares
(MatrixIRLS) that is designed to find low-rank comple-
tions that are potentially very ill-conditioned, allowing for
a scalable implementation. It is based on the minimization
of quadratic models of a sequence of continuously differ-
entiable, non-convex “relaxations” of the rank function
rank(X). We note that, while being severely non-convex,
our method is fundamentally different from a typical non-
convex approach with an objective such as eq. (2).

Let D = max(d1, d2) and d = min(d1, d2). From a
theoretical angle, we establish that if the m sampled en-
tries are distributed uniformly at random and if m =
Ω(µ0rD log(D)), with high probability, MatrixIRLS ex-
hibits local convergence to X0 with a local quadratic con-
vergence rate, where µ0 is an incoherence factor. This
sample complexity does not depend on the condition num-
ber κ, is optimal under the sampling model and improves,
to the best of our knowledge, on the state-of-the-art of any
algorithmic sample complexity result for low-rank matrix
completion—albeit, with the caveat that unlike many other
results, our guarantee is inherently local.

Furthermore, we show that the algorithm can be imple-
mented in a per-iteration cost that is sub-quadratic in D,
without the need of storing dense (d1 × d2) matrices.
We show that under the random sampling model, the lin-
ear systems to be solved in the main computational step
of MatrixIRLS are well-conditioned even close to the
ground truth, unlike the systems of comparable IRLS algo-
rithms in the literature (Daubechies et al., 2010; Fornasier

et al., 2011; Mohan & Fazel, 2012; Kümmerle & Sigl, 2018).

The data-efficiency and scalability of our method compared
to several state-of-the-art methods is finally explored in
numerical experiments involving simulated data.

2. MatrixIRLS for log-det rank surrogate
The starting point of the derivation of our method is the
observation that minimizing a non-convex surrogate ob-
jective F with more regularity than rank(X) can lead to
effective methods for solving (1) that may combine some of
the aforementioned properties, e.g., if F is chosen as a log-
determinant (Fazel, 2002; Candès et al., 2013), Schatten-p
quasi-norm (with 0 < p < 1) (Giampouras et al., 2020)
or a smoothed clipped absolute deviation (SCAD) of the
singular values (Mazumder et al., 2020). In particular, it
has been observed in several works (Fazel, 2002; Candès
et al., 2013) that optimizing the smoothed log-det objec-
tive

∑d
i=1 log(σi(X + εI)) for some ε > 0 can lead to

less biased solutions than a nuclear norm minimizer—very
generally, it can be shown that a minimizer of non-convex
spectral functions such as the smoothed log-det objective
coincides as least as often with the rank minimizer as the
convex nuclear norm minimizer (Foucart, 2018). Relevant
algorithmic approaches to minimize non-convex rank sur-
rogates include iterative thresholding methods (Mazumder
et al., 2020), iteratively reweighted least squares (Fornasier
et al., 2011; Mohan & Fazel, 2012; Kümmerle & Sigl, 2018)
and iteratively reweighted nuclear norm (Lu et al., 2015)
algorithms.

However, finding the global minimizer of a non-convex
and non-smooth rank surrogate can be very challenging,
as the existence of sub-optimal local minima and saddle
points might deter the success of many local optimization
approaches. Furthermore, applications such as in recom-
mender systems (Koren et al., 2009) require solving very
high-dimensional problem instances so that it is impossible
to store full matrices, let alone to calculate many singu-
lar values of these matrices, ruling out the applicability of
many of the existing methods for non-convex surrogates. A
major shortcoming is, finally, also that the available conver-
gence theory for such algorithms is still very immature—a
convergence theory quantifying the sample complexity or
convergence rates is, to the best of our knowledge, not avail-
able for any method of this class.

To derive our method, let now ε > 0 and Fε : Rd1×d2 → R
be the smoothed log-det objective defined as Fε(X) :=∑d
i=1 fε(σi(X)) with d = min(d1, d2) and

fε(σ) =

{
log |σ|, if σ ≥ ε,
log(ε) + 1

2

(
σ2

ε2 − 1
)
, if σ < ε.

(3)

It can be shown that that Fε is continuously differentiable
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with ε−2-Lipschitz gradient

∇Fεk(X) = U dg

(
σi(X)

max(σi(X), εk)2

)d
i=1

V∗,

where X has a singular value decomposition X =
U dg

(
σ(X)

)
V∗ = U dg

(
σ
)
V∗. It is clear that the op-

timization landscape of Fε crucially depends on the smooth-
ing parameter ε. Instead of minimizing Fεk directly, our
method minimizes, for k ∈ N, εk > 0 and X(k) a quadratic
model

Qεk(X|X(k)) = Fεk(X(k)) + 〈∇Fεk(X(k)),X−X(k)〉

+
1

2
〈X−X(k),W (k)(X−X(k))〉

under the data constraint PΩ(X) = PΩ(X0), where W (k)

is the following operator, describing the precise shape of the
quadratic model.
Definition 2.1 (Optimal weight operator). Let εk > 0 and
X(k) ∈ Rd1×d2 be a matrix with singular value decom-
position X(k) = Uk dg(σ(k))V∗k, i.e., Uk ∈ Rd1×d1 and
Vk ∈ Rd2×d2 are orthonormal matrices. Then we call
the linear operator W (k) : Rd1×d2 → Rd1×d2 the optimal
weight operator of the εk-smoothed log-det objective Fεk of
(3) at X(k) if for Z ∈ Rd1×d2 ,

W (k)(Z) = Uk [Hk ◦ (U∗kZVk)] V∗k, (4)

where Hk ∈ Rd1×d2 is a matrix with positive entries

such that (Hk)ij :=
(

max(σ
(k)
i , εk) max(σ

(k)
j , εk)

)−1

and Hk ◦ (U∗kZVk) denotes the entrywise product of Hk

and U∗kZVk.

The weight operator W (k) is a positive, self-adjoint opera-
tor with strictly positive eigenvalues that coincide with the
entries of the matrix Hk ∈ Rd1×d2 , and it is easy to verify
that W (k)(X(k)) = ∇Fεk(X(k)). Based on this, it follows
that the minimization of the quadratic model Qεk(X|X(k))
boils down to a minimization of a quadratic form weighted
by W (k). This enables us to design the iterative method
Matrix Iteratively Reweighted Least Squares (MatrixIRLS),
which we describe in Algorithm 1.

Apart from the weighted least squares step (5), which min-
imizes the quadratic model Qεk−1

(·|X(k−1)) of Fεk−1
for

fixed εk−1, an indispensable ingredient of our scheme is the
update of the smoothing parameter εk, which is performed
in the spirit of smoothing methods for non-smooth objec-
tives (Chen, 2012). In particular, the update rule eq. (6),
which is similar to the update rule of (Kümmerle & Sigl,
2018), makes sure that if the rank estimate r̃ is chosen such
that r̃ ≥ r, the smoothing parameter εk converges to 0 as
the iterates approach a rank-r solution.

We note that Iteratively Reweighted Least Squares (IRLS)
methods with certain similarities to Algorithm 1 had been

Algorithm 1 MatrixIRLS for low-rank matrix comple-
tion

Input: Set Ω, observations y ∈ Rm, rank estimate r̃.
Initialize k = 0, ε(0) =∞ and W (0) = Id.
for k = 1 to K do

Solve weighted least squares: Use a conjugate gradi-
ent method to solve

X(k) = arg min
X:PΩ(X)=y

〈X,W (k−1)(X)〉. (5)

Update smoothing: Compute r̃+ 1-th singular value
of X(k) to update

εk = min
(
εk−1, σr̃+1(X(k))

)
. (6)

Update weight operator: For rk := |{i ∈ [d] :
σi(X

(k)) > εk}|, compute the first rk singular val-
ues σ(k)

i := σi(X
(k)) and matrices U(k) ∈ Rd1×rk

and V(k) ∈ Rd2×rk with leading rk left/ right singular
vectors of X(k) to updateW (k) defined in Equation (4).

end for
Output: X(K).

proposed (Fornasier et al., 2011; Mohan & Fazel, 2012;
Kümmerle & Sigl, 2018) for the minimization of Schatten-p
quasi-norms for 0 < p ≤ 1. Comparing the gradients of
smoothed Schatten-p quasi-norms and of eq. (3), minimiz-
ing a smoothed log-det objective can be considered as a
limit case for p → 0. Most importantly, however, our al-
gorithm has two distinct, conceptual differences compared
to these methods: Firstly, the weight operator of Defini-
tion 2.1 is able capture the second-order information of
Fεk , allowing for an interpretation of MatrixIRLS as a
saddle-escaping smoothing Newton method, cf. Section 4.2,
unlike the methods of (Fornasier et al., 2011; Mohan &
Fazel, 2012; Kümmerle & Sigl, 2018) due to the different
structure of their weight operators. Secondly, the interplay
of Fεk and the weight operator W (k) in Algorithm 1 is de-
signed to allow for efficient numerical implementations, cf.
Section 3.

Finally, we note that it is non-trivial to show that the
quadratic model Qεk(·|X(k)) induced by W (k) from Defini-
tion 2.1 is actually a majorant of Fεk(·) such that Fεk(X) ≤
Qεk(X|X(k)) for all X ∈ Rd1×d2 . We defer a proof of this
and a proof of the “optimality” of the majorant to an upcom-
ing paper.

3. Computational Complexity
A crucial property of Algorithm 1 is that due to the struc-
ture of the weight operator (4) and the smoothing update
rule (6), in fact, the weighted least squares step eq. (5)
can be computed by solving a positive definite linear sys-
tem of size (rk(d1 + d2 − rk)) × (rk(d1 + d2 − rk)),
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where rk is the number of singular values of X(k) that
are larger than εk, which is typically equal or very close
to r̃ (cf. Appendix A). Conceptually, this corresponds to a
linear system in the tangent space Tk of the rank-rk matrix
manifold at the best rank-rk approximation of X(k), Tk ={[

U(k)U
(k)
⊥

][ Rrk×rk Rrk(d2−rk)

R(d1−rk)rk 0

][
V(k)V

(k)
⊥

]∗}
.

We note that in our implementation, it is never necessary
to compute more than rk singular vector pairs and singu-
lar values of X(k), and X(k) can be represented as a sum
of a sparse matrix and a matrix in Tk, cf. Theorem 3.1.
Thus, when using an iterative solver such as conjugate gra-
dients to solve the linear system, we obtain an implementa-
tion of MatrixIRLS with a time and space complexity of
the same order as for state-of-the-art first-order algorithms
based on matrix factorization (i.e., of Burer-Monteiro type)
(Chen & Chi, 2018). We refer to the supplementary materi-
als (Appendix A) for details and a proof.
Theorem 3.1. Let X(k) ∈ Rd1×d2 be the k-th iterate of
MatrixIRLS for an observation vector y ∈ Rm and r̃ =

r. Assume that σ(k)
i ≤ εk for all i > r and σ(k)

r > εk.
Then an implicit representation of the new iterate X(k+1) ∈
Rd1×d2 can be calculated in a time complexity of

O
(
(mr + r2D) ·NCG inner

)
,

where NCG inner is the number of inner iterations used in the
conjugate gradient method and D = max(d1, d2). More
precisely, X(k+1) can be represented as

X(k+1) = P ∗Ω(rk+1) + U(k)M
(k+1)∗
1 + M

(k+1)
2 V(k)∗,

where rk+1 ∈ Rm, M
(k+1)
1 ∈ Rd2×r and M

(k+1)
2 ∈

Rd1×r, i.e., with a space complexity of O(m+ rD).

Theorem 3.1 illustrates the computational advantage of
MatrixIRLS compared to previous iteratively reweighted
least squares algorithms for low-rank matrix recovery
problems (Fornasier et al., 2011; Mohan & Fazel, 2012;
Kümmerle & Sigl, 2018), which all require the storage and
updates of full (d1 × d2)-matrices and the calculation of
singular value decompositions of these.

According to Theorem 3.1, since P ∗Ω(rk+1) ∈ Rd1×d2 is
m-sparse, X(k+1) can be seen a sum of a sparse and two
rank-r matrices. Intuitively, this representation is possi-
ble as the weight operator W (k) of Definition 2.1 can be
written as “identity + diagonal on Tk”, and due to the
Sherman-Morrison-Woodbury formula applied to the in-
verse in X(k+1) = (W (k))−1P ∗Ω

(
PΩ(W (k))−1P ∗Ω

)−1
(y),

which is an explicit representation of the solution of eq. (5).

As a result, fast matrix-vector multiplications can be used in
methods such as Lanczos bidiagonalization or randomized
Block Krylov (Musco & Musco, 2015) to compute rk+1 sin-
gular values and vectors of X(k+1) in step 3 of Algorithm 1.

4. Theoretical Analysis
This section sheds light on several theoretical aspects of
Algorithm 1.

4.1. Local Convergence with Superlinear Rate &
Conditioning of System Matrix

In order to obtain a theoretical understanding of the generic
behavior of MatrixIRLS, we consider the canonical uni-
form random sampling model (Candès & Recht, 2009;
Recht, 2011; Chen, 2015) where the sampling set Ω =
(i`, j`)

m
`=1 ⊂ [d1] × [d2] consists of m double indices that

are drawn uniformly at random without replacement. Not
each rank-r matrix X0 ∈ Rd1×d2 is expected to be identifi-
able from a small number of samples m under this sampling
model. We quantify the alignment of a matrix with the
standard basis of Rd1×d2 by the following notion of inco-
herence, which is slightly weaker than related conditions of
(Recht, 2011; Chen, 2015).

Definition 4.1. We say that a rank-r matrix X ∈ Rd1×d2

with singular value decomposition X = U dg(σ)V∗, U ∈
Rd1×r, V ∈ Rd2×r, is µ0-incoherent if there exists a con-
stant µ0 ≥ 1 such that

max
1≤i≤d1,1≤j≤d2

‖PT (eie
∗
j )‖F ≤

√
µ0r

d1 + d2

d1d2
, (7)

where T = TX = {UM∗ + M̃V∗ : M ∈ Rd2×r, M̃ ∈
Rd1×r} is the tangent space onto the rank-r matrix manifold
at X and PT is the projection operator onto T .

With the notation that ‖X‖S∞ = σ1(X) denotes the spec-
tral norm or Schatten-∞ norm of a matrix X, we obtain the
following local convergence result.

Theorem 4.1 (Local convergence of MatrixIRLS with
Quadratic Rate). Let X0 ∈ Rd1×d2 be a matrix of rank
r that is µ0-incoherent, and let PΩ : Rd1×d2 → Rm be
the subsampling operator corresponding to an index set
Ω = (i`, j`)

m
`=1 ⊂ [d1] × [d2] that is drawn uniformly

without replacement. If the sample complexity fulfills m &
µ0r(d1 + d2) log(d1 + d2), then with high probability, the
following holds: If the output matrix X(k) ∈ Rd1×d2 of
the k-th iteration of MatrixIRLS with inputs PΩ, y =
PΩ(X0) and r̃ = r updates the smoothing parameter in (6)
such that εk = σr+1(X(k)) and fulfills

‖X(k) −X0‖S∞ . min

(√
µ0r

d
,

µ0

d log(D)κ

)
σr(X

0),

(8)
where κ = σ1(X0)/σr(X

0), then the local
convergence rate is quadratic in the sense that
‖X(k+1) − X0‖S∞ ≤ min(µ‖X(k) − X0‖2S∞ , ‖X

(k) −
X0‖S∞) with µ ≤ d log(D)

µ0σr(X0)κ, and furthermore
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X(k+`) `→∞−−−→ X0 if additionally ‖X(k) − X0‖S∞ .

min

(√
µ0r
d ,

µ
3/2
0 r1/2

d2 log(D)3/2κ

)
σr(X

0).

While a comparable local convergence result had been ob-
tained for an IRLS algorithm for (non-convex) Schatten-p
minimization (Kümmerle & Sigl, 2018), that result is not
applicable for matrix completion, as the proof relied on a
null space property (Recht et al., 2011) of the measurement
operator, which is not fulfilled by PΩ since there are al-
ways rank-ones matrices in the null space of the entry-wise
operator PΩ.

Unlike the theory of other algorithms, the sample complex-
ity assumption of Theorem 4.1 is optimal as it matches a
well-known lower bound for this sampling model (Candès
& Tao, 2010) that is necessary for unique identifiability.
Among the weakest sufficient conditions for existing al-
gorithms are m & µ0r(d1 + d2) log2(d1 + d2) for nu-
clear norm minimization (Chen, 2015), m & µ0κ

14r2(d1 +
d2) log2(d1 + d2) for gradient descent (Chen et al., 2020a)
on a variant of (2) and m & κ6(d1 + d2)r2 log(d1 + d2)
required random samples for the Riemannian gradient de-
scent algorithm of (Wei et al., 2020). On the other hand, in
contrast to other results, Theorem 4.1 only quantifies local
convergence.

The following theorem implies that iterative solvers are
indeed able to efficiently solve the linear system underly-
ing (5) up to high accuracy in few iterations. It suggests
that NCG inner of Theorem 3.1 can be chosen as an absolute
constant.

Theorem 4.2 (Well-conditioning of system matrices of
MatrixIRLS). In the setup and sampling model of
Theorem 3.1, if m & µ0r(d1 + d2) log(d1 + d2),
the following holds with high probability: If εk =
σr+1(X(k)) < σr(X

(k)) and if ‖X(k) − X0‖S∞ .
min

(√
µ0r
d , 1

4

)
σr(X

0), the spectrum λ(Ak) of the lin-
ear system matrix Ak ∈ Rr(d1+d2−r)×r(d1+d2−r) of the
weighted least squares step (5) of MatrixIRLS satisfies
λ(Ak) ⊂ m

d1d2

[
6
10 ; 24

10

]
, and thus, the condition number of

Ak fulfills κ(Ak) ≤ 4.

Theorem 4.2 shows that MatrixIRLS is able to overcome
a common problem of many IRLS algorithms for related
problems: Unlike the methods of (Daubechies et al., 2010;
Fornasier et al., 2016; Mohan & Fazel, 2012; Fornasier et al.,
2011; Kümmerle & Sigl, 2018), does not suffer from ill-
conditioned linear systems close to a low-rank (or sparse)
solution.

4.2. MatrixIRLS as saddle-escaping smoothing Newton
method

From a theoretical point of view, the local quadratic con-
vergence rate is an inherently local property that does not

explain the numerically observed global convergence be-
havior (see Section 5), which is remarkable due to the non-
convexity of the objective function.

A possible avenue to explain this is to interpret
MatrixIRLS as a saddle-escaping smoothing Newton
method. Smoothing Newton methods minimize a non-
smooth and possibly non-convex function F by using
derivatives of certain smoothings of F (Chen et al.,
1998; Chen, 2012). Interpreting the optimization problem
minX:PΩ(X)=y Fεk(X) as an unconstrained optimization
problem over the null space of PΩ, we can write

X(k+1) = X(k) − P ∗Ωc
(
PΩcW

(k)P ∗Ωc
)−1

PΩcW
(k)(X(k))

= X(k)−P ∗Ωc
(
PΩc∇2Fεk(X(k))P ∗Ωc

)−1

PΩc∇Fε(X(k)),

if Ωc = [d1]×[d2]\Ω corresponds to the unobserved indices,
where ∇2Fεk(X(k)) : Rd1×d2 → Rd1×d2 is a modified
Hessian of Fεk at X(k) that replaces negative eigenvalues
of the Hessian ∇2Fεk(X(k)) by positive ones and slightly
increases small eigenvalues. We refer to the supplementary
material for more details. In (Paternain et al., 2019), it has
been proved that for a fixed smooth function Fεk , similar
modified Newton-type steps are able to escape the first-order
saddle points at a rate that is independent of the problem’s
condition number.

4.3. MatrixIRLS as variable metric forward-backward
method

Another instructive angle to understand our method comes
from the framework of variable metric forward-backward
methods (Bonnans et al., 1995; Chouzenoux et al., 2014;
Frankel et al., 2015).

A forward-backward method can be seen as a combination
of a gradient descent method and a proximal point algo-
rithm (Combettes & Pesquet, 2011) that can be used to
minimize the sum of a non-smooth function and a func-
tion with Lipschitz continuous gradients. In particular, if
F is a proper, lower semi-continuous function, G is dif-
ferentiable with Lipschitz gradient ∇G and (αk)k a se-
quence of step sizes, the iterations of the forward-backward
algorithm (Attouch et al., 2013) are such that X(k+1) ∈
proxαkF

(
X(k) − αk∇G(X(k))

)
, where proxαkF (·) is the

proximity operator of αkF . Typically, in such an algorithm,
F would be chosen as the structure-promoting objective
(such as the smoothed log-det objective Fε above) and G
as a data-fit term such as G(X) = ‖PΩ(X)− y‖22/λ, lead-
ing to thresholding-type algorithms. Algorithm 1, however,
fits into this framework if we choose, for εk > 0, the non-
smooth part F as the indicator function F := χP−1

Ω (y) :

Rd1×d2 → R of the constraint set P−1
Ω (y) := {X ∈

Rd1×d2 : PΩ(X) = y} and the smooth part G such that
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G := Fεk : Rd1×d2 → R as in (3), while offsetting the
distortion induced by the non-Euclidean nature of the level
sets of Fεk via an appropriate choice of a variable metric
dAk(X,Z) =

√
〈X− Z, Ak(X− Z)〉F for a positive defi-

nite linear operator Ak : Rd1×d2 → Rd1×d2 , such that

X(k+1) ∈ proxAkαkF

(
X(k) − αkA−1

k (∇G(X(k)))
)
,

where proxAkF (X) := arg minZ∈Rd1×d2 F (Z) +
1
2dAk(X,Z)2 is the proximity operator of F scaled
in the metric dAk at X (Chouzenoux et al., 2014). Specif-
ically, if we choose the metric induced by the weight
operator of (4) such that Ak := W (k) and unit step sizes
αk = 1, we obtain

proxAkαkF

(
X(k) − αkA−1

k (∇G(X(k)))
)

= proxW
(k)

χ
P
−1
Ω

(
X(k) −W−1

k (∇Fεk(X(k)))
)

= proxW
(k)

χ
P
−1
Ω

(
X(k) −W−1

k Wk(X(k)))
)

= proxW
(k)

χ
P
−1
Ω

(0)

= arg min
X:PΩ(X)=y

1

2
dAk(X,0)2 = arg min

X:PΩ(X)=y

〈X,W (k)(X)〉,

where we used that Wk(X(k)) = ∇Fεk(X(k)) in the third
line. This shows that this update rule for X(k+1) coincides
with (5).

Thus, MatrixIRLS can be considered as a forward-
backward method with a variable metric induced by the
weight operator W (k), using a unit step size αk = 1 for
each k. One advantage of our method is therefore also that
unlike many methods in this family, there is no step size
to be tuned. A crucial difference, which makes existing
theory (as, e.g., (Frankel et al., 2015)) for splitting meth-
ods not directly applicable for a convergence analysis of
MatrixIRLS, is that the smooth function G = Fεk is
changing at each iteration due to the smoothing parameter
update (6). On the other hand, the results of (Frankel et al.,
2015) already imply the finite sequence length of (X(k))k
in the case that the smoothing parameter εk stagnates for
k ≥ k0, using a Kurdyka-Łojasiewicz property (Bolte et al.,
2007) of Fεk + χP−1

Ω (y). We leave a detailed discussion of
this for future work.

Finally, we note that previous IRLS methods (Fornasier
et al., 2011; Mohan & Fazel, 2012; Kümmerle & Sigl, 2018)
would also fit in the presented splitting framework, however,
without fully capturing the underlying geometry as their
weight operator has no strong connection to the Hessian
∇2Fεk(X(k)) of Fεk , as explained in the supplementary
material.

5. Numerical Experiments
We explore the performance of MatrixIRLS for the com-
pletion of synthetic low-rank matrices in terms of statistical

and computational efficiency in comparison to state-of-the-
art algorithms in the literature. We base our choice on the
desire to obtain a representative picture of state-of-the-art
algorithms for matrix completion, including in particular
those that are scalable to problems with dimensionality in
the thousands or more, those that come with the best theoret-
ical guarantees, and those that claim to perform particularly
well to complete ill-conditioned matrices. All the methods
are provided with the true rank r of X0 as an input pa-
rameter. If possible, we use the MATLAB implementation
provided by the authors of the respective papers.

The algorithms being tested against MatrixIRLS can be
grouped into three main categories: the non-convex ma-
trix factorization ones which includes LMaFit (Wen et al.,
2012), ScaledASD (Tanner & Wei, 2016) and ScaledGD
(Tong et al., 2020), the Riemannian optimization on the man-
ifold of fixed rank matrices ones which includes LRGeomCG
(Vandereycken, 2013), RTRMC (Boumal & Absil, 2015) and
R3MC (Mishra & Sepulchre, 2014), one alternating projec-
tion method on the manifold of fixed rank matrices, NIHT
(Tanner & Wei, 2013) (see (Wei et al., 2020) for a con-
nection between NIHT and Riemannian methods), and the
recent R2RILS (Bauch et al., 2021) which can be seen as
a factorization based method but also contains ideas from
the Riemannian optimization family of algorithms. In the
supplementary material we provide a description of each
algorithm as well as the parameters used in the numerical
section.

As for the numerical experiments, it is important to note
that we are interested to find low-rank completions from a
sampling set Ω of sample size |Ω| =: m = bρr(d1 + d2 −
r)c, where ρ is an oversampling ratio since r(d1 + d2 − r)
is just the number of degrees of freedom of an (d1 × d2)-
dimensional rank-r matrix. For a given Ω, the solution of
(1) might not coincide with X0, or the solution might not
be unique, even if the sample set Ω is chosen uniformly
at random. In particular, this will be the case if Ω is such
that there is a row or a column with fewer than r revealed
entries, which a necessary condition for uniqueness of the
(1) (Pimentel-Alarcón et al., 2016). To mitigate this problem
that is rather related to the structure of the sampling set
than to the performance of a certain algorithm, we, in fact,
adapt the sampling model of uniform sampling without
replacement. For a given factor ρ ≥ 1, we sample a set
Ω ⊂ [d1] × [d2] of size m = bρr(d1 + d2 − r)c indices
randomly without replacement. Then we check whether the
condition such that each row and each column in Ω has at
least r observed entries, and resample Ω if this condition is
not fulfilled. This procedure is repeated up to a maximum
of 1000 resamplings.

We consider the following setup: we sample a pair of ran-
dom matrices U ∈ Rd1×r and V ∈ Rd2×r with r orthonor-



Scalable Second-Order Optimization for Ill-Conditioned Matrix Completion

mal columns, and define the diagonal matrix Σ ∈ Rr×r
such that Σii = κ exp(− log(κ) i−1

r−1 ) for i ∈ [r]. With this
definition, we define a ground truth matrix X0 = UΣV∗

of rank r that has exponentially decaying singular values
between κ and 1.

5.1. Data-efficient recovery of ill-conditioned matrices

First, we run MatrixIRLS and the algorithms R2RILS ,
RTRMC, LRGeomCG, LMaFit, ScaledASD, ScaledGD,
NIHT and R3MC to complete X0 from PΩ(X0) where Ω
corresponds to different oversampling factors ρ between
1 and 4, and where the condition number of X0 is κ =
σ1(X0)/σr(X

0) = 10. In Figure 1, we report the median
Frobenius errors ‖X(K) −X0‖F /‖X0‖F of the respective
algorithmic outputs X(K) across 100 independent realiza-
tions.
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Figure 1. Performance of matrix completion algorithms for 1000×
1000 matrices of rank r = 5 with condition number κ = 10, given
m = bρr(d1 + d2 − r)c random samples. Median of Frobenius
errors ‖X(K) −X0‖F /‖X0‖F of 100 independent realizations.

We see that MatrixIRLS and R2RILS are the only algo-
rithms that are able to complete X0 already for ρ = 1.5. In
our experiment, R3MC completes X0 in a majority of in-
stances starting from ρ = 2.0, whereas the other algorithms,
except from NIHT, are able to reconstruct the matrix most
of the times if ρ is at least between 2.4 and 3.0. This con-
firms the findings of (Bauch et al., 2021) which show that
even for quite well-conditioned matrices, fewer samples
are required if second-order methods such as R2RILS or
MatrixIRLS are used.

We repeat this experiment for ill-conditioned matrices X0

with κ = 105. In Figure 2, we see that current state-of-
the-art methods are not able to achieve exact recovery of
X0. This is in particular true as given the exponential de-
cay of the singular values, in order to recover the subspace
corresponding to the smallest singular value of X0, a rel-
ative Frobenius error of 10−5 or even several orders of
magnitude smaller needs to be achieved. We observe that
MatrixIRLS is the only method that is able to complete
X0 for any of the considered oversampling factors.
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Figure 2. Performance of matrix completion algorithms as in Fig-
ure 1, but with κ = 105. Median of 50 realizations.

5.2. Running time for ill-conditioned problems

In Figure 3, for an oversampling ratio of ρ = 4, we illus-
trate the completion of one single extremely ill-conditioned
1000× 1000 matrix with rank = 10 and κ = 1010 and ex-
ponentially interpolated singular values as described above.
We again can see that only second-order methods such as
R2RILS or MatrixIRLS are able to achieve a relative
Frobenius error ≈ 10−5 or smaller. MatrixIRLS goes be-
yond that and attains a relative Frobenius error of the order
of the machine precision and, remarkably, exactly recover
all the singular values up to 15 digits. This also shows that
the conjugated gradient and the randomized block Krylov
method used at the inner core of our implementation can be
extremely precise when properly adjusted. R2RILS is also
able to obtain relatively low Frobenius error but unlike our
method, it is not able to retrieve all the singular values with
high accuracy. Other methods were observed to lead to a
meaningful error decrease for the ill-conditioned matrix of
interest.
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Figure 3. Completion task for a highly ill-conditioned 1000×1000
matrix of rank r = 10 with κ = 1010 (ρ = 4).

In Figure 4, we compare the execution time of R2RILS and
MatrixIRLS for a range of ground truth matrices with
increasing dimension, for an oversampling ratio of ρ = 2.5,
whose singular values are linearly interpolated between κ
and 1. We observe that the larger the dimensions are, the
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larger is the discrepancy in the running time of the two
algorithms. Other algorithms are not considered in this
experiment because they typically do not reach a relative
error below 10−4 for κ� 102.
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Figure 4. Execution time of R2RILS and MatrixIRLS for com-
pletion of rank r ∈ {5, 10} matrices of size m × (m + 100)
and condition number κ = 102, averaged across 50 independent
realizations.

5.3. MatrixIRLS vs. rank-adaptive strategies

In Section 5.1, all methods were provided with the correct
rank r of the ground truth, which was used to determine the
size of the matrix factors or the rank of the fixed rank mani-
fold. Even in this case, we illustrated numerically that most
of the methods are not able to recover highly ill-conditioned
matrices. To handle such ill-conditioned completion prob-
lems, (Mishra & Sepulchre, 2014; Uschmajew & Vanderey-
cken, 2015; Tan et al., 2014) proposed rank-adaptive vari-
ants of the methods R3MC and LRGeomCG. These variants,
which we call LRGeomCG Pursuit1 (Uschmajew & Van-
dereycken, 2015; Tan et al., 2014) and R3MC w/ Rank
Update (Mishra & Sepulchre, 2014), respectively, com-
bine fixed-rank optimization with outer iterations that in-
crease r̃ from 1 to a target rank r, while warm starting each
outer iteration with the output of the previous iteration. To
compare the data efficiency of MatrixIRLS with the one
of these three algorithms, we repeat the experiments of Sec-
tion 5.1 for these methods and report the median Frobenius
errors for the completion of 1000× 1000 matrices of rank
r = 5 with condition numbers κ = 10 and κ = 105, re-
spectively, with those of MatrixIRLS in Figures 5 and
6.

In Figure 5, we observe that in the presence of a relatively
small condition number of κ = 10, MatrixIRLS is more
data efficient than the two rank-adaptaive methods as their
phase transition occurs for a larger oversampling factor
(ρ = 1.8 vs. ρ = 1.5).

On the other hand, it can be seen in Figure 6 that the rank-
adaptive strategies LRGeomCG Pursuit and R3MC w/

1The MATLAB code containing the rank update was provided
by B. Vandereycken in a private communication.
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Figure 5. Completion of 1000× 1000 matrices of rank r = 5 with
condition number κ = 10, experiment as in Figure 1.

Rank Update shine when completing matrices with large
condition number such as κ = 105, as their phase transition
occurs at around ρ = 1.8 and ρ = 1.7, where it occurs at
ρ = 1.9 for MatrixIRLS. This shows that for large con-
dition number, rank adaptive strategies can outperform the
data efficiency of MatrixIRLS, and in both experiments,
the phase transitions are considerably better than for their
fixed rank versions LRGeomCG and R3MC, cf. Figures 1
and Figure 2.
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Figure 6. Completion of 1000× 1000 matrices of rank r = 5 with
condition number κ = 105, experiment as in Figure 2.

In all experiments so far, we have considered low-rank ma-
trices with r singular values that exponentially decrease
from κ to 1, as described in the beginning of this section.
This might be a setting that is particularly suitable for rank-
adaptive strategies that increase the rank parameter r̃ one-
by-one, as the singular subspaces are all one-dimensional
and well-separated. For this reason, in a last experiment, we
change this setup and consider ground truth matrices X0

that have a plateau in the set of singular values, potentially
presenting a larger challenge for completion methods due to
a higher dimensional subspace spanned by a set of multiple
singular vectors. In particular, we consider the completion
of a 1000×1000 matrix X0 with 10 singular values equal to
1010 ·exp(−10 · log(10) 14

29 ), and with 10 singular values lin-
early interpolated on a logarithmic scale between this value
and 1010 and, and another 10 between this value and 1 (see
also Appendix E.2 for an illustration). For a random instance
of such a matrix, we report the relative Frobenius error
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vs. execution time for the methods MatrixIRLS against
the rank-adaptive variants of LRGeomCG and R3MC, here
denoted by LRGeomCG Pursuit and R3MC w/ Rank
Update in Figure 7, from random samples with a small
oversampling factor of ρ = 1.5.
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Figure 7. Comparison of matrix completion algorithms for 1000×
1000 matrices of rank r = 30 with condition number κ = 1010

and 10 equal singular values, oversampling factor of ρ = 1.5.

We observe that the fixed-rank variants LRGeomCG and
R3MC are not able to complete the matrix, which is in
line with the experiment of Section 5.2. R3MC w/ Rank
Update exhibits a quick error decrease to a range around
6 ·10−5, after which it just decreases very slowly for around
110 seconds, before converging to X0 up to an error of
around 10−12 within another 70 seconds. The stagnation
phase presumably corresponds to the learning of the 10-
dimensional singular space of X0 in the central part of
its spectrum. LRGeomCG Pursuit, on the other hand,
reaches an error of around 10−12 already after 5 seconds,
albeit without monotonicity with a fluctuation phase be-
tween errors of 10−8 and 10−12 from seconds 3 to 5. For
MatrixIRLS, we use a tolerance parameter for the relative
residual in the conjugate gradient method of tolinner = 10−3

and a maximal number of 3 iterations for the random-
ized Block Krylov method (cf. E for the default param-
eters), and observe that the method successfully converges
to X0 slightly slower with a convergence within 13 sec-
onds, but, remarkably, unlike LRGeomCG Pursuit, with
a monotonous error decrease.2

6. Conclusion and Outlook
We formulated MatrixIRLS, a second order method that
is able to efficiently complete large, highly ill-conditioned
matrices from few samples, a problem for which most state-
of-the-art methods fail. It improves on previous approaches

2For the default choice of algorithmic parameters as described
in Appendix E, we obtain a qualitatively similar behavior for
MatrixIRLS, but with a small runtime multiple due to the higher
required precision at each iteration.

for the optimization of non-convex rank objectives by ap-
plying a suitable smoothing strategy combined with saddle-
escaping Newton-type steps.

As one goal of our investigation has been also to provide
an efficient implementation, we focused on the matrix com-
pletion problem, leaving the extension of the ideas to other
low-rank matrix estimation problems to future work includ-
ing the case of inexact data or measurement errors. Further-
more, while we establish a local convergence guarantee for
the algorithm, a precise analysis of its global convergence
behavior might be of interest.

Software
An implementation of MatrixIRLS including scripts to
reproduce the presented experiments can be found at
https://github.com/ckuemmerle/
MatrixIRLS.
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Supplementary material for A Scalable Second Order Method for
Ill-Conditioned Matrix Completion from Few Samples

This supplementary material is divided into three parts: In Appendix A, we provide details for an efficient implementation
of MatrixIRLS and furthermore, show Theorem 3.1. Then, we show in Appendix B and in Appendix C the theoretical
results of Section 4. In Appendix D, we provide some details about the interpretation of MatrixIRLS as a saddle-escaping
smoothing Newton method, cf. Section 4.2. Finally, we present a detailed description of the algorithmic parameters of the
experiments of Section 5 in Appendix E, as well as a remark on an experiment of Section 5.3.

A. Computational Aspects of MatrixIRLS
We first introduce some notation that is suitable to describe an efficient implementation of Algorithm 1. Whenever we
write ‖X‖S∞ , we refer to the Schatten-∞ or spectral norm ‖X‖S∞ = σ1(X) of a matrix X ∈ Rd1×d2 . For d1, d2 ∈ N,
d = min(d1, d2) and a vector σ ∈ Rd, we denote the (d1 × d2)-matrix with the entries of σ on its diagonal (an 0 otherwise)
as dg(σ) ∈ Rd1×d2 , i.e., dg(σ)ij = σiδij for all i ∈ [d1] and j ∈ [d2]. If X(k) ∈ Rd1×d2 is a matrix with singular values
σ

(k)
i := σi(X

(k)), for εk > 0, let rk := |{i ∈ [d] : σi(X
(k)) > εk}| = |{i ∈ [d] : σ

(k)
i > εk}|. Then we write a singular

value decomposition of X(k) such that

X(k) = Uk dg(σ(k))V∗k =
[
U(k) U

(k)
⊥

] [Σ(k) 0

0 Σ
(k)
⊥

] [
V(k)∗

V
(k)∗
⊥

]
, (9)

where Uk ∈ Rd1×d1 and Vk ∈ Rd2×d2 , and corresponding submatrices U(k) ∈ Rd1×rk , U
(k)
⊥ ∈ Rd1×(d1−rk), V(k) ∈

Rd2×rk , V
(k)
⊥ ∈ Rd2×(d2−rk), Σ(k) := diag(σ

(k)
1 , . . . σ

(k)
rk ) and Σ

(k)
⊥ := dg(σ

(k)
rk+1, . . . σ

(k)
d ). Furthermore, we denote by

Trk(X(k)) the best rank-rk approximation of X(k), i.e.,

Trk(X(k)) := arg min
Z:rank(Z)≤rk

‖Z−X(k)‖ = U(k)Σ(k)V(k)∗, (10)

where ‖ · ‖ can be any unitarily invariant norm, due to the Eckardt-Young-Mirsky theorem (Mirsky, 1960). LetMr :=
{X ∈ Rd1×d2 : rank(X) = r} the manifold of rank-r matrices. Given these definitions, let

Tk := TTrk (X(k))Mrk :=

{[
U(k)U

(k)
⊥

][ Rrk×rk Rrk(d2−rk)

R(d1−rk)rk 0

][
V(k)V

(k)
⊥

]∗}
=

{[
U(k)U

(k)
⊥

][
M1 M2

M3 0

][
V(k)V

(k)
⊥

]∗
: M1 ∈ Rrk×rk ,M2 ∈ Rrk×(d2−rk),M3 ∈ R(d1−rk)×rk arbitrary

}
= {U(k)Γ1V

(k)∗ + U(k)Γ2

(
I−V(k)V(k)∗

)
+ (I−U(k)U(k)∗)Γ3V

(k)∗ : Γ1 ∈ Rrk×rk ,Γ2 ∈ Rrk×d2 ,Γ3 ∈ Rd1×rk}
(11)

be tangent space of the rank-rk matrix manifold at Trk(X(k)), see also (Vandereycken, 2013) and Chapter 7.5 of (Boumal,
2020). While it is often more advantageous to computationally represent elements of Tk as in the last representation, it
becomes clear from the first equality that Tk is an rk(d1 + d2 − rk) = r2

k + rk(d1 − rk) + rk(d2 − rk)-dimensional
subspace of Rd1×d2 . If {Bi}rk(d1+d2−rk)

i=1 is the standard orthonormal basis of the subspace Tk and Sk := Rrk(d1+d2−rk),
let PTk : Sk → Tk be the parametrization operator such that for γ ∈ Sk,

PTk(γ) :=

rk(d1+d2−rk)∑
i=1

γiBi = U(k)Γ1V
(k)∗ + U(k)Γ2

(
I−V(k)V(k)∗

)
+ (I−U(k)U(k)∗)Γ3V

(k)∗
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where Γ1 ∈ Rrk×rk ,Γ2 ∈ Rrk×d2 ,Γ2V
(k) = 0,Γ3 ∈ Rd1×rk ,U(k)∗Γ3 = 0. The representation γ ∈ Sk of an element

of Tk is called an intrinsic representation (Huang et al., 2017), and while this is not trivial observation, we note that it
is possible to calculate the matrices Γ1, Γ2 and Γ3 of PTk(γ) from just from the knowledge of γ, U(k) ∈ Rd1×rk and
V(k) ∈ Rd2×rk in just 8(d1 + d2)r2 = O(Dr2) flops, see Algorithm 7 of (Huang et al., 2017). Furthermore, we denote by
P ∗Tk the adjoint operator of PTk : Sk → Rd1×d2 , and this operator P ∗Tk : Rd1×d2 → Sk maps a matrix X ∈ Rd1×d2 first to
{Γ1,Γ2,Γ3} :=

{
U(k)∗XV(k),U(k)∗X(I−V(k)V(k)∗), (I−U(k)U(k)∗)XV(k)

}
and then via Algorithm 6 of (Huang

et al., 2017) to γ = P ∗Tk(X) ∈ Sk. The computational complexity of this operator is O(r‖X‖0 +Dr2).

Together with PTk and P ∗Tk , the definition of the following diagonal operator DSk : Sk → Sk allows us to reformulate and
simplify the optimal weight operator W (k) : Rd1×d2 → Rd1×d2 of Definition 2.1 as follows. Recalling that Hk ∈ Rd1×d2

is such that (Hk)ij :=
(

max(σ
(k)
i , εk) max(σ

(k)
j , εk)

)−1

for all i and j, we write for each Z ∈ Rd1×d2

W (k)(Z) = Uk [Hk ◦ (U∗kZVk)] V∗k

=
[
U(k) U

(k)
⊥

](
Hk ◦

[
U(k)∗ZV(k) U(k)∗ZV

(k)
⊥

U
(k)∗
⊥ ZV(k) U

(k)∗
⊥ ZV

(k)
⊥

])[
V(k)∗

V
(k)∗
⊥

]

=
[
U(k) U

(k)
⊥

]([H(k) H
(k)
1,2

H
(k)
2,1 ε−2

k 1

]
◦

[
U(k)∗ZV(k) U(k)∗ZV

(k)
⊥

U
(k)∗
⊥ ZV(k) U

(k)∗
⊥ ZV

(k)
⊥

])[
V(k)∗

V
(k)∗
⊥

]
=
(
PTkDSkP

∗
Tk

+ ε−2
k

(
I− PTkP ∗Tk

))
Z,

(12)

where the matrices H(k) ∈ Rrk×rk , H
(k)
1,2 ∈ Rrk×(d2−rk) and H

(k)
2,1 ∈ R(d1−rk)×rk are defined such that

H
(k)
ij =

(
σ

(k)
i σ

(k)
j

)−1

for all i, j ∈ [rk], (13)(
H

(k)
1,2

)
ij

=
(
σ

(k)
i εk

)−1

for all i ∈ [rk] and j ∈ [d2 − rk] and
(
H

(k)
2,1

)
ij

=
(
εkσ

(k)
j

)−1

for all i ∈ [d1 − rk] and j ∈ [rk].

Furthermore, 1 in the third line is the ((d1 − rk)× (d2 − rk))-matrix of ones 1, and I is the identity operator. Defining
DSk : Sk → Sk implicitly through the last equality, we observe that DSk is a diagonal matrix with the entries of H(k),
H

(k)
1,2 and H

(k)
2,1 enumerated on its diagonal. Recall that the set of indices corresponding to provided entries is defined as

Ω = {(i`, j`)} ⊂ [d1]× [d2], and PΩ : Rd1×d2 → Rm is the subsampling operator

PΩ(Z) =
∑

(i`,j`)∈Ω

〈ei` ,Zej`〉,

where ei` and ej` are the i`-th and j`-th standard basis vectors of Rd1 and Rd2 , respectively.

A.1. Implementation of MatrixIRLS

The definitions above now enable us to implement the weighted least squares step of (5) efficiently.

In the following lemma, we show that Algorithm 2 indeed computes the solution of the weighted least squares step (5) of
Algorithm 1.

Lemma A.1. If rk+1 ∈ Rm and γk ∈ Sk is the output of Algorithm 2, then X(k+1) as in step (5) of Algorithm 1 fulfills

X(k+1) = P ∗Ω(rk+1) + PTk(γk).

Proof of Lemma A.1. Let W (k) : Rd1×d2 → Rd1×d2 be the weight operator of Definition 2.1. As W (k) is a positive definite
operator, it holds that the minimizer

X(k+1) = arg min
PΩ(X)=y

〈X,W (k)(X)〉

of (5) is unique, and it is well-known (Björck, 1996) that the solution of this linearly constrained weighted least squares
problem can be written such that

X(k+1) = (W (k))−1P ∗Ω

(
PΩ(W (k))−1P ∗Ω

)−1

(y), (15)
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Algorithm 2 Practical implementation of weighted least squares step of MatrixIRLS

Input: Set Ω, observations y ∈ Rm, left and right singular vectors U(k) ∈ Rd1×rk , V(k) ∈ Rd2×rk and singular values
σ

(k)
1 , . . . , σ

(k)
rk , smoothing parameter εk, projection γ(0)

k = P ∗TkPTk−1
(γk−1) ∈ Sk of solution γk−1 ∈ Sk−1 of linear

system eq. (14) for previous iteration k − 1.

1: Compute h0
k := P ∗TkP

∗
Ω (y)−

(
ε2k
(
D−1
Sk
− ε2kISk

)−1
+ P ∗TkP

∗
ΩPΩPTk

)
γ

(0)
k ∈ Sk.

2: Solve (
ε2k
(
D−1
Sk
− ε2kISk

)−1
+ P ∗TkP

∗
ΩPΩPTk

)
∆γk = h0

k (14)

for ∆γk ∈ Sk by the conjugate gradient method (Hestenes & Stiefel, 1952; Meurant, 2006).
3: Compute γk = γ

(0)
k + ∆γk.

4: Compute residual rk+1 := y − PΩPTk(γk) ∈ Rm.
Output: rk+1 ∈ Rm and γk ∈ Sk.

where (W (k))−1 : Rd1×d2 → Rd1×d2 is the inverse of the weight operator W (k): This inverse exists as W (k) is self-adjoint
and positive definite, which can be shown by realizing that its (d1d2 × d1d2)-matrix representation has eigenvectors
v

(k)
i ⊗ u

(k)
j , where v(k)

i ∈ Rd1 and u(k)
j ∈ Rd2 are columns of Vk and Uk, respectively, and that the eigenvalues of W (k)

are just the entries of H(k).

From this eigendecomposition of W (k) if further follows that the action of (W (k))−1 : Rd1×d2 → Rd1×d2 is such that for
each Z ∈ Rd1×d2 ,

(W (k))−1(Z) = Uk

[
H−1
k ◦ (U∗kZVk)

]
V∗k,

where H−1
k ∈ Rd1×d2 is the matrix whose entries are the entrywise inverse of the entries of Hk. With the same argument as

in (12), we can rewrite (W (k))−1 such that

(W (k))−1 = PTkD
−1
Sk
P ∗Tk + ε2k

(
I− PTkP ∗Tk

)
= PTk

(
D−1
Sk
− ε2kISk

)
P ∗Tk + ε2kI,

where ISk is the identity on Sk and D−1
Sk

is the diagonal matrix that is the inverse of DSk in (12).

Since PΩP
∗
Ω = Im, we can use this representation of (W (k))−1 to write(

PΩ(W (k))−1P ∗Ω

)−1

=
(
PΩPTk

(
D−1
Sk
− ε2kISk

)
P ∗TkP

∗
Ω + ε2kIm

)−1
.

Using the Sherman-Morrison-Woodbury formula (Woodbury, 1950)

(ECF∗ + B)−1 = B−1 −B−1E(C−1 + F∗B−1E)−1F∗B−1

for B := ε2kIm, C :=
(
D−1
Sk
− ε2kISk

)
and E = F := PΩPTk , we obtain that(

PΩ(W (k))−1P ∗Ω

)−1

= ε−2
k I−ε−2

k PΩPTk
(
ε2kC

−1 + P ∗TkP
∗
ΩPΩPTk

)−1
P ∗TkP

∗
Ω = ε−2

k I−ε−2
k PΩPTkM

−1P ∗TkP
∗
Ω (16)

with linear system matrix M := ε2kC
−1 + P ∗TkP

∗
ΩPΩPTk , noting that C =

(
D−1
Sk
− ε2kISk

)
is invertible since (H

(k)
ij )−1 =

σ
(k)
i σ

(k)
j > ε2k for all i, j ∈ [rk] and since (D

(k)
ii )−1 = σ

(k)
i εk > ε2k for all i ∈ [rk].

Next, we note that the definition γk = γ
(0)
k + ∆γk and (14) implies that

γk = γ
(0)
k + ∆γk = γ

(0)
k + M−1h0

k = γ
(0)
k + M−1

(
P ∗TkP

∗
Ω (y)−Mγ

(0)
k

)
= M−1P ∗TkP

∗
Ω (y) . (17)

Inserting this into (16), we see that the residual rk+1 of Algorithm 2 satisfies

z :=
(
PΩ(W (k))−1P ∗Ω

)−1

(y) = ε−2
k y − ε−2

k PΩPTkM
−1P ∗TkP

∗
Ω(y) = ε−2

k (y − PΩPTk(γk)) = ε−2
k rk+1.
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Thus, we obtain the representation

X(k+1) = (W (k))−1P ∗Ω

(
PΩ(W (k))−1P ∗Ω

)−1

(y) = (W (k))−1P ∗Ω(z)

= ε2k
[
I + ε−2

k PTkCP
∗
Tk

]
P ∗Ω(z) = ε2kP

∗
Ω(z) + PTkCP

∗
Tk
P ∗Ω(z)

= ε2kP
∗
Ω(z) + PTkCC−1

(
ε2kC

−1 + P ∗TkP
∗
ΩPΩPTk

)−1
P ∗TkP

∗
Ω(y)

= P ∗Ω(rk+1) + PTk(γk),

(18)

for X(k+1), using (19) in the fifth equality, where (19) represents

P ∗TkP
∗
Ω(z) = ε−2

k P ∗TkP
∗
Ω(rk+1) = ε−2

k

(
P ∗TkP

∗
Ω(y)− P ∗TkP

∗
ΩPΩPTk(γk)

)
= ε−2

k

(
P ∗TkP

∗
Ω(y)− P ∗TkP

∗
ΩPΩPTkM

−1P ∗TkP
∗
Ω(y)

)
= ε−2

k

(
P ∗TkP

∗
Ω(y)− P ∗TkP

∗
ΩPΩPTk

(
ε2kC

−1 + P ∗TkP
∗
ΩPΩPTk

)−1
P ∗TkP

∗
Ω(y)

)
= ε−2

k

(
P ∗TkP

∗
Ω(y)−

(
P ∗TkP

∗
ΩPΩPTk ± ε2kC−1

) (
ε2kC

−1 + P ∗TkP
∗
ΩPΩPTk

)−1
P ∗TkP

∗
Ω(y)

)
= C−1

(
ε2kC

−1 + P ∗TkP
∗
ΩPΩPTk

)−1
P ∗TkP

∗
Ω(y),

(19)

which uses (17) in the third equality and the definition of M in the fourth equality.

This finishes the proof.

With Lemma A.1, we are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Based on Lemma A.1, we can compute the representation X(k+1) = P ∗Ω(rk+1) + PTk(γk) for
X(k+1) using Algorithm 2. By the assumption of Theorem 3.1, we know that r = r̃ = rk.

The main computational cost in Algorithm 2 lies in the application of the operators (PΩPTk)∗ = P ∗TkP
∗
Ω : Rm → Sk,

PΩPTk : Sk → Rm and
(
D−1
Sk
− ε2kISk

)−1
: Sk → Sk. The application of

(
D−1
Sk
− ε2kISk

)−1
has a time complexity of

r(d1 + d2 − r) = O(rD) as the operator is diagonal. The action of P ∗TkP
∗
Ω and PΩPTk can be computed as in Algorithm 3

and Algorithm 4, respectively.

Algorithm 3 Implementation of P ∗TkP
∗
Ω : Rm → Sk

Input: Argument vector y ∈ Rm, index set Ω, left and right singular vectors U(k) ∈ Rd1×rk , V(k) ∈ Rd2×rk .
1: A1 = U(k)∗P ∗Ω(y) ∈ Rrk×d2 . . mrk flops
2: A2 = P ∗Ω(y)V(k) ∈ Rd1×rk . . mrk flops
3: Γ1 = A1V

(k) ∈ Rrk×rk . . d2r
2
k flops

4: Γ2 = A1 − Γ1V
(k)∗ ∈ Rrk×d2 . . 2d2r

2
k flops

5: Γ3 = A2 −U(k)Γ1 ∈ Rd1×rk . . d1r
2
k flops

6: Apply Algorithm 6 of (Huang et al., 2017) to compute3 γ ∈ Sk from {Γ1,Γ2,Γ3}. . 4r2
k(d1 + d2 − rk) + 2r2

k flops
Output: γ ∈ Sk.

Using Algorithm 3 and Algorithm 4, we see that the first step of Algorithm 2 has a time complexity of O(mr + r2D)
flops, and each inner iteration of the conjugate gradient method in step 2 of Algorithm 2 has likewise a time complexity of
O(mr + r2D) flops. Finally, step 3 takes also O(mr + r2D) flops.

We observe that the linear system (14) is positive definite, since ε2k
(
D−1
Sk
− ε2kISk

)−1
is diagonal with positive entries and

since P ∗TkP
∗
ΩPΩPTk is a symmetric, positive definite operator. Thus, it is possible to use the conjugate gradient (CG) method,

whose main step applies the three operators above at each iteration. It is known that in general, the CG method terminates
with the exact solution γk after at most NCG inner = dim(Sk) = r(d1 + d2 − r) iterations. However, if the system matrix

ε2kI

D−1
Sk
− ε2kISk

+ P ∗TkP
∗
ΩPΩPTk

3In the notation of (Huang et al., 2017), we have the correspondence that U = U(k), V = V(k), Ṡ = Γ1, SV̇ T = Γ2 and U̇S = Γ3.
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Algorithm 4 Implementation of PΩPTk : Sk → Rm

Input: Argument vector γ ∈ Sk, index set Ω, left and right singular vectors U(k) ∈ Rd1×rk , V(k) ∈ Rd2×rk .
1: Apply Algorithm 7 of (Huang et al., 2017) to compute {Γ1,Γ2,Γ3} from γ ∈ Sk. . 8(d1 + d2)r2

k flops
2: N1 = U(k)Γ1 ∈ Rd1×rk . . d1r

2
k flops

3: N2 = Γ2V
(k) ∈ Rrk×rk . . d2r

2
k flops

4: N3 = U(k)∗Γ3 ∈ Rrk×rk . . d1r
2
k flops

5: N4 = N1 −U(k)N2 + Γ3 −U(k)N3 ∈ Rd1×rk . . d1r
2
k flops

6: Set y such that y` = PΩ(N4V
(k)∗)` =

∑r
k=1(N4)i`,k(V(k))j`,k for each ` ∈ [m]. . 2mrk flops

7: Set y such that y` = y` + PΩ(U(k)Γ2)` =
∑r
k=1(U(k))i`,k(Γ∗2)j`,k for each ` ∈ [m]. . 2mrk flops

Output: y ∈ Rm.

is well-conditioned (for example, with a condition number bounded by a small constant), the CG method can be used as an
inexact solver of (14), returning very high precision approximate solutions after a constant number of iterations NCG inner,
thus, amounting to a time complexity of O

(
(mr + r2D) ·NCG inner

)
. We refer to Theorem 4.2 for a result that ensures this

well-conditioning of the system matrix under certain conditions.

Since we have obtained the representation X(k+1) = P ∗Ω(rk+1) + PTk(γk) of X(k+1) (which is approximate by nature
if an iterative solver such as CG is used), we can now apply Algorithm 7 of (Huang et al., 2017) to γk ∈ Sk to compute
M

(k+1)
1 ∈ Rd2×r and M

(k+1)
2 ∈ R d1 × r such that

X(k+1) = P ∗Ω(rk+1) + U(k)M
(k+1)∗
1 + M

(k+1)
2 V(k)∗,

by setting M
(k+1)
1 = V(k)∗Γ∗1 + Γ∗2 ∈ Rd2×r and M

(k+1)
2 = Γ3 ∈ Rd1×r if {Γ1,Γ2,Γ3} is the output of Algorithm 7 of

(Huang et al., 2017). This last step has a time complexity of 8(d1 + d2)r2 + r2d2 + rd2 = O(r2D) flops, so that we obtain
a total time complexity of O

(
(mr + r2D) ·NCG inner

)
for computing X(k+1).

Including rk+1 ∈ Rm, U(k) ∈ Rd1×r and V(k) ∈ Rd2×r this amounts to a representation of X(k+1) with a space
complexity of m+ 2r(d1 + d2) = O(m+ rD). Since also the space requirement of the intermediate variables does not
exceed O(m+ rD), this finishes the proof of Theorem 3.1.

Based on Theorem 3.1, we see that in MatrixIRLS, it is never necessary to work with full (d1 × d2)-matrices. In order to
update the smoothing parameter εk+1 as in (6), we need the r̃ + 1-th singular value of X(k+1). Furthermore, to update the
information to define the weight operator W (k+1), we need to find the number rk+1 of singular values of X(k+1) that are
larger than εk+1, and their corresponding left and right singular vectors. Due to the definition of (6), it is clear that rk+1 ≥ r̃,
and rk+1 = r̃ for each iteration k when the smoothing parameter decreases, i.e., for each k with εk+1 < εk.

In our experiments on exact completion of rank-r matrices with oracle knowledge of the rank r, we chose r̃ = r, and
we observe that in most iterations of most of our experiments with MatixIRLS, it holds that rk = r. In rare cases, we
observe that rk = cr with a small constant c > 1 for a small number of the iterations k. On the other hand, we do not have a
theoretical statement that bounds rk in general.

The rk singular values and vector pairs of X(k+1) can be computed efficiently using any suitable method that uses matrix-
matrix or matrix-vector products, as, for example, matrix-vector products with X(k+1) can be calculated in m+ 2rk(d2 +
d1) = O(m+ rkD) due to its “sparse + low-rank” structure. Such a suitable method can be a (randomized) block Lanczos
method (Golub & Underwood, 1977; Musco & Musco, 2015; Yuan et al., 2018). In our implementation we used a version of
the method described in (Musco & Musco, 2015), which allows us to compute a good approximation of the needed singular
triplets in a time complexity of O(mrk + r2

kD) (Yuan et al., 2018).

Remark A.1. The authors of the recent preprint (Luo et al., 2020) propose an iterative method for rank-constrained least
squares that has certain similarities to ours from a computational point of view. In particular, it can be shown that Algorithm
1 (called RISRO) of (Luo et al., 2020) is equivalent to solving the equation(

P ∗TkP
∗
ΩPΩPTk

)
z(k) = P ∗TkP

∗
Ω(y)

for z(k) ∈ Sk in our notation, if specialized to matrix completion (see Theorem 2 and equation (58) of (Luo et al., 2020)), if
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the parameter rk coincides with the rank parameter of the rank-constraint least squares. Comparing this to (14), it can be
observed that the Riemannian Gauss-Newton step of (Luo et al., 2020) corresponds to choosing the weights such that the
entries of H(k), H

(k)
1,2 and H

(k)
2,1 are all chosen equal and the smoothing parameter is chosen such that εk = 0, rendering

ε2k
(
D−1
Sk
− ε2kISk

)−1
= 0 in (14).

On the other hand, the interpretation of MatrixIRLS and RISRO is quite different, as MatrixIRLS can be interpreted
as a majorize-minimize method for smoothed log-det objectives eq. (3) with updated smoothing, whereas RISRO is harder
to be interpreted with respect to a rank surrogate objective function, but rather follows a rank-constrained least squares
framework.

B. Proof of Theorem 4.1
In this section, we prove under a random sampling model on the location of the provided entries, MatrixIRLS converges
locally to a low-rank completion of the data with high probability, and that the convergence rate is quadratic, as described in
Theorem 4.1.

First, we shortly elaborate on our notion of incoherence (see Definition 4.1), which quantifies the alignment of the standard
basis (eie

∗
j )
d1,d2

i=1,j=1 of Rd1×d2 with the tangent space onto the rank-r manifold at rank-r matrix at a specific rank-r matrix,
that we use in Theorem 4.1.

Remark B.1. We note that the assumption that a rank-r matrix X ∈ Rd1×d2 is µ0-incoherent according to Definition 4.1 is
weaker than similar assumptions described in Definition 1.2, A0 and A1 of (Candès & Recht, 2009) and Definition 1 and
Theorem 2 of (Recht, 2011), and even than the assumption (2) of (Chen, 2015), which is the weakest available incoherence
condition in the literature that is used for showing successful completion by nuclear norm minimization. More precisely,
(Chen, 2015) calls a matrix X µ0-incoherent if

max
1≤i≤d1

‖U∗ei‖2 ≤
√
µ0r

d1
and max

1≤j≤d2

‖V∗ej‖F ≤
√
µ0r

d2
. (20)

In fact, condition (20) is stronger than (7). If U ∈ Rd1×r and V ∈ Rd2×r are the left and right singular matrices
corresponding to the r non-zero singular values of X, we can write the projection operator PT : Rd1×d2 → Rd1×d2 that
projects onto the tangent space T such PT (Z) = UU∗Z + ZVV∗ −UU∗ZVV∗. Therefore, it can be seen that

‖PT (eie
∗
j )‖2F = ‖UU∗eie

∗
j + eie

∗
jVV∗ −UU∗eie

∗
jVV∗‖2F = ‖UU∗eie

∗
j (I−VV∗) + eie

∗
jVV∗‖2F

= ‖UU∗eie
∗
j (I−VV∗)‖2F + ‖eie∗jVV∗‖2F ≤ ‖UU∗eie

∗
j‖2F ‖I−VV∗‖2 + ‖eie∗jVV∗‖2F

≤ ‖U∗eie∗j‖2F + ‖eie∗jV‖2F = ‖U∗ei‖22 + ‖V∗ej‖22 ≤
µ0r

d1
+
µ0r

d2
≤ µ0r(d1 + d2)

d1d2

for any i ∈ [d1], j ∈ [d2], if (20) is fulfilled, which holds since

‖U∗eie∗j‖2F = tr(eje
∗
iUU∗eie

∗
j ) = tr(e∗iUU∗ei) = e∗iUU∗ei = ‖U∗ei‖22

and similarly ‖eie∗jV‖2F = ‖V∗ej‖22.

B.1. Interplay between sampling operator and tangent space

In the statement of Theorem 4.1, we assume that the index set Ω is drawn uniformly at random without replacement. In our
proof below, however, we use a sampling model on the locations Ω = (i`, j`)

m
`=1 corresponding to independent sampling

with replacement. It is well-known (see, e.g., Proposition 3 of (Recht, 2011)) that the statement then carries over to the
above model of sampling without replacement.

As a preparation for our proof, we recall well-known result from (Recht, 2011) that bounds the number of repetitions of
each location in Ω under the random sampling model with replacement.

Lemma B.1 (Proposition 5 of (Recht, 2011)). Let D = max(d1, d2) and β > 1, let Ω = (i`, j`)
m
`=1 be a multiset of double

indices from [d1]× [d2] fulfilling m < d1d2 that are sampled independently with replacement. Then with probability at least
1−D2−2β , the maximal number of repetitions of any entry in Ω is less than 8

3β log(D) for D ≥ 9 and β > 1. Consequently,
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we have that with probability of at least 1−D2−2β , the operatorRΩ : Rd1×d2 → Rd1×d2 defined such that

RΩ(X) := P ∗Ω(PΩ(X)) =

m∑
`=1

〈ei`e∗j` ,X〉ei`e
∗
j`

(21)

fulfills

‖RΩ‖S∞ ≤
8

3
β log(D).

Next, we use a lemma of (Recht, 2011) that can be seen as a result of a local restricted isometry property. While the proof is
fairly standard, we provide it for completeness since we use the weaker incoherence definition of Definition 4.1 instead of
the incoherence notions of (Recht, 2011; Chen, 2015).

Lemma B.2 (Theorem 6 of (Recht, 2011)). Let 0 < ε ≤ 1
2 , let X0 ∈ Rd1×d2 be a µ0-incoherent matrix whose tangent

space T0 = TX0 onto the rank-r manifold T0 = TX0Mr (see (11)) fulfills (7) andRΩ : Rd1×d2 → Rd1×d2 be defined as in
(21) from m independent uniformly sampled locations. Let PT0

: Rd1×d2 → Rd1×d2 be the projection operator associated
to T0. Then ∥∥∥∥d1d2

m
PT0RΩPT0 − PT0

∥∥∥∥
S∞

≤ ε (22)

holds with probability at least 1− (d1 + d2)−2 provided that

m ≥ 7

ε2
µ0r(d1 + d2) log(d1 + d2). (23)

Proof of Lemma B.2. First we define the family of operators Z`, Z̃` : Rd1×d2 → Rd1×d2 such that for X ∈ Rd1×d2 ,

Z`(X) :=
d1d2

m
〈ei`e∗j` ,PT0

(X)〉PT0
(ei`e

∗
j`

)− 1

m
PT0

(X) :=
d1d2

m
Z̃`(X)− 1

m
PT0

(X)

for any ` ∈ [m]. Then

E[Z`] =
1

d1d2

d1∑
i=1

d2∑
j=1

d1d2

m
〈eie∗j ,PT0

(·)〉PT0
(eie

∗
j )−

1

m
PT0

=
1

d1d2

d1d2

m
PT0

IPT0
− 1

m
PT0

= 0. (24)

Since for X ∈ Rd1×d2

〈ei`e∗j` ,PT0(X)〉PT0(ei`e
∗
j`

) = 〈PT0(ei`e
∗
j`

),X〉PT0(ei`e
∗
j`

),

we obtain

‖〈ei`e∗j` ,PT0
(X)〉PT0

(ei`e
∗
j`

)‖F ≤
∣∣〈PT0

(ei`e
∗
j`

),X〉
∣∣ ‖PT0

(ei`e
∗
j`

)‖F ≤ ‖PT0
(ei`e

∗
j`

)‖2F ‖X‖F

by Cauchy-Schwartz, and thus the norm bound

d1d2

m

∥∥∥Z̃`∥∥∥
S∞
≤ d1d2

m
‖PT0

(ei`e
∗
j`

)‖2F ≤
d1d2

m
max

i∈[d1],j∈[d2]
‖PT0

(eie
∗
j )‖2F

≤ d1d2

m

µ0r(d1 + d2)

d1d2
=
µ0r(d1 + d2)

m

(25)

using the incoherence assumption (7) in the last inequality. Similarly,∥∥∥∥ 1

m
PT0

∥∥∥∥
S∞

=

∥∥∥∥ 1

m
PT0

IPT0

∥∥∥∥
S∞

≤ 1

m

d1∑
i=1

d2∑
j=1

∥∥〈PT0(eie
∗
j ), (·)〉PT0(eie

∗
j )
∥∥
S∞
≤ µ0r(d1 + d2)

m
. (26)

We note that if operators A and B are positive semidefinite, then ‖A−B‖S∞ ≤ max(‖A‖S∞ , ‖B‖S∞), and as both Z̃` and
PT0 are positive semidefinite,

‖Z`‖S∞ ≤ max

(
d1d2

m

∥∥∥Z̃`∥∥∥
S∞

,
1

m
‖PT0

‖S∞

)
=
µ0r(d1 + d2)

m
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for all ` ∈ [m]. For the expectation of the squares of Z`, we obtain

EZ`Z∗` =
(d1d2)2

m2
E
[
(Z̃`)∗Z̃`

]
− d1d2

m2
E
[
Z̃`
]
PT0 −

d1d2

m2
PT0 E

[
Z̃`
]

+
1

m2
PT0

=
(d1d2)2

m2
E
[
(Z̃`)∗Z̃`

]
+ (1− 2)

1

m2
PT0

,

as P2
T0

= PT0 and E[Z̃`] = 1
d1d2
PT0 . Thus,∥∥∥∥∥

m∑
`=1

EZ`Z∗`

∥∥∥∥∥
S∞

≤
m∑
`=1

‖EZ`Z∗` ‖S∞ =

m∑
`=1

∥∥∥∥ (d1d2)2

m2
E
[
(Z̃`)2

]
− 1

m2
PT0

∥∥∥∥
S∞

≤
m∑
`=1

max

(
(d1d2)2

m2

∥∥∥E [(Z̃`)2
]∥∥∥
S∞

,
1

m2
‖PT0

‖S∞

)

≤
m∑
`=1

max

(
(d1d2)2

m2

∥∥∥E [‖PT0(ei`e
∗
j`

)‖2F Z̃`
]∥∥∥
S∞

,
1

m2

)

≤
m∑
`=1

max

(
(d1d2)(d1 + d2)µ0r

m2

∥∥∥E Z̃`∥∥∥
S∞

,
1

m2

)

≤
m∑
`=1

max

(
(d1 + d2)µ0r

m2
,

1

m2

)
=
µ0r(d1 + d2)

m
,

where we used that ‖PT0
‖2 ≤ 1 since PT0

is a projection in the third inequality, the definition of µ0 in the fourth and the
fact that E Z̃` = 1

d1d2
PT0

(see (24)) in the fifth. As the Z` are Hermitian, it follows by the matrix Bernstein inequality (see,
e.g., Theorem 5.4.1 of (Vershynin, 2018)) that

P

(∥∥∥∥d1d2

m
PT0
RΩPT0

− PT0

∥∥∥∥
S∞

≥ ε

)
≤ (d1 + d2) exp

(
− mε2/2

µ0r(d1 + d2) + µ0r(d1 + d2)ε/3

)
≤ (d1 + d2) exp

(
− mε2

2µ0r(d1 + d2) + µ0r(d1 + d2)/3

)
,

(27)

using that ε ≤ 1
2 in the last inequality.

Furthermore, if (23) is fulfilled, then

(d1 + d2) exp

(
− mε2

7
3µ0r(d1 + d2)

)
≤ (d1 + d2)−2,

which shows that (22) holds with a probability of at least 1− (d1 + d2)−2.

To prove our theorem, we will use the local restricted isometry statement of (22) for tangent spaces TX corresponding to
matrices X ∈ Rd1×d2 that are close to X0. We show the following auxiliary result, which is a refinement of Lemma 4.2
(Wei et al., 2020) as we obtain a bound in the S∞-norm in (c) instead of in the Frobenius norm.

Lemma B.3. Let X0,X ∈ Rd1×d2 be matrices and assume that 0 < ε < 1 and that the following three conditions hold:

(a) ForRΩ : Rd1×d2 → Rd1×d2 as in (21),

‖RΩ‖S∞ ≤
16

3
log(D).

(b) The tangent space T0 = TX0 onto the rank-r manifoldMr at X0 fulfills∥∥∥∥d1d2

m
PT0
RΩPT0

− PT0

∥∥∥∥
S∞

≤ ε.
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(c) The spectral norm distance between X and X0 fulfills

‖X−X0‖S∞ ≤
√

3

32
√

log(D)
√

(1 + ε)
ε

√
m

d1d2
σr(X

0).

Then the tangent space T = TX onto the rank-r manifold at X fulfills∥∥∥∥d1d2

m
PTRΩPT − PT

∥∥∥∥
S∞

≤ 4ε. (28)

Proof. For any Z ∈ Rd1×d2 , we have

‖RΩPT0(Z)‖2F = 〈RΩPT (Z),RΩPT (Z)〉 ≤ 16

3
log(D) 〈PT0(Z),RΩPT0(Z)〉

=
16

3
log(D) 〈PT0(Z),PT0RΩPT0(Z)〉

=
16

3
log(D)

(〈
PT0(Z),

m

d1d2
PT0(Z)

〉
+

〈
PT0(Z),

(
PT0RΩPT0(Z)− m

d1d2
PT0(Z)

)〉)
≤ 16

3
log(D)

(
m

d1d2
+ ε

m

d1d2

)
‖PT0

(Z)‖2F ≤
16

3
log(D)(1 + ε)

m

d1d2
‖Z‖2F ,

where the first inequality follows from condition (a) and the second one from condition (b). It follows that

‖RΩPT0‖ ≤
√

16

3
log(D)(1 + ε)

m

d1d2
. (29)

Furthermore, if U,U0 ∈ Rd1×r and V,V0 ∈ Rd2×r are the matrices of first r left and right singular vectors of X and X0,
respectively, it holds that for any Z ∈ Rd1×d2 ,

(PT − PT0
)(Z) = UU∗Z + ZVV∗ −UU∗ZVV∗ −U0U

∗
0Z− ZV0V

∗
0 + U0U

∗
0ZV0V

∗
0

= (UU∗ −U0U
∗
0) Z(I−V0V

∗
0) + (I−UU∗)Z(VV∗ −V0V

∗
0),

which we use to estimate

‖(PT − PT0
)(Z)‖F ≤ ‖UU∗ −U0U

∗
0‖S∞‖Z‖F ‖I−V0V

∗
0‖S∞ + ‖I−UU∗‖S∞‖Z‖F ‖VV∗ −V0V

∗
0‖S∞

≤ ‖Tr(X)−X0‖S∞
σr(X0)

‖Z‖F · 1 + 1 · ‖Z‖F
‖Tr(X)−X0‖S∞

σr(X0)

≤ 2
‖Tr(X)−X‖S∞ + ‖X−X0‖S∞

σr(X0)
‖Z‖F ,

where Tr(X) is the best rank-r approximation (10). Here, we used the results

‖UU∗ −U0U
∗
0‖S∞ ≤

‖Tr(X)−X0‖S∞
σr(X0)

and

‖VV∗ −V0V
∗
0‖S∞ ≤

‖Tr(X)−X0‖S∞
σr(X0)

of Lemma 4.2, ineq. (4.3) of (Wei et al., 2016), which bound the distance between the projections onto the left and right
singular subspaces of X and X0.

From the Eckardt-Young-Mirsky theorem (10), it then follows that

‖(PT − PT0)‖S∞ ≤
4‖X−X0‖S∞

σr(X0)
. (30)
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With this, we further bound

‖RΩPT ‖S∞ ≤ ‖RΩ(PT − PT0)‖S∞ + ‖RΩPT0‖S∞

≤ 16

3
log(D)

4
∥∥X−X0

∥∥
S∞

σr(X0)
+ ‖RΩPT0

‖S∞

≤ 16

3
log(D)

√
3

8
√

log(D)
√

(1 + ε)
ε

√
m

d1d2
+

√
16

3
log(D)(1 + ε)

m

d1d2

=
2√
3

√
log(D)

1√
(1 + ε)

ε

√
m

d1d2
+

√
16

3
log(D)(1 + ε)

m

d1d2

≤ 2
√

3
√

log(D)
√

1 + ε

√
m

d1d2
,

(31)

where the second inequality follows from (30) and the third from condition (c). To prove the statement (28), we calculate∥∥∥∥d1d2

m
PTRΩPT − PT

∥∥∥∥
S∞

≤ ‖PT − PT0
‖S∞ +

d1d2

m
‖PTRΩPT − PTRΩPT0

‖S∞

+
d1d2

m
‖PTRΩPT0

− PT0
RΩPT0

‖S∞ +

∥∥∥∥PT0
− d1d2

m
PT0
RΩPT0

∥∥∥∥
S∞

≤ ‖PT − PT0‖S∞ +
d1d2

m
‖RΩPT ‖S∞ ‖PT − PT0‖S∞

+
d1d2

m
‖RΩPT0

‖S∞ ‖PT − PT0
‖S∞ +

∥∥∥∥PT0
− d1d2

m
PT0
RΩPT0

∥∥∥∥
S∞

≤
4
∥∥X−X0

∥∥
S∞

σr(X0)
+
d1d2

m
‖RΩPT ‖S∞

4
∥∥X−X0

∥∥
S∞

σr(X0)

+
d1d2

m
‖RΩPT0

‖S∞
4
∥∥X−X0

∥∥
S∞

σr(X0)
+

∥∥∥∥PT0
− d1d2

m
PT0
RΩPT0

∥∥∥∥
S∞

≤ 4ε

where in the second inequality, we utilized the factR∗Ω = RΩ so that ‖PTRΩ‖S∞ = ‖RΩPT ‖S∞ . The very last estimate
follows from conditions (b) and (c) and the bounds (29) and (31) for ‖RΩPT ‖S∞ and ‖RΩPT0‖S∞ .

In the following lemma, we combine the previous results to show that under our sampling model, with high probability, a
local restricted isometry property holds with respect to tangent spaces Tk that are in some sense close to X0.
Lemma B.4. Let X0 ∈ Rd1×d2 be a matrix of rank r that is µ0-incoherent, and let Ω = (i`, j`)

m
`=1 be a random index

set of cardinality |Ω| = m that is sampled uniformly without replacement, or, alternatively, sampled independently with
replacement. There exists constants C, C̃, C1 such that if

m ≥ Cµ0r(d1 + d2) log(d1 + d2), (32)

then, with probability at least 1− 2D−2, the following holds: For each matrix X(k) ∈ Rd1×d2 fulfilling

‖X(k) −X0‖S∞ ≤ C1

√
µ0r

d
σr(X

0), (33)

it follows that the projection PTk : Rd1×d2 → Rd1×d2 onto the tangent space Tk := TTr(X(k))Mr satisfies∥∥∥∥d1d2

m
PTkP ∗ΩPΩPTk − PTk

∥∥∥∥
S∞

≤ 2

5
,

and furthermore,

‖η‖F ≤

√
C̃d log(D)

µ0r
‖PT⊥k (η)‖F

for each matrix η ∈ kerPΩ in the null space of the subsampling operator PΩ : Rd1×d2 → Rm.
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Proof of Lemma B.4. Assume that there are m locations Ω = (i`, j`)
m
`=1 in [d1]× [d2] sampled independently uniformly

with replacement, where m fulfills (32) with C := 7/ε2 and ε = 0.1. By Lemma B.1, it follows that the corresponding
operatorRΩ : Rd1×d2 → Rd1×d2 from (21) fulfills

‖RΩ‖S∞ ≤
16

3
log(D) (34)

on an event called EΩ, which occurs with a probability of at least 1 − D−2, and by Lemma B.2, the tangent space
T0 = TX0Mr corresponding to the µ0-incoherent rank-r matrix X0 fulfills∥∥∥∥d1d2

m
PT0

P ∗ΩPΩPT0
− PT0

∥∥∥∥
S∞

≤ ε

on an event called EΩ,T0
, which occurs with a probability of at least 1−D−2. Let ε̃ = 1

10 . If X(k) ∈ Rd1×d2 is such that
‖X(k) −X0‖S∞ ≤ ξ̃σr(X0) with

ξ̃ =

√
3

32

ε√
log(D)(1 + ε)

√
m

d1d2
=

√
3

32

1

10
√

log(D)(11/10)

√
m

d1d2
, (35)

it follows by Lemma B.3 that on the event EΩ ∩ EΩ,T0
, the tangent space Tk := X(k) onto the rank-r manifold at X(k)

fulfills ∥∥∥∥d1d2

m
PTkRΩPTk − PTk

∥∥∥∥
S∞

≤ 4ε̃ =
2

5
. (36)

Next, we claim that on the event EΩ ∩ EΩ,T0
,

‖η‖F ≤

√
C̃d log(D)

µ0r
‖PT⊥k (η)‖F . (37)

for any for each matrix η ∈ kerPΩ in the null space of the subsampling operator PΩ : Rd1×d2 → Rm.

Indeed, to show this claim, we first note that η ∈ kerPΩ if and only if η ∈ kerRΩ : P ∗ΩPΩ. Let η ∈ kerRΩ. Then

‖PTk(η)‖2F = 〈PTk(η),PTk(η)〉

=

〈
PTk(η),

d1d2

m
PTkRΩPTk(η)

〉
+

〈
PTk(η),PTk(η)− d1d2

m
PTkRΩPTk(η)

〉
≤
〈
PTk(η),

d1d2

m
PTkRΩPTk(η)

〉
+ ‖PTk(η)‖F

∥∥∥∥PTk − d1d2

m
PTkRΩPTk

∥∥∥∥
S∞

‖PTk(η)‖F

≤
〈
PTk(η),

d1d2

m
PTkRΩPTk(η)

〉
+ 4ε‖PTk(η)‖2F ,

using (36) in the last inequality, which implies that

‖PTk(η)‖2F ≤
1

1− 4ε

d1d2

m
〈PTk(η),PTkR2

ΩPTk(η)〉 =
1

1− 4ε

d1d2

m
‖RΩPTk(η)‖2F

≤ 2d1d2

m
‖RΩPTk(η)‖2F

using the fact thatRΩ : Rd1×d2 → Rd1×d2 is positive semidefinite and has eigenvalues that are 0 or larger or equal than 1
only. Furthermore, we used that ε ≤ 1

10 in the last inequality.

Since η ∈ kerRΩ, it holds that

0 = ‖RΩ(η)‖F =
∥∥∥RΩ

(
PTk(η) + PT⊥k (η)

)∥∥∥
F
≥ ‖RΩPTk(η)‖F − ‖RΩPT⊥k (η)‖F

so that
‖RΩPTk(η)‖F ≤ ‖RΩPT⊥k (η)‖F ≤

16

3
log(D)‖PT⊥k (η)‖F ,
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where we used (34) in the last inequality. Inserting this above, we obtain

‖η‖2F = ‖PTk(η)‖2F + ‖PT⊥k (η)‖2F ≤
(

2d1d2

m

162

32
log(D)2 + 1

)
‖PT⊥k (η)‖2F

≤
(

2d1d2

Cµ0r(d1 + d2) log(d1 + d2)

162

32
log(D)2 + 1

)
‖PT⊥k (η)‖2F

≤ C̃d log(D)

µ0r
‖PT⊥k (η)‖2F ,

where we used the sample complexity condition (32) in the second inequality and the definition

C̃ :=
4 · 162

C · 32

for the constant C̃.

Moreover, we observe that for C1 :=
√
C

320

√
30
11 where C is the constant of (32), it holds that

C1

√
µ0r

d
≤
√

3

32

1

10
√

log(D)(11/10)

√
Cµ0r(d1 + d2) log(d1 + d2)

d1d2
≤ ξ̃,

implying that the two statements of Lemma B.4 are satisfied on the event EΩ ∩EΩ,T0
if (33) holds. By the above mentioned

probability bounds and a union bound, EΩ ∩ EΩ,T0 occurs with a probability of at least 1− 2D−2, finishing the proof for
the sampling with replacement model. By the argument of Proposition 3 of (Recht, 2011), the result extends to the model of
sampling locations drawn uniformly at random without replacement, with the same probability bound. This concludes the
proof of Lemma B.4.

The following lemma will also play a role in the proof of Theorem 4.1.

Lemma B.5. Let C, C̃, C1 be the constants of Lemma B.4 and µ0 be the incoherence factor of a rank-r matrix X0. If

m ≥ Cµ0r(d1 + d2) log(d1 + d2)

and if η(k) = X(k) −X0 fulfills
‖η(k)‖S∞ ≤ ξσr(X0),

with

ξ := min

(
C1

√
µ0r

d
,

µ0

4(1 + 6κ)d log(D)C̃

)
then, on the event of Lemma B.4, it holds that

‖η(k)‖S∞ <

√
4C̃d(d− r) log(D)

µ0r
σr+1(X(k)). (38)

Proof. First, we compute that

‖PT⊥k (η(k))‖F ≤ ‖PT⊥k (X(k))‖F + ‖PT⊥k (X0)‖F ≤

√√√√ d∑
i=r+1

σ2
i (X(k)) +

∥∥∥U(k)
⊥ U

(k)∗
⊥ X0V

(k)
⊥ V

(k)∗
⊥

∥∥∥
F

≤
√
d− rσr+1(X(k)) + ‖U(k)∗

⊥ U0‖S∞‖Σ0‖F ‖V∗0V
(k)
⊥ ‖S∞

≤
√
d− rσr+1(X(k)) +

2‖η(k)‖2S∞
(1− ζ)2σ2

r(X0)

√
rσ1(X0) =

√
d− rσr+1(X(k)) +

2‖η(k)‖2S∞
(1− ζ)2σr(X0)

√
rκ,

where 0 < ζ < 1 such that ‖X(k) −X0‖S∞ ≤ ζσr(X0), using Lemma B.6 twice in the fourth inequality and ‖AB‖F ≤
‖A‖S∞‖B‖F all matrices A and B, referring to the notations of Lemma B.9 (see below) for U0,Σ0,V0,U

(k)
⊥ and V

(k)
⊥ .
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Using Lemma B.4 for η(k) = X(k) −X0, we obtain on the event on which the statement of Lemma B.4 holds that

‖η(k)‖S∞ ≤ ‖η(k)‖F ≤

√
C̃d log(D)

µ0r
‖PT⊥k (η(k))‖F

≤

√
C̃d log(D)

µ0r

(
√
d− rσr+1(X(k)) +

8
√
rκ‖η(k)‖2S∞
σr(X0)

)

≤

√
C̃d log(D)

µ0r

(
√
d− rσr+1(X(k)) +

8
√
rκµ0σr(X

0)

4(1 + 6κ)d log(D)C̃σr(X0)
‖η(k)‖S∞

)

=

√
C̃d(d− r) log(D)

µ0r
σr+1(X(k)) +

1

3

√
µ0

C̃d log(D)
‖η(k)‖S∞ .

Since µ0 ≤ d
r , we have that 1

3

√
µ0

C̃d log(D)
< 1

2 , and therefore we obtain, after rearranging,

(
1− 1

2

)
‖η(k)‖S∞ <

(
1− 1

3

√
µ0

C̃d log(D)

)
‖η(k)‖S∞ ≤

√
C̃d(d− r) log(D)

µ0r
σr+1(X(k)),

which implies the statement of this lemma.

B.2. Weight operator and matrix perturbation

In the following, we use a well-known bound on perturbations of the singular value decomposition, which is originally due
to (Wedin, 1972). The result bounds the alignment of the subspaces spanned by the singular vectors of two matrices by their
norm distance, given a gap between the first singular values of one matrix and the last singular values of the other matrix
that is sufficiently pronounced.

Lemma B.6 (Wedin’s bound (Stewart, 2006)). Let X and X̂ be two matrices of the same size and their singular value
decompositions

X =
(
U U⊥

)(Σ 0
0 Σ⊥

)(
V∗

V∗⊥

)
and X̂ =

(
Û Û⊥

)(Σ̂ 0

0 Σ̂⊥

)(
V̂∗

V̂∗⊥

)
,

where the submatrices have the sizes of corresponding dimensions. Suppose that δ, α satisfying 0 < δ ≤ α are such that
α ≤ σmin(Σ) and σmax(Σ̂⊥) < α− δ. Then

‖Û∗⊥U‖S∞ ≤
√

2
‖X− X̂‖S∞

δ
and ‖V̂∗⊥V‖S∞ ≤

√
2
‖X− X̂‖S∞

δ
. (39)

We also use a lemma which provides an explicit formula for the calculation of the new iterate X(k) of MatrixIRLS and
its characterization by optimality conditions. It is well-known in the IRLS literature, see, e.g., Eq. (1.9) and Lemma 5.2
of (Daubechies et al., 2010) or Lemma 5.1 (Fornasier et al., 2011), and is very general as it holds for any positive definite
weight operator.

Lemma B.7. Let PΩ : Rd1×d2 → Rm be the sampling operator, let y ∈ Rm. Let W (k) : Rd1×d2 → Rd1×d2 be the weight
operator of Definition 2.1 defined based on X(k) ∈ Rd1×d2 . Then the solution of the weighted least squares step (5) of
Algorithm 1 is unique and

X(k+1) = arg min
PΩ(X)=y

〈X,W (k)(X)〉 = (W (k))−1P ∗Ω

(
PΩ(W (k))−1P ∗Ω

)−1

(y), (40)

where (W (k))−1 : Rd1×d2 → Rd1×d2 is the inverse matrix operator of W (k).

Moreover, a matrix X(k+1) ∈ Rd1×d2 coincides with the one of (40) if and only if

〈W (k)(X(k+1)), η〉 = 0 for all η ∈ kerPΩ and PΩ(X(k+1)) = y. (41)
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We show the following lemma. Wherever it appears, ‖X‖S1
denotes the nuclear norm ‖X‖S1

=
∑d
i=1 σi(X) of a matrix

X ∈ Rd1×d2 .
Lemma B.8. Let X0 ∈ Rd1×d2 be a matrix of rank r, let X(k) be the k-th iterate of Algorithm 1 for input parameters Ω,
y = PΩ(X0) and r̃ = r. Assume that εk = σr+1(X(k)) and that

‖η‖F ≤ c(µ0, r, d1, d2)‖PT⊥k η‖F for all η ∈ kerPΩ (42)

for some constant c(µ0, r, d1, d2) that may depend on µ0, r, d1, d2, where Tk = TTr(X(k))Mr is tangent space onto the
manifold of rank-r matrices at Tr(X(k)). Then

‖X(k+1) −X0‖S∞ ≤ c(µ0, r, d1, d2)2ε2k‖W (k)(X0)‖S1 , (43)

if W (k) : Rd1×d2 → Rd1×d2 is the optimal weight operator of Definition 2.1 corresponding to X(k).

Proof of Lemma B.8. Let η(k+1) := X(k+1) −X0. Since η(k+1) is in the nullspace kerPΩ, it follows from (42) that

‖η(k+1)‖2S∞ ≤ ‖η
(k+1)‖2F ≤ c(µ0, r, d1, d2)2‖PT⊥k (η(k+1))‖2F . (44)

Recalling the definition of the weight operator W (k) : Rd1×d2 → Rd1×d2 from Definition 2.1 we see that, if

X(k) = UkΣkV
∗
k =

[
U(k) U

(k)
⊥

] [Σ(k) 0

0 Σ
(k)
⊥

] [
V(k)∗

V
(k)∗
⊥

]
(45)

is a singular value decomposition with U(k) ∈ Rd1×r, U
(k)
⊥ ∈ Rd1×(d1−r), V(k) ∈ Rd2×r, V

(k)
⊥ ∈ Rd2×(d2−r), we have

that
〈Z,W (k)(Z)〉 = 〈U∗kZVk,Hk ◦ (U∗kZVk)〉 (46)

where Hk ∈ Rd1×d2 is as in Definition 2.1.

If Z = PT⊥k (η(k+1)) ∈ T⊥k , we know that U(k)∗Z = 0 and ZV(k) = 0, and therefore

U∗kZVk =

[
U(k)∗

U
(k)∗
⊥

]
Z
[
V(k) V

(k)
⊥

]
=

(
0 0

0 U
(k)∗
⊥ ZV

(k)
⊥

)
with U

(k)∗
⊥ ZV

(k)
⊥ ∈ R(d1−r)×(d2−r).

By assumption of Lemma B.8, we know that εk = σr+1(X(k)), which means that rk := |{i ∈ [d] : σi(X
(k)) > εk}| = r,

and therefore (Hk)ij = ε−2
k for all i, j > r. This entails with (46) that

〈PT⊥k (η(k+1)),W (k)(PT⊥k (η(k+1)))〉 = ε−2
k 〈U

∗
kPT⊥k (η(k+1))Vk,U

∗
kPT⊥k (η(k+1))Vk〉

= ε−2
k 〈PT⊥k (η(k+1)),PT⊥k (η(k+1))〉 = ε−2

k ‖PT⊥k (η(k+1))‖2F ,

using the cyclicity of the trace and the fact that Uk and Vk are orthonormal matrices.

Inserting this into (44), we obtain

‖η(k+1)‖2S∞ ≤ c(µ0, r, d1, d2)2ε2k

〈
PT⊥k (η(k+1)),W (k)(PT⊥k (η(k+1)))

〉
≤ c(µ0, r, d1, d2)2ε2k

〈
η(k+1),W (k)(η(k+1))

〉
,

(47)

where the last inequality holds since W (k) is positive definite and since
〈
PT⊥k (η(k+1)),W (k)(PTk(η(k+1)))

〉
= 0 due to

the orthogonality of Tk and T⊥k . Due to Lemma B.7, we know that the new iterate X(k+1) fulfills

0 = 〈W (k)(X(k+1)), η(k+1)〉 = 〈W (k)(η(k+1) + X0), η(k+1)〉,

and therefore 〈
η(k+1),W (k)(η(k+1))

〉
= −

〈
W (k)(X0), η(k+1)

〉
≤ ‖W (k)(X0)‖S1

‖η(k+1)‖S∞ ,

using Hölder’s inequality for Schatten-p (quasi-)norms (cf. Theorem 11.2 of (Gohberg et al., 2000)). Dividing (47) by
‖η(k+1)‖S∞ concludes the proof of Lemma B.8.
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In order to obtain a fast local convergence rate, it is crucial to bound ‖W (k)(X0)‖S1
. For this, we split ‖W (k)(X0)‖S1

into
three parts and estimate the parts separately by using the classical singular subspace perturbation result of Lemma B.6.

Lemma B.9. Let W (k) : Rd1×d2 → Rd1×d2 be the weight operator (4) of Definition 2.1 corresponding to X(k), let
εk = σr+1(X(k)) = σ

(k)
r and X0 ∈ Rd1×d2 be a rank-r matrix. Assume that there exists 0 < ζ < 1 such that

‖X(k) −X0‖S∞ ≤ ζσr(X0). (48)

Then ∥∥W (k)(X0)
∥∥
S1
≤ r(1− ζ)−2σr(X

0)−1

(
1 + 4

‖η(k)‖S∞
εk

σ1(X0)

σr(X0)
+ 2
‖η(k)‖2S∞

ε2k

σ1(X0)

σr(X0)

)
.

Proof. Recalling the notation σ(k)
` = σ`(X

(k)) for the `-th singular value of X(k) and the decomposition

Hk =

[
H(k) H

(k)
1,2

H
(k)
2,1 ε−2

k 1

]
(49)

of (12), we bound the entries of the different blocks H(k), H
(k)
1,2 and H

(k)
2,1 separately.

Since (Hk)ij =
(

max(σ
(k)
i , εk) max(σ

(k)
j , εk)

)−1

for each i ∈ [d1] and j ∈ [d2] due to definition of Hk, we observe that

max
i∈[r],j∈[r]

(H(k))ij ≤ (σ(k)
r )−2, (50)

and

max

(
max
i,j

((H
(k)
1,2)ij),max

i,j
((H

(k)
2,1)ij)

)
= max
i∈[r],r+1≤j≤d2

(H
(k)
1,2)ij ≤ (σ(k)

r )−1ε−1
k , (51)

In view of these entrywise bounds on the submatrices of Hk and H
(k)
2 , we compute, using (12), that

∥∥W (k)(X0)
∥∥
S1

=

∥∥∥∥∥[U(k) U
(k)
⊥

]([H(k) H
(k)
1,2

H
(k)
2,1 ε−2

k 1

]
◦

[
U(k)∗X0V(k) U(k)∗X0V

(k)
⊥

U
(k)∗
⊥ X0V(k) U

(k)∗
⊥ X0V

(k)
⊥

])[
V(k)∗

V
(k)∗
⊥

]∥∥∥∥∥
S1

≤
∥∥∥U(k)[H(k) ◦ (U(k)∗X0V(k))]V(k)∗

∥∥∥
S1

+

∥∥∥∥∥Uk

[
0 H

(k)
1,2 ◦ (U(k)∗X0V

(k)
⊥ )

H
(k)
2,1 ◦ (U

(k)∗
⊥ X0V(k)) 0

]
V∗k

∥∥∥∥∥
S1

+ ε−2
k

∥∥∥U(k)
⊥ U

(k)∗
⊥ X0V

(k)
⊥ V

(k)∗
⊥

∥∥∥
S1

=: (I) + (II) + (III).

We now bound the terms (I), (II) and (III) separately.

First, we see that

(I) =
∥∥∥H(k) ◦ (U(k)∗X0V(k))

∥∥∥
S1

≤
√
r
∥∥∥H(k) ◦ (U(k)∗X0V(k))

∥∥∥
F

≤
√
r
∥∥∥H(k) ◦ (U(k)∗X(k)V(k))

∥∥∥
F

+
√
r
∥∥∥H(k) ◦ (U(k)∗η(k)V(k))

∥∥∥
F

≤
√
r
∥∥∥H(k) ◦Σ(k)

∥∥∥
F

+
√
r(σ(k)

r )−2‖U(k)∗η(k)V(k)‖F ,

where we used the Cauchy-Schwarz inequality in the first inequality, the notation η(k) = X(k) − X0 and the triangle
inequality in the second inequality, and finally, (50) in the third inequality. Σ(k) Rr×r is here as in (9).

Since ∥∥∥H(k) ◦Σ(k)
∥∥∥
F

=

(
r∑
i=1

(σ
(k)
i )−2

)1/2

≤
√
r(σ(k)

r )−1
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and
‖U(k)∗η(k)V(k)‖F ≤

√
r‖U(k)∗η(k)V(k)‖S∞ ≤

√
r‖η(k)‖S∞ ≤

√
rζσr(X

0)

from assumption (48), it follows then that

(I) ≤ r(σ(k)
r )−2

(
σ(k)
r + ζσr(X

0)
)
.

We can use the proximity assumption (48) further to get rid of the dependence on k in the bound, as

σr(X
0) = σr(X

(k) − η(k)) ≤ σ(k)
r + σ1(η(k)) = σ(k)

r + ‖η(k)‖S∞ ≤ σ(k)
r + ζσr(X

0),

using σi+j−1(A) ≤ σi(A + B) + σj(B) for any i, j (cf. Theorem 3.3.16 of (Horn & Johnson, 1991)) with A + B =
X(k) − η(k) and B = ηk so that

σ(k)
r ≥ (1− ζ)σr(X

0), (52)

and hence
(I) ≤ rσr(X0)−2(1− ζ)−2

(
σr(X

0)(1− ζ) + ζσr(X
0)
)

= r(1− ζ)−2σr(X
0)−1. (53)

For the term (II), we compute that

(II) ≤
√

2r

∥∥∥∥∥
[

0 H
(k)
1,2 ◦ (U(k)∗X0V

(k)
⊥ )

H
(k)
2,1 ◦ (U

(k)∗
⊥ X0V(k)) 0

]∥∥∥∥∥
F

≤
√

2r(σ(k)
r )−1ε−1

k

(∥∥∥U(k)∗X0V
(k)
⊥

∥∥∥
F

+
∥∥∥U(k)∗
⊥ X0V(k)

∥∥∥
F

)
≤
√

2r(σ(k)
r )−1ε−1

k

(
‖U(k)∗U0Σ0‖F ‖V∗0V

(k)
⊥ ‖S∞ + ‖U(k)∗

⊥ U0‖S∞‖Σ0V
∗
0V(k)‖F

)
,

using the singular value decomposition X0 = U0Σ0V
∗
0 of the rank-r matrix X0 with U0 ∈ Rd1×r, V0 ∈ Rd2×r. This

allows us to use the singular subspace perturbation result of Lemma B.6, so that ‖V∗0V
(k)
⊥ ‖S∞ and ‖U(k)∗

⊥ U0‖S∞ can
compensate for the negative power of the εk, avoiding a blow-up of term (II): Indeed, using Lemma B.6 with X = X0,
X̂ = X(k), α = σr(X

0) and δ = (1− ζ)σr(X
0) results in

max(‖V∗0V
(k)
⊥ ‖S∞ , ‖U

(k)∗
⊥ U0‖S∞) ≤

√
2‖η(k)‖S∞

(1− ζ)σr(X0)
,

and since ‖U(k)∗U0Σ0‖F ≤ ‖Σ0‖F ≤
√
rσ1(X0), ‖Σ0V

∗
0V(k)‖F ≤

√
rσ1(X0), we obtain with (52) that

(II) ≤ 4r(1− ζ)−2σr(X
0)−1 ‖η(k)‖S∞

εk

σ1(X0)

σr(X0)
. (54)

It remains to bound the last term (III). For (III), we can use the subspace perturbation lemma twice in the same summand
such that

(III) = ε−2
k

∥∥∥U(k)
⊥ U

(k)∗
⊥ X0V

(k)
⊥ V

(k)∗
⊥

∥∥∥
S1

= ε−2
k ‖U

(k)∗
⊥ X0V

(k)
⊥ ‖S1 ≤

√
rε−2
k ‖U

(k)∗
⊥ X0V

(k)
⊥ ‖F

≤
√
rε−2
k ‖U

(k)∗
⊥ U0‖S∞‖Σ0‖F ‖V∗0V

(k)
⊥ ‖S∞

≤
√
rε−2
k

√
2‖η(k)‖S∞

(1− ζ)σr(X0)

√
rσ1(X0)

√
2‖η(k)‖S∞

(1− ζ)σr(X0)
= 2r(1− ζ)−2σr(X

0)−1
‖η(k)‖2S∞

ε2k

σ1(X0)

σr(X0)
.

(55)

Combining eqs. (53) to (55) finally yields the statement of Lemma B.9.

B.3. Wrapping up the proof

We can now put Lemma B.4, Lemma B.8 and Lemma B.9 together to prove the local convergence statement of Theorem 4.1,
showing also that we attain locally quadratic convergence.
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Proof of Theorem 4.1. Let k = k0 and X(k) be the k-th iterate of MatrixIRLS with the parameters stated in Theorem 4.1.
Under the sampling model of Theorem 4.1, if the number of samples m fulfills m ≥ Cµ0r(d1 + d2) log(d1 + d2), where C
is the constant of Lemma B.4, we know from Lemma B.4 that with a probability of at least 1− 2D−2, inequality (42) is

satisfied with c(µ0, r, d1, d2) =
√

C̃d log(D)
µ0r

, if furthermore η(k) := X(k) −X0 fulfills

‖η(k)‖S∞ ≤ ξσr(X0) (56)

with

ξ ≤ C1

√
µ0r

d
, (57)

and thus, by Lemma B.8,

‖X(k+1) −X0‖S∞ ≤
C̃d log(D)

µ0r
ε2k‖W (k)(X0)‖S1

. (58)

We denote the event that this is fulfilled by E. Furthermore, on this event, if ξ ≤ 1/2 in (56) and denoting the condition
number by κ = σ1(X0)/σr(X

0), it follows from Lemma B.9 that

‖X(k+1) −X0‖S∞ ≤
C̃d log(D)

µ0
4σr(X

0)−1
(
ε2k + 4εk‖η(k)‖S∞κ+ 2‖η(k)‖2S∞κ

)
Furthermore, if X

(k)
r ∈ Rd1×d2 denotes the best rank-r approximation of X(k) in any unitarily invariant norm, we estimate

that
εk ≤ σr+1(X(k)) = ‖X(k) −X(k)

r ‖S∞ ≤ ‖X(k) −X0‖S∞ = ‖η(k)‖S∞ ,

Inserting these two bounds into (58), we obtain

‖η(k+1)‖S∞ = ‖X(k+1) −X0‖S∞ ≤
C̃d log(D)

µ0
4σr(X

0)−1 (1 + 6κ) ‖η(k)‖2S∞ .

Finally, if, additionally, (56) is satisfied for

ξ ≤ µ0

4(1 + 6κ)d log(D)C̃
, (59)

we conclude that
‖η(k+1)‖S∞ < ‖η(k)‖S∞

and also, we observe a quadratic decay in the spectral error such that

‖η(k+1)‖S∞ ≤ µ‖η(k)‖2S∞

with a constant µ = 4C̃d log(D)(1+6κ)
µ0σr(X0) . This shows inequality (33) of Theorem 4.1.

To show the remaining statement, we can use Lemma B.5 to show that if X(k) is close enough to X0, we can ensure that the
(r + 1)-st singular value σr+1(X(k)) of the current iterate is strictly decreasing. More precisely, assume now the stricter
assumption of

‖η(k)‖S∞ ≤
√

µ0r

4C̃d(d− r) log(D)
ξσr(X

0). (60)

In fact, if ξ fulfills (57) and (59), we can conclude that on the event E,

σr+1(X(k+1)) ≤ ‖η(k+1)‖S∞ ≤
C̃d log(D)

µ0
4σr(X

0)−1 (1 + 6κ) ‖η(k)‖S∞ · ‖η(k)‖S∞

<
C̃d log(D)

µ0
4σr(X

0)−1 (1 + 6κ)

√
µ0r

4C̃d(d− r) log(D)
ξσr(X

0)

√
4C̃d(d− r) log(D)

µ0r
σr+1(X(k))

≤ σr+1(X(k))
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using Lemma B.5 for one factor ‖η(k)‖S∞ and (60) for the other factor ‖η(k)‖S∞ in the third inequality, and (59) in the last
inequality. Taking the update rule (6) for the smoothing parameter into account, this implies that εk+1 = σr+1(X(k+1)),
which ensures that the first statement of Theorem 4.1 is fulfilled likewise for iteration k + 1. By induction, this implies that
X(k+`) `→∞−−−→ X0, which finishes the proof of Theorem 4.1.

The presented proof of Theorem 4.1 has certain similarities with the proof of local superlinear convergence of Theorem 11
in (Kümmerle & Sigl, 2018) for a related IRLS algorithm designed for Schatten-p quasi-norm minimization. However, that
proof is not applicable to the matrix completion setting, and furthermore, is not extendable to a log-determinant objective
as used in this paper. As observed in (Kümmerle & Sigl, 2018), it is not possible to obtain superlinear (or quadratic)
convergence rates for the IRLS methods of (Fornasier et al., 2011; Mohan & Fazel, 2012).

C. Proof of Theorem 4.2
In this section, we provide a result about the spectrum of the system matrix

A := Dk + P ∗TkP
∗
ΩPΩPTk := ε2k

(
D−1
Sk
− ε2kISk

)−1
+ P ∗TkP

∗
ΩPΩPTk (61)

of eq. (14) in Algorithm 2. We recall that solving a linear system with A constitutes the main computational step in our
implementation of MatrixIRLS.

It is well-known that the shape of the spectrum of the system matrix A plays an important role in the convergence of the
conjugate gradient iterations. In particular, the CG method terminates after ` iterations (in exact arithmetic) if A has `
distinct eigenvalues (cf. Theorem 5.4 of (Nocedal & Wright, 2006)) and a bound on the error γ` − γ∗ of the `-th iterate γ`
to the exact solution γ∗ of the linear system (5.36) of (Nocedal & Wright, 2006) can be provided by

〈γ` − γ∗,A(γ` − γ∗)〉 ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)`
〈γ0 − γ∗,A(γ0 − γ∗)〉 ,

where

κ(A) :=
λmax(A)

λmin(A)
(62)

is the condition number of A.

It has been a common problem for IRLS methods that the linear systems to be solved become ill-conditioned close to the
desired (low-rank or sparse, depending on the problem) solution (Daubechies et al., 2010; Fornasier et al., 2011; 2016).
Close to the solution the smoothing parameter εk is typically very small, resulting in “very large weights” on large parts of
the domain induced by the quadratic form

〈X,W (k)(X)〉.

For the sparse recovery problem, it has been observed (Voronin, 2012) that this blow-up can be a problem for an inexact
solver of the weighted least squares system, and in (Fornasier et al., 2016), an analysis was pursued for an IRLS algorithm
for the sparse recovery problem about with which precision the linear system for each outer iteration k needs to be solved by
a conjugate gradient method to ensure overall convergence.

However, the underlying issue of bad conditioning of the IRLS system matrices was not addressed or solved in (Fornasier
et al., 2016) (see Section 5.2 of (Fornasier et al., 2016) for a discussion).

Theorem 4.2, which we now show, argues that by computing the weighted least squares update via Algorithm 2, these issues
do not arise for MatrixIRLS in the same manner.

Proof of Theorem 4.2. Recall the definitions Dk = ε2k
(
D−1
Sk
− ε2kISk

)−1
and A = Dk +P ∗TkP

∗
ΩPΩPTk . We know that the

eigenvalues of D−1
Sk

are just the inverses of the entries of the matrices H(k), H
(k)
1,2 and H

(k)
2,1 in the block decomposition of

the matrix Hk ∈ Rd1×d2 that defines the weight operator W (k). By (50) and (51), we can lower bound these eigenvalues by
σr(X

(k))εk = σ
(k)
r εk, and therefore,
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‖Dk‖S∞ ≤
ε2k

σr(X(k))εk − ε2k
=

εk
σr(X(k))− εk

≤ εk
3/4σr(X0)− εk

, (63)

using that σr(X(k)) ≥ (1 − 1/4)σr(X0) since ‖X(k) − X0‖S∞ ≤ 1
4σr(X0), see also eq. (52). Also, since εk =

σr+1(X(k)) ≤ ‖X(k) −X0‖S∞ ≤ 1
4σr(X0) and further εk = σr+1(X(k)) ≤ C1

(
µ0r
d

)
σr(X0), we have that

εk
(3/4σr(X0))− εk

≤
C1

µ0r
d

(3/4− 1/4)

σr(X0)

σr(X0)
≤ 2C1

µ0r

d
.

This implies that

0 ≤ λmin(Dk) ≤ λmax(Dk) = ‖Dk‖S∞ ≤ 2C1
µ0r

d
≤ 2C1

m

CdD log(D)
≤ m

d1d2
,

if the constant C1 > 0 is small enough, using the lower bound on the sample complexity m.

The second summand in A, the matrix P ∗TkP
∗
ΩPΩPTk , is positive semidefinite already due to its factorized form. We

note that by following the proof of Theorem 4.1, we see that under the assumptions of Theorem 4.2, we have that for
PTk : Rd1×d2 → Rd1×d2 ,Z 7→ PTkP

∗
Tk

(Z) and PΩ : Rd1×d2 → Rd1×d2 ,Z 7→ P ∗ΩPΩ(Z),

d1d2

m

∥∥∥∥PTk [P ∗TkP ∗ΩPΩPTk −
m

d1d2
I

]
P ∗Tk

∥∥∥∥
S∞

=

∥∥∥∥d1d2

m
PTkP

∗
Tk
P ∗ΩPΩPTkP

∗
Tk
− PTkP ∗Tk

∥∥∥∥
S∞

=

∥∥∥∥d1d2

m
PTPΩPT − PT

∥∥∥∥
S∞

≤ 4

10

on an event E that holds with high probability.

As PTk is a matrix with orthonormal columns such that P ∗TkPTk = I, this implies that∥∥∥∥P ∗TkP ∗ΩPΩPTk −
m

d1d2
I

∥∥∥∥
S∞

≤ 4m

10d1d2

on the event E. Thus, the bound on the spectrum of A follows from this and eq. (63) since∥∥∥∥A− 3

2

m

d1d2
I

∥∥∥∥
S∞

=

∥∥∥∥Dk + P ∗TkP
∗
ΩPΩPTk −

3

2

m

d1d2
I

∥∥∥∥
S∞

≤
∥∥∥∥Dk −

1

2

m

d1d2
I

∥∥∥∥
S∞

+

∥∥∥∥P ∗TkP ∗ΩPΩPTk −
m

d1d2
I

∥∥∥∥
S∞

≤ 1

2

m

d1d2
+

4

10

m

d1d2
=

9

10

m

d1d2
.

The condition number bound follows immediately since κ(A) = λmax(A)
λmin(A) ≤ 4.

As a summary, since Theorem 4.2 gives a bound on the condition number of the linear system matrix A that is a small
constant, the theory of the conjugate gradient methods suggests that very good solutions can be found already after few, in
particular, after

NCG inner = cst.

CG iterations (where cst. is small), for each IRLS iteration, at least in the neighborhood of a low-rank matrix X0 that is
compatible with the measurements.

Taking into account the statement of Theorem 3.1, this suggests that at least locally, a new iterate X(k+1) can be calculated
with a time complexity of

O
(
(mr + r2D) ·NCG inner

)
= O

(
mr + r2D

)
.
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D. Remarks to MatrixIRLS as a saddle-escaping smoothing Newton method
We briefly elaborate on the interpretation of MatrixIRLS as a saddle-escaping smoothing method.

If εk > 0 and if Fεk : Rd1×d2 → R is the εk-smoothed log-det objective of (3), it can be shown that Fεk is continuously

differentiable with ε−2
k -Lipschitz gradient∇Fεk(X) = U dg

(
σi(X)

max(σi(X),εk)2

)d
i=1

V∗ for any matrix X with singular value

decomposition X = U dg
(
σ(X)

)
V∗ = U dg

(
σ
)
V∗. This can be shown by using results from (Lewis & Sendov, 2005;

Andersson et al., 2016). Additionally, it holds that∇Fεk is differentiable at X if and only if the second derivative f ′′εk : R→
R of fεk from (3) exists at all σ = σi(X), i ∈ [d], which is the case if X ∈ Dεk :=

{
X : σi(X) 6= εk for all i ∈ [d]

}
. The

latter statement follows from the calculus of non-Hermitian Löwner functions (Yang, 2009; Ding et al., 2018), also called
generalized matrix functions (Noferini, 2017), as X 7→ ∇Fεk(X) is such a function.

Let now X(k) ∈ Dεk :=
{
X : σi(X) 6= εk for all i ∈ [d]

}
with singular value decomposition as in (9), and rk := |{i ∈

[d] : σi(X
(k)) > εk}| = |{i ∈ [d] : σ

(k)
i > εk}|. In this case, it can be calculated that the Hessian ∇2Fεk(X(k)) at X(k),

which is a function that maps Rd1×d2 to Rd1×d2 matrices, satisfies in the case of d1 = d2

∇2Fεk(X(k))(Z) = Uk

[
MS ◦ S(U∗kZVk) + MT ◦ T (U∗kZVk)

]
V∗k, (64)

for any Z ∈ Rd1×d2 , where S : Rd×d → Rd×d and T : Rd×d → Rd×d are the symmetrization operator and antisymmetriza-
tion operator, respectively, that map any X ∈ Rd×d to

S(X) =
1

2
(X + X∗), and T (X) =

1

2
(X−X∗)

for any X ∈ Rd×d, and MS,MT ∈ Rd1×d2 fulfill

MS =

[
−H(k) M−

1,2

M−
2,1 ε−2

k 1

]
MT =

[
−H(k) M+

1,2

M+
2,1 ε−2

k 1

]
with H(k) ∈ Rrk×rk as in (13) and the (d1 − rk)× (d2 − rk)-matrix of ones 1. Furthermore, the matrices M−

1,2,M
+
1,2 ∈

(d1 − rk)× rk are such that (
M±

1,2

)
ij

=
(σ

(k)
i )−1 ± σ(k)

j+rk
ε−2
k

σ
(k)
i ± σ

(k)
j+rk

for i ∈ [rk], j ∈ [d2 − rk] and (
M±

2,1

)
ij

=
(σ

(k)
j )−1 ± σ(k)

i+rk
ε−2
k

σ
(k)
j ± σ

(k)
i+rk

forj ∈ [rk], i ∈ [d1 − rk]. The formula (64) for∇2Fεk(X(k)) follows by inserting the operator∇Fεk into Theorem 2.2.6 of
(Yang, 2009), Corollary 3.10 (Noferini, 2017) or Theorem 4 of (Ding et al., 2018).

By realizing that 0 ≤ σ(k)
` ≤ εk for all ` > rk, we see that

1

(σ
(k)
i )2

≤
(
M+

1,2

)
ij

=
(
M+

2,1

)
ji
≤ 1

σ
(k)
i εk

and
− 1

σ
(k)
i εk

≤
(
M−

1,2

)
ij

=
(
M−

2,1

)
ji
≤ 1

(σ
(k)
i )2

for all i and j.

Now, comparing MS and MT with Hk, see (49), of the weight operator W (k), we see that the upper left blocks of MS and
MT are just the negative of the upper left block H(k) of Hk, while the lower right blocks coincide. Furthermore, the lower
left and the upper right blocks are related such that∣∣∣(M±

1,2

)
ij

∣∣∣ ≤ 1

σ
(k)
i εk

= (H
(k)
1,2)ij
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for all i ∈ [rk], j ∈ [d2 − rk], and ∣∣∣(M±
2,1

)
ij

∣∣∣ ≤ 1

σ
(k)
j εk

= (H
(k)
2,1)ij

for all i ∈ [d2 − rk], j ∈ [rk].

We now point out the relationship of these considerations to an analysis that was performed in (Paternain et al., 2019) for the
case of an unconstrained minimization of Fεk , assuming furthermore that Fεk was smooth:

In this case, (Paternain et al., 2019) considers using modified Newton steps

X(k+1) := X(k) − ηk
∣∣∣∇2Fεk(X(k))

∣∣∣−1

c
∇Fεk(X(k))

where the Hessian ∇2Fεk(X(k)) is replaced by a positive definite truncated eigenvalue matrix
∣∣∇2Fεk(X(k))

∣∣
c
, which

replaces the large negative eigenvalues of ∇2Fεk(X(k)) by their modulus for eigenvalues that have large modulus and
eigenvalues of small modulus by an appropriate constant c. (Paternain et al., 2019) shows that such steps are, unlike
conventional Newton steps, which often are attracted by saddle points, able to escape saddle points with an exponential rate
that does not depend on the conditioning of the problem. Experimental observations of such behavior has been reported also
in other works (Murray, 2010; Dauphin et al., 2014).

In view of this, we observe that the weight operator W (k) is nothing but a refined variant of
∣∣∇2Fεk(X(k))

∣∣
c
, as the

eigenvalues of ∇2Fεk(X(k)) from (64) are simply {(MS
ij , i ≤ j} ∪ {(MT

ij , i < j}, c.f., e.g., Theorem 4.5 of (Noferini,
2017). In particular, the refinement is such that the small eigenvalues of∇2Fεk(X(k)), which can be found in the entries
of M±

1,2 and M±
2,1, are replaced not by a uniform constant, but by different upper bounds (σ

(k)
i εk)−1 and (σ

(k)
j εk)−1 that

depend either on the row index i or the column index j.

Besides this connection, there are important differences of our algorithm to the algorithm analyzed in (Paternain et al., 2019).
While that paper considers the minimization of a fixed smooth function, we update the smoothing parameter εk and thus the
function Fεk at each iteration. Furthermore, Algorithm 1 of (Paternain et al., 2019) uses backtracking for each modified
Newton step, which would be prohibitive to perform as evaluations of Fεk are very expensive for our smoothed log-det
objectives, as they would require the calculation of all singular values. On the other hand, MatrixIRLS uses full modified
Newton steps, and we can assure that these are always a descent direction in our case, as we explain in an upcoming paper.
Lastly, we do not add noise to the iterates.

As mentioned in Section 2, MatrixIRLS is by no means the first algorithm for low-rank matrix recovery that can be
considered as an iteratively reweighted least squares algorithm. However, the IRLS algorithms (Fornasier et al., 2011; Mohan
& Fazel, 2012; Lai et al., 2013; Kümmerle & Sigl, 2018) are different from MatrixIRLS not only in their computational
aspects, but also since they do not allow for a close relationship between their weight operator W (k) and the Hessian
∇2Fεk(X(k)) at X(k) as described above.

E. Experimental Details
In this section, we specify some details of the setup and the algorithmic parameters for the experiments presented in
Section 5. The sample complexity experiments of Figures 1, 2, 5 and 6 were conducted on a Linux node with Intel Xeon
E5-2690 v3 CPU with 28 cores and 64 GB RAM, using MATLAB R2019a. The experiment of Figure 4 was conducted
on a Windows 10 laptop with Intel i7 7660U with 2 cores and 8 GB RAM, also using MATLAB R2019a, and all other
experiments were conducted on a iMac with 4 GHz Quad-Core Intel Core i7 CPU, using MATLAB R2020b. In the main
text we divided the algorithms into three main categories according to the main optimization philosophy behind. But now,
for the purpose of our experiment, we categorize the algorithms into algorithms of first-order type and of second-order type
based on whether an algorithm exhibits empirically observed locally superlinear convergence rates or not.

E.1. Algorithmic Parameter Choice

All the methods are provided with the true rank r of X0 as an input parameter. If possible, we use the MATLAB
implementation provided by the authors of the respective papers. Below we point out the links from which one can download
such implementations. We do not make use of explicit parallelization for any of the methods, but most methods use complied
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C subroutines to efficiently implement sparse evaluations of matrix factorizations. We base our choice of algorithms on
the desire to obtain a representative picture of state-of-the-art algorithms for matrix completion, including in particular
those that are scalable to problems with dimensionality in the thousands or more, those that come with the best theoretical
guarantees, and those that claim to perform particularly well to complete ill-conditioned matrices.

We set a maximal number of outer iterations for the second-order methods as N0 = 400. The second-order type algorithms
considered for this paper, including their parameter choices, are:

• MatrixIRLS, as described in Algorithm 1 or, minutely, in Appendix A.1. As a stopping criterion, we choose a
threshold of 10−9 for the relative change of the Frobenius norm ‖X(k+1)−X(k)‖F

‖X(k)‖F
. We use the CG method for solving the

linear system (14) without any preconditioning. We terminate the CG method if a maximum number of NCG inner = 500
inner iterations is reached or if a relative residual of tolinner = 10−9 is reached, whichever happens first.4 For the weight
operator update step, we use a variant of the randomized Block Krylov method (Musco & Musco, 2015) based on the
implementation provided by the authors5, setting the parameter for the maximal number of iterations to 20.

• R2RILS (Bauch et al., 2021) or rank 2r iterative least squares, a method that optimizes a least squares data fit objective
‖PΩ(X0)− PΩ(X)‖F over X ∈ TZ(k)Mr, where TZ(k)Mr is a tangent space onto the manifold of rank-r matrices,
while iteratively updating this tangent space. As above, we stop the outer iterations a threshold of 10−9 is reached for
the relative change of the Frobenius norm ‖X(k+1)−X(k)‖F

‖X(k)‖F
. At each outer iteration, R2RILS solves an overdetermined

least squares problem of size (m × r(d1 + d2)) via the iterative solver LSQR, for which we choose the maximal
number of inner iterations as NLSQR inner = 500 and a termination criterion based on a relative residual of 10−10. We
use the implementation based on the code provided by the authors, but adapted for these stopping criteria.6

• RTRMC, the preconditioned Riemannian trust-region method called RTRMC 2p of (Boumal & Absil, 2015), which was
reported to achieve the best performance among a variety of matrix completion algorithms for the task of completing
matrices of a condition number of up to κ = 150. We use the implementation provided by the authors7 with default
options except from setting the maximal number of inner iterations to Ninner = 500 and setting the parameter for
the tolerance on the gradient norm to 10−15. Furthermore, as the algorithm otherwise would often run into certain
submatrices that are not positive definite for ρ between 1 and 1.5, we set the regularization parameter λ = 10−8, which
is small enough not to deter high precision approximations of X0 if enough samples are provided.

Furthermore, we consider the following first-order algorithms, setting the maximal number of outer iterations to N0 = 4000:

• LRGeomCG (Vandereycken, 2013), a local optimization method for a quadratic data fit term based on gradients
with respect to the Riemannian manifold of fixed rank matrices. We use the author’s implementation8 while set-
ting the parameters related to the stopping conditions abs grad tol, rel grad tol, abs f tol, rel f tol,
rel tol change x and rel tol change res each to 10−9. The rank-adaptive variant of LRGeomCG, called
LRGeomCG Pursuit (Uschmajew & Vandereycken, 2015; Tan et al., 2014), is used with the same algorithmic
parameters as LRGeomCG for the inner iterations, and with a rank increase of 1 each outer iteration.

• LMaFit or low-rank matrix fitting (Wen et al., 2012), a nonlinear successive over-relaxation algorithm based on matrix
factorization. We use the implementation provided by the authors9, setting the tolerance threshold for the stopping
condition (which is based on a relative data fit error ‖PΩ(X(k))− y‖2/‖y‖2) to 5 · 10−10.

• ScaledASD or scaled alternating steepest descent (Tanner & Wei, 2016), a gradient descent method based on matrix
factorization which scales the gradients in a quasi-Newton fashion. We use the implementation provided by the
authors10 with the stopping condition of ‖PΩ(X(k))− y‖2/‖y‖2 ≤ 10−9.

4While this stopping condition uses the condition number κ, which will probably be unknown in practice, it can be generally chosen
independently of κ without any problems of convergence.

5https://github.com/cpmusco/bksvd
6https://github.com/Jonathan-WIS/R2RILS
7RTRMC v3.2 from http://web.math.princeton.edu/˜nboumal/RTRMC/index.html, together with the toolbox

Manopt 6.0 (https://www.manopt.org/) (Boumal et al., 2014).
8http://www.unige.ch/math/vandereycken/matrix_completion.html
9http://lmafit.blogs.rice.edu

10http://www.sdspeople.fudan.edu.cn/weike/code/mc20140528.tar

https://github.com/cpmusco/bksvd
https://github.com/Jonathan-WIS/R2RILS
http://web.math.princeton.edu/~nboumal/RTRMC/index.html
https://www.manopt.org/
http://www.unige.ch/math/vandereycken/matrix_completion.html
http://lmafit.blogs.rice.edu
http://www.sdspeople.fudan.edu.cn/weike/code/mc20140528.tar
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• ScaledGD or scaled gradient descent (Tong et al., 2020), a method that is very similar to ScaledASD, but for which
a non-asymptotic local convergence analysis has been achieved for the case of a matrix recovery problem related to
matrix completion, and which has been investigated experimentally in (Tong et al., 2020) in the light of the completion
of ill-conditioned low-rank matrices. We use an adapted version of the author’s implementation11: We choose a
step size of η = 0.5, but increase the normalization parameter p by a factor of 1.5 in case the unmodified algorithm
ScaledGD leads to divergent algorithmic iterates, using the same stopping condition as for ScaledASD.

• NIHT or normalized iterative hard thresholding (Tanner & Wei, 2013), which performs iterative hard thresholding
steps with adaptive step sizes. We use the implementation provided by the authors 10 with a stopping threshold of 10−9

for the relative data fit error ‖PΩ(X(k))− y‖2/‖y‖2 and the convergence rate threshold parameter 1− 10−9.

• R3MC (Mishra & Sepulchre, 2014), a Riemannian nonlinear conjugate-gradient that also optimizes a least squares data
fit objective ‖PΩ(X0)− PΩ(X)‖F by exploiting a three-factor matrix factorization similar to the SVD and performs a
search on a quotient manifold defined from the manifold of rank r matrices, this factorization and symmetries from the
action of the orthogonal group. We use the author’s implementation12 while choosing the Polyak-Ribier rule for the
nonlinear CG and the Armijo line search with a maximum of 50 line searches allowed at each iteration. Also, we set
the tolerance parameter for stopping criterion to 10−9. R3MC w/ Rank Upd corresponds to the method described
in the section on rank updating of (Mishra & Sepulchre, 2014).

E.2. Remark to Experiment of Figure 7

Tracking the relative Frobenius error to gauge the performance of methods for the recovery of highly ill-conditioned
matrices without taking account the condition number κ might not provide a full picture, as a recovery of the singular spaces
corresponding to the smallest singular values can only be expected once the relative error is smaller than 1/κ.

0 10 20 30
100

105

1010

Singular value index i

Si
ng

ul
ar

va
lu

e
σ
i
(X

(
K

)
)

First singular values of reconstuctions
LRGeomCG R3MC MatrixIRLS

LRGeomCG Pursuit R3MC w/ Rank Upd X0

(a) Spectrum of output matrices X(K) and X0

0 10 20 30
10−16

10−10

100

108

Singular value index i

R
el

.e
rr

or
|σ
i
(
X

(
K

)
)
−
σ
i
(
X

0
)
|

σ
i
(
X

0
)

Rel. errors to singular value of X0
LRGeomCG R3MC MatrixIRLS
LRGeomCG Pursuit R3MC w/ Rank Upd

(b) Relative errors |σi(X
(K))−σi(X0)|
σi(X0)

Figure 8. Spectrum information of algorithmic output X(K) after convergence, experiment of Figure 7 (1000× 1000 matrix, r = 30,
κ = 1010, oversampling factor ρ = 1.5)

For this reason, we report in Figure 8a the singular values of the recovered matrices X(K) and the relative error on a basis of
individual singular values in Figure 8b for the very experiment conducted in Section 5.3 and illustrated in Figure 7. We
observe that MatrixIRLS, LRGeomCG Pursuit and R3MC w/ Rank Upd each are able to recover even the smallest
singular values such (with indices i = 28, 29, 30) with a high precision of a relative error between 10−7 and 10−3.

This shows that despite a not too restrictive choice of the tolerance on of the inner conjugate gradient iterations (such as
tolinner = 10−3), MatrixIRLS is successful in recovering the complete spectrum of X0, indicating that an implementation
of MatrixIRLS that solves (14) via conjugate gradient method together with weight updates based on a randomized block
Krylov method can be very precise even without requiring an very high precision on the iterative linear system solver.

These observations suggest that MatrixIRLS and Riemannian optimization methods with adaptive rank updates such
as LRGeomCG Pursuit and R3MC w/ Rank Upd are good alternatives to solve hard matrix recovery problems in a

11https://github.com/Titan-Tong/ScaledGD
12https://bamdevmishra.in/codes/r3mc/. We used the version from Sep. 2020 which already includes the rank updating

strategy.
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numerically efficient way, warranting further investigations for a better theoretical understanding.


