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A. Proofs
A.1. Proof of Theorem 2

We first introduce the following concentration inequality.
Lemma 1. Let {εi, i = 1, . . . , k} be independent normal variables with mean 0 and variance σ2

i . Then,
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Proof. From Lemma 1 in Laurent & Massart (2000), for any x > 0,
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plugging x = 1
2 logn proves the lemma.

Theorem 3. Let T−1
w be a normalization operator of w on Rk. If LD(w) ≤ Eεi∼N (0,σ2)[LD(w + ε)] for some σ > 0,
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Proof. The idea of the proof is given in Foret et al. (2021). From the assumption, adding Gaussian perturbation on the weight
space does not improve the test error. Moreover, from Theorem 3.2 in Chatterji et al. (2019), the following generalization
bound holds under the perturbation:
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Therefore, the left hand side of the statement can be bounded as
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where the second inequality follows from Lemma 1 and ‖T−1
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B. Correlation Analysis
To capture the correlation between generalization measures, i.e., sharpness and adaptive sharpness, and actual generalization
gap, we utilize Kendall rank correlation coefficient (Kendall, 1938). Formally, given the set of pairs of a measure and
generalization gap observed S = {(m1, g1), . . . , (mn, gn)}, Kendall rank correlation coefficient τ is given by

τ(S) = 2
n(n− 1)

∑
i<j

sign(mi −mj)sign(gi − gj).

Since τ represents the difference between the proportion of concordant pairs, i.e., either both mi < mj and gi < gj or both
mi > mj and gi > gj among the whole

(
n
2
)

point pairs, and the proportion of discordant pairs, i.e., not concordant, the
value of τ is in the range of [−1, 1].

While the rank correlation coefficient aggregates the effects of all the hyper-parameters, granulated coefficient (Jiang et al.,
2019) can consider the correlation with respect to the each hyper-parameter separately. If Θ =

∏N
i=1 Θi is the Cartesian

product of each hyper-parameter space Θi, granulated coefficient with respect to Θi is given by
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where Θ−i = Θ1 × · · ·Θi−1 ×Θi+1 ×ΘN . Then the average Ψ =
∑N
i=1 ψi/N of ψi indicates whether the correlation

exists across all hyper-parameters.

We vary 4 hyper-parameters, mini-batch size, initial learning rate, weight decay coefficient and dropout rate, to produce
different models. It is worth mentioning that changing one or two hyper-parameters for correlation analysis may cause
spurious correlation (Jiang et al., 2019). For each hyper-parameter, we use 5 different values in Table 7 which implies that
54 = 625 configurations in total.

Table 7. Hyper-parameter configurations.
mini-batch size 32, 64, 128, 256, 512
learning rate 0.0033, 0.01, 0.033, 0.1, 0.33
weight decay 5e−7, 5e−6, 5e−5, 5e−4, 5e−3
dropout rate 0, 0.125, 0.25, 0.375, 0.5

By using the above hyper-parameter configurations, we train WideResNet-28-2 model on CIFAR-10 dataset. We use SGD
as an optimizer and set momentum to 0.9. We set the number of epochs to 200 and cosine learning rate decay (Loshchilov &
Hutter, 2016) is adopted. Also, random resize, padding by four pixels, normalization and random horizontal flip are applied
for data augmentation and label smoothing (Müller et al., 2019) is adopted with its factor of 0.1. Using model parameters
with training accuracy higher than 99.0% among the generated models, we calculate sharpness and adaptive sharpness with
respect to generalization gap.

To calculate adaptive sharpness, we fix normalization scheme to element-wise normalization. We calculate adaptive
sharpness and sharpness with both p = 2 and p =∞. We conduct a grid search over {5e−6, 1e−5, 5e−5, . . . , 5e−1, 1.0}
to obtain each ρ for sharpness and adaptive sharpness which maximizes correlation with generalization gap. As results of
the grid search, we select 1e−5 and 5e−4 as ρs for sharpness of p = 2 and p =∞, respectively, and select 5e−1 and 5e−3
as ρs for adaptive sharpness of p = 2 and p =∞, respectively. To calculate maximizers of each loss function for calculation
of sharpness and adaptive sharpness, we follow m-sharpness strategy suggested by Foret et al. (2021) and m is set to 8.


