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1. Pseudocode for Deep Symbolic Policy
Algorithm 1 describes pseudocode for deep symbolic pol-
icy with “anchoring” for multi-action environments, trained
using the risk-seeking policy gradient with hierarchical en-
tropy regularizer. Algorithm 2 describes the Policy Evalu-
ator, used to compute the reward for a symbolic policy. In
both algorithms, the function Instantiate generates an exe-
cutable function f : S → R from the sequence of tokens τ
sampled by the Policy Generator. Note that Algorithm 1 ref-
erences Algorithm 2 by generating a closure for the reward
function. This captures the previously learned symbolic
expressions and the pre-trained “anchor” policy into the
reward function.

2. Solution of Uniform Arity Prior
The goal of this section is to find a prior as a logit vector
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Using the definition of the softmax operator:
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Considering the change of variables exp(ψi,j◦ ) → xi,j in
the previous system, we obtain a homogeneous system of
linear equations with matrix
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where Im is the identity matrix in Rm×m. We have
det(A) = 0 and rank(A) = n0 + n1 + n2− 1. 1 Thus, the
system is overdetermined and the solution has one parameter.
Fixing

x1,0 =
exp(c)

n0
,

with c ∈ R, the problem becomes well-defined, with solu-
tion

xi,j =
exp(c)

nj
∀ i ∈ {1, . . . , nj} and ∀ j ∈ {0, 1, 2}.

Inverting the change of variables we obtain

ψ◦ = (− log n2)n2‖(− log n1)n1‖(− log n0)n0 + c.

3. Expected Initial Expression Length
We informally show that the expected initial expression
length under the uniform arity prior (ψ◦) is infinite. We
assume that the RNN emissions are all zero (as in the start
of training) and there are no constraints or priors besides ψ◦.
That is, p(τi = Lj) = softmax(ψ◦)j .

When generating an expression as a sequence of tokens, we
can track a “counter” δ for the number of remaining nodes

1We do not provide a proof of these properties of A in general,
but one can easily check that they hold for all relevant values of
n0, n1 and n2 considered in DSP.
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Algorithm 1 Deep symbolic policy with “anchoring” for multi-action environments
Function DeepSymbolicPolicy(α, ε, η, γ, E ,Ψ,M,N )
Input: Learning rate α, risk factor ε, entropy weight η, entropy decay γ, environment E with observation space S ⊂ Rm
and action space A ⊂ Rn, pre-trained “anchor” policy Ψ (if n > 1), maximum number of iterations M , number of training
episodes N
Output: Fully symbolic policy f
for action dimension i = 1, . . . , n do

Initialize RNN with parameters θ, defining distribution over expressions p(·|θ)
R(·)← PolicyEvaluator(·, f̄1, . . . , f̄i−1,Ψ, E , N) // Define closure for Policy Evaluator
τ? ← null // Initialize best expression
for iteration = 1, . . . ,M do
T = {τ (i) ∼ p(·|θ)}i=1,...,N // Sample expressions via Policy Generator

R = {R(τ (i))}i=1,...,N // Compute rewards
Rε = (1− ε) percentile ofR // Compute reward threshold

Tε = {τ (i) : R(τ) ≥ Rε} // Select subset of expressions above threshold
ĝ1 = 1

|Tε|
∑
τ∈Tε ((R(τ)−Rε)∇θ log p(τ |θ)) // Risk-seeking policy gradient

ĝ2 = 1
|Tε|
∑
τ∈Tε

(
η
∑|τ |
i=1 γ

i−1∇θH[p(τi|τ1:(i−1); θ)]
)

// Hierarchical entropy gradient

θ ← θ + α(ĝ1 + ĝ2) // Apply gradients

if maxR > R(τ?) then τ? ← τ (argmaxR) // Update best expression
end
f̄i ← Instantiate(τ?) // Set fixed sub-policy for next action dimension

end
f ← 〈f̄1, . . . f̄n〉 // Final policy is fully symbolic
return f

Algorithm 2 Policy Evaluator, used to compute reward for symbolic policy τ
Function PolicyEvaluator(τ, f̄1, . . . , f̄i−1,Ψ, E , N )
Input: Symbolic policy being evaluated τ , previously learned fixed symbolic expressions f̄1, . . . , f̄i−1,
pre-trained “anchor” policy Ψ, environment E , number of training episodes N
Output: Reward R for symbolic policy τ
R← 0
f ← Instantiate(τ)
for episode = 1, . . . , N do

s← Reset(E) // Sample new starting state
while E is non-terminal do

a← 〈f̄1(s), . . . , f̄i−1(s), f(s),Ψi+1(s), . . . ,Ψn(s)〉 // Compute action
s, r ← Execute(E , a) // Step the environment
R← R+ r

end
end
R← R

N // Average episodic rewards
return R
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in the expression tree. When selecting a binary token, δ
is incremented. When selecting a unary token, δ does not
change. When selecting a terminal token, δ is decremented.
Before tokens are sampled, δ begins at 1. The expression
completes when δ = 0, at which point all branches reach ter-
minal nodes. For example, the expression sin(x)(x+1) can
be represented using the sequence [×, sin, x,+, x, 1] which
has a corresponding counter sequence δ = [2, 2, 1, 2, 1, 0]
and expression length of 6 tokens.

Using the above knowledge, we can reformulate the expres-
sion length as a one-dimensional random walk that begins
at state s0 = 1 and ends at state sT = 0. In general, let
tn be the expected number of steps to end a random walk
beginning at s0 = n and ending at sT = 0. Let p be
the probability of incrementing s (analogous to selecting a
binary token), q be the probability of decrementing s (analo-
gous to selecting a terminal token), and r be the probability
that s is unchanged (analogous to selecting a unary token).
Consider the first step: starting from s0 = 1, there are three
possible values for s1. With probability p, s1 = 2 and the
expected number of remaining steps becomes t2. With prob-
ability q, s1 = 0 and thus the walk ends. With probability r,
s1 = 1 and the expected number of remaining steps remains
t1. Thus, using p+ q + r = 1, it follows

t1 = p · (1 + t2) + q · (1) + r · (1 + t1)

= 1 + pt2 + rt1 with t1 ∈ [0,+∞).

By linearity of expected value, we have tn = t1 + tn−1 =
t1 + t1 + tn−2 = · · · = nt1. Thus, we can write:

t1 = 1 + (2p+ r)t1

= 1 + (1 + p− q)t1 with t1 ∈ [0,+∞).

There are two cases. If p < q, then t1 = 1
q−p . If p ≥ q,

then t1 = +∞. That is, the expected expression length is
infinite when the probability of a binary token is greater
than or equal to the probability of a terminal token. Under
the uniform arity prior, we have p2 = p1 = p0 = 1

3 and
thus the expected length is infinite.

4. Additional Results and Discussion
Heatmaps of discovered symbolic policies. The dramatic
reduction in the complexity of the symbolic policies discov-
ered by DSP is illustrated in Figure 4 for each action dimen-
sion and for each environment. For environments with obser-
vation space S ⊂ Rm greater than two dimensions (m > 2),
we report 2-D plots by considering “slices” of the space such
that the x- and y-axes represent the first and second “half”
of the observation space, respectively. In particular, the x-
axis represents the slice such that s̃1 = · · · = s̃bm2 c, and the
y-axis represents the slice such that s̃bm2 c+1 = · · · = s̃m,
where s̃i is the ith dimension of the normalized observation

space. Each dimension of the observation space is normal-
ized to [0, 1] using the empirical low and high values of
si, based on the dataset used for the the regression baseline.
Color values in heatmaps represent the normalized action
values. There is a stark contrast in the complexity of the
policies discovered by DSP and the neural network-based
policies trained using DRL.

Intermediate hybrid policies for multi-action environ-
ments. For multi-action environments, we learn the sym-
bolic actions one at a time, distilling the best NN-based
policy available. In this section we report the scores of the
intermediate hybrid policies, i.e. those including symbolic
and NN-based actions, that are built during training. For
Lunarlander, the hybrid policy {a1,Ψ(s)2}, where a1 is
given in Table 1 and Ψ(s) is the corresponding anchor, ob-
tained a score of 278.41. Note that this policy improves
upon the anchor, which obtained a score of 272.65. On
the other hand, the hybrid policies {a1,Ψ(s)2,Ψ(s)3} and
{a1, a2,Ψ(s)3} for Hopper, obtained scores of 2494.29
and 2299.91, respectively. For reference, the score of the
anchor reported in Table 2 was 2741.86. For Bipedal-
Walker, the hybrid policies {a1,Ψ(s)2,Ψ(s)3,Ψ(s)4},
{a1, a2,Ψ(s)3,Ψ(s)4} and {a1, a2, a3,Ψ(s)4}, obtained
scores of 160.57, 181.34, and 272.35, respectively.

Stability analysis for MountainCar. The discrete dynam-
ics of the MountainCar system are given by:

v(tk+1) = 0.0015a1(tk) + v(tk)− 0.0025 cos(3x(tk)),

x(tk+1) = v(tk+1) + x(tk),

where x(tk) is position, v(tk) is velocity, and a1(tk) is
the action at time step tk = t0 + k∆t and k ∈ N. Lin-
earization of the uncontrolled system around the perturbed
equilibrium state seq = (x, v) = (−0.52, 0) (the bottom
of the valley) yields a Jacobian matrix with eigenvalues
(0.99625+0.0865213 i, 0.99625−0.0865213 i). The norm
of these eigenvalues is exactly 1.0, and thus, any solution
of the uncontrolled system starting in a neighborhood of
seq oscillates around seq indefinitely (see Brunton and Kutz
(2019)). Substituting a1(k) with the policy discovered by
DSP yields eigenvalues (1.05068+0.0702259 i, 1.05068−
0.0702259 i). These have norm 1.05302, showing that any
solutions starting close to seq moves away from seq. That is,
the discovered policy makes the attractor point seq function
as a repeller, and the car is successfully pushed to the goal.
This phenomenon is observable in Fig 5b.

Stability analysis for Pendulum. The continuous dynam-
ics of the Pendulum system are defined by :

θ′′(t) =
3a1(t)

l2m
+

3g sin(θ(t))

2l
,

where g is gravitational acceleration, m is the pendulum
mass, l is the pendulum length, θ(t) is the angle with respect
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Figure 4: Heatmaps of actions computed from the symbolic policies discovered by DSP (left columns), the anchor model
(middle columns), and the symbolic regression baseline (right columns) for all environments. [Left] Five single-action
environments. [Right] Two multi-action environments. For environments with more than two observation dimensions, we
plot slices of the observation space (detailed in the text). Each axis is normalized to [0, 1] using empirical observation
bounds. Color values of heatmap represent action values, normalized by the action bounds to [0, 1].
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Figure 5: Phase portraits of the uncontrolled (left) and con-
trolled (right) systems in MountainCar (top) and Pendulum
(bottom).

the vertical axis, and a1(t) is the action. Linearization of
the uncontrolled system around the equilibrium point seq =
(θ, θ′) = (0, 0) yields a Jacobian matrix with eigenvalues
(−3.87, 3.87). Since the second eigenvalue is positive, seq is
an unstable equilibrium according to the Hartman–Grobman
theorem. Substituting the control a1(t) found by DSP in the
system gives eigenvalues (−59.7489,−0.25105). Since all
eigenvalues are non-positive, the symbolic policy discovered
by DSP controls the Pendulum around seq. Again, the phase
portraits in Fig 5c show the symbolic policy controlling the
system across a wide range of starting conditions.

5. Interpreting Learned Symbolic Policies
We provide a simple interpretation for the symbolic policies
discovered by DSP from Table 1. We exclude an interpreta-
tion for the Hopper environment because the meanings of
each observation and action dimension are not described in
the documentation or code.

CartPole. The goal is to prevent a pole on a cart from
falling over. The cart is controlled by a continuous force
that pushes the cart to the right (+) or left (−). The dis-
covered policy consists of two terms, involving the pole
angle s3 and the pole velocity s4. The first term pushes the
cart in whichever direction the pendulum is currently lean-
ing, which provides a stabilizing effect. The second term
smoothes these dynamics by taking into account how fast
the pendulum is falling. Interestingly, the policy discovered
by DSP has structure a1 = Ks, where s is the state and K
is a gain vector. This functional form is closely related to
the typical feedback controllers that are ubiquitous in linear
control theory.

MountainCar. The goal is to make an under-powered car
escape from the bottom of a one-dimensional valley using
minimal effort. The geometry of the valley is a fixed concave
shape. States consist of the car position (s1) and its velocity
(s2). The action is the force to push the car, either to the
left (−) or to the right (+). The policy discovered by DSP
(in Table 1) only involves s2. Recall that the operator log is
protected, such that that log(s2) = 0 for s2 < 0. Thus, the
control is totally switched off whenever the car is moving
left. For s2 ≥ 0, the force is positive, monotonic, and
increasing. Thus, the policy pushes the car whenever it is
moving to the right, and the force magnitude is maximum
when the car is in the bottom of the valley. In other words,
the policy builds momentum in the car, letting it swing back
and forth through the valley (see Supplementary Video). By
letting the car move freely on the backswing, it drastically
reduces the energy injected into the system, thus achieving
near-perfect reward.

Pendulum. The goal is to keep a frictionless pendulum
standing upward by taking actions to move its joint right-
ward (+) or leftward (−). States consist of cos(θ) (s1),
sin(θ) (s2), where θ is the angle of the pendulum, and its
angular velocity ω (s3). The environment incurs a cost of
the form

∑
(θ2(t) + 0.1ω2(t) + 0.001a1(t)), i.e, the goal

is to keep at zero angle (vertical), with the least rotational
velocity and effort. The negative constant multiplying s2
and s3 in the discovered policy prescribes a smooth torque
in the opposite direction of the angle in which the pendulum
is currently leaning. The policy switches off when in the
goal state (s1 = 1, s2 = 0, s3 = 0).

InvertedDoublePendulum. The goal and action is the
same as CartPole, but the system has an additional pole
with additional states. The discovered policy is a function
of s8 = sin(γ) exclusively, where γ is the angle of the
joint connecting the two poles. Thus, the discovered policy
switches the direction and magnitude of the force acting on
the cart according to γ. This is a very parsimonious strategy
that obtains a reasonable performance. As in CartPole, the
discovered symbolic policy has the structure of a classical
feedback controller in linear control theory.

InvertedPendulumSwingup. This task is a combination of
CartPole and Pendulum, with the same goal as Pendulum.
Actions move the cart to the left (−) or right (+). We can
identify two components in the discovered policy. First,
we have a polynomial function involving s1 (location of
cart), s4 (sin(θ), where θ is the angle between pole and
cart), and s5 (angular velocity). This first contribution has
the structure of a linear feedback controller. The second
part is a non-linear function involving sinusoidal functions
of simple polynomials over the state variables. This second
term has bounded range within [−2, 2] and contributes to the
core linear feedback controller providing additional control
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Table 3: Best discovered symbolic policies using the regression baseline.

Environment Best variant Expression

CartPole Clipped a1 = s4 exp(− sin(s1 + s2))

MountainCar Unclipped a1 = sin(5.0s2(9.0− s2))

Pendulum Clipped a1 = sin(0.2s3 exp(s1) + 0.2s3 + 0.2)

InvDoublePend Unclipped a1 = − sin(2.9s9 + (s5 + s9)(10.0s8 + s9 + exp(s5s9)))

InvPendSwingup Clipped a1 = sin(s3s4(−s1 exp(exp(s4s5)− 0.37 exp(−s1 + s2 + s4)) + 5.0))

LunarLander Clipped a1 = −s2 − s4 exp(s3) exp(exp(s4))− sin(s7) + 0.1
a2 = sin(s1s5 − s1 + 2s5)

Hopper Unclipped
a1 = s4 sin(2s15 + s4)
a2 = s8(s11 − s15)
a3 = s1(−s14 + 2s15)

BipedalWalker Unclipped

a1 = sin(s13 + s14 − s5 − 2s7)
a2 = s10(−s11 − s13 − s22 + s5)
a3 = − sin(3s10 + s12 − s3 − s7)
a4 = s10 + s20 sin(s13 + s6)

in the edge cases.

LunarLander. The goal is to land a spacecraft on a landing
pad without crashing. There are two actions: a1 controls
the main engine and a2 controls the side thrusters. The
discovered symbolic policy for a1 is mainly dependent on
s2 (the height) and s4 (the vertical component of velocity).
The main engine turns on to counteract downward motion,
eventually shutting off when the spacecraft is safe to free-
fall without crashing. The discovered symbolic policy for a2
is a function of s4, s6 (angular velocity), and s3 (horizontal
component of velocity). The dominant term determining
the sign of a2 is s6 − s3, deciding which part of the engine
should be fired between left or right based on the tilting
tendency of the spacecraft effectively moving it towards the
center of the landing pad.

BipedalWalker. In this task, the agent has to learn to move
a bipedal walker forward, with the goal of reaching the far
end of a plane with uneven terrain. The state consists of 24
values: hull angle s1, angular hull velocity s2, normalized
horizontal velocity s3, normalize vertical velocity s4, first
leg hip joint angle s5, first leg hip joint torque s6, first leg
knee joint angle s7, first leg knee joint torque s8, first leg
ground contact s9, second leg hip joint angle s10, second
leg hip joint torque s11, second leg knee joint angle s12,
second leg knee joint torque s13, second leg ground contact
s14, and ten lidar range finder measurements s15 to s24.
There are four actions: first leg hip motor torque a1, first leg
knee motor torque a2, second leg hip motor torque a3, and
second leg knee motor torque a4. We first note that the lidar
measurements have very little influence on the symbolic
policies: only one of the ten measurements appears in the

expression for action a1, and another in a2. We also see
that each action heavily depends on the state variables of
the respective joint, augmented by information about the
hull or other joints. Actions a1 and a3 present a linear or
quasi-linear structure. Actions a2 and a4 are highly non-
linear, suggesting that they require more complex and subtle
responses to the state of the system. Remarkably, action a4
depends only on s2 and (linearly) on s10. Furthermore, we
see that a4 < 0 when s2s10 < 0, and a4 > 0 when s2s10 >
0, which points to a non-trivial relationship between the
angular hull velocity and the second leg hip joint angle that
controls the sign of the second leg knee motor torque.

6. Additional Experiment Details
Regression baseline. The ‘regression” baseline involves
performing symbolic regression on an offline dataset gen-
erated from the top-performing pre-trained Zoo policy for
each environment. Consider an environment with observa-
tion space S ⊂ Rm and action space A ⊂ Rn. To generate
the dataset for this environment, we first select the top-
performing pre-trained Zoo policy. We then execute this
neural network-based policy in the environment for 1,000
episodes, storing each tuple (s1, . . . , sm, a1, . . . , an) as a
datapoint. After collecting all datapoints, we uniform ran-
domly select 10,000 points to be used as the dataset for
symbolic regression.

We use deep symbolic regression (Petersen et al., 2021)
to perform symbolic regression. Since this algorithm is
stochastic, we repeat each experiment 10 times using differ-
ent random seeds. We select the expression with the lowest
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mean-square error on the held-out test data (using 80%-20%
train-test split) to be evaluated in the environment. Unlike
DSP, in which each dimension of the action space must
be learned jointly, symbolic regression can be performed
independently for each action dimension. Thus, one exper-
iment consists of running n iterations of symbolic regres-
sion to learn symbolic representations of actions a1, . . . , an.
Specifically, the ith iteration of symbolic regression learns
the function f : S → R, using the above dataset with
s1, . . . , sm as the predictors and ai is the outcome variable
(ignoring aj 6=i).

When executing symbolic policies in the environment, ac-
tion values are clipped to fall within the environment’s ac-
tion space, which is typically bounded. (Even if we do not
clip actions ourselves, environments typically do this inter-
nally.) However, clipping only after symbolic regression
has been performed may limit symbolic regression from
learning policies that exploit these bounds (e.g. a “bang-
bang” policy that quickly switches from one extreme of the
action space to the other). Thus, we performed an additional
variant of the symbolic regression experiments in which
the generated functions f are first clipped to the bounds of
the action space before being compared to the data for the
regression fit. Thus, expressions are not penalized for large
errors outside the bounds of the action space. (Note that the
offline dataset need not be clipped, as all DRL algorithms
used to generate pre-trained policies had their own mecha-
nism for ensuring predicted actions fall within the bounds of
the action space.) Using this variant, expressions generated
by symbolic regression are essentially altered as:

f ′(s) =


Ahigh
i f(s) ≥ Ahigh

i

f(s) Alow
i < f(s) < Ahigh

i

Alow
i f(s) ≤ Alow

i

,

where Alow
i and Ahigh

i are the low and high bounds of the
ith dimension of the action space, respectively. An example
where this clipping may be desirable is illustrated in Fig 6.

For each environment, we selected the variant with the best
environment score. Table 3 shows the best symbolic policy
obtained from the regression baseline, along with which
variant (Clipped or Unclipped) performed best. These ex-
pressions correspond to the scores reported in Table 2.

Constant optimization. Recall that the objective function
for constant optimization is:

γ? = arg max
γ∈D(γ0,r,r)

E [R(τ ; γ)] .

Each algorithm used for constant optimization includes the
following parameters:

• γ0: initial solution

Ahigh
i

Alow
i

ai

s1

Anchor policy

Regression
policy

Large error 
outside bounds

Small errors 
within bounds

Figure 6: Example of problem in regression baseline without
clipping actions. There can be large regression errors when
the action values from regression fall far outside the bounds
of the action space. Clipping the predicted actions would
prevent the regression baseline from being penalized outside
these bounds.

• ε, parameter used to construct the bounds: {0.5, 1.0}

• the number of episodes used to estimate the objective
function: {100, 200} (for single-action environments)
and {10, 20} (for multi-action environments)

• number of restart points: {100, 200} (single-action)
and {10, 20} (multi-action)

For algorithms that consider bounds, we ran the optimization
both with and without bounds. The factors r and r, used to
determine the bounds rγ0 and rγ0, are computed using ε
for the i-th coordinate:

r =
min(γ0i − εγ0i ,−1)

γ0i
,

r =
max(γ0i + εγ0i , 1)

γ0i
.

The minimum and maximum operators ensure we provide
each coordinate with a minimum significant variation.

The restart points are generated coordinate-wise using a
truncated normal distribution with mean γ0 and standard
deviation ε2(r−r)γ0, bounded byD. They are generated in
the same way for both bounded and unbounded optimization.
Thus, for unbounded optimization experiments, bounds are
computed only to calculate the parameters of the distribution
from which restart points are drawn.

We use the following optimization methods: Trust Region
(bounded) (Byrd et al., 1987), Nelder-Mead (unbounded)
(Nelder and Mead, 1965), Constrained Optimization by Lin-
ear Approximation (unbounded) (Powell, 1995), Sequential



Discovering symbolic policies with deep reinforcement learning

Least Squares (bounded) (Carayannis et al., 1983), Broyden-
Fletcher-Goldfarb-Shanno (bounded and unbounded) (Head
and Zerner, 1985), and Bayesian Optimization (bounded)
(Nogueira, 2014). For each action dimension in each envi-
ronment, we select the algorithm that yielded the highest
average episodic reward across 1,000 evaluation episodes.
For Bayesian optimization, we used the implementation in
Nogueira (2014). For all other algorithms, we used imple-
mentations in SciPy (Virtanen et al., 2020).

Training details. Since executing the environment is the
computational bottleneck, DSP was run until a maximum
number of Ntotal environment episodes were executed. We
used Ntotal = 2M episodes for single-action environments
and Ntotal = 400, 000 episodes for multi-action environ-
ments (which tend to be more computationally expensive).
The number of DSP training steps depends on both batch
size and Ntrain via: Ntotal = number of training steps ×
batch size×Ntrain.

We introduced a Boolean hyperparameter that controls
whether to fix the Ntrain environment seeds for each reward
computation. If True, this has the benefit of rendering
the task deterministic; that is, repeated computations of the
reward using the same symbolic policy will yield identical
rewards. However, it also introduces the risk of the symbolic
policy to overfit to that set of environment seeds. Further, if
the set of Ntrain fixed seeds is a poor representation of the
starting state distribution, evaluation performance may be
degraded. If False, these generalization risks are avoided
but the reward becomes highly stochastic.

After training completes, we select the symbolic policies
with the top 100 rewards and evaluate those using Neval
episodes with fixed environment seeds (note there is no
overlap between training and evaluation seeds). We report
the symbolic policy with the highest evaluation score.

The RNN used was a single-layer LSTM with 32 cells,
trained using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.001. The risk factor used for risk-
seeking policy gradients was 0.1. Expression were con-
strained to a minimun length of 4 and a maximum length of
30.

Hyperparameter selection. Hyperparameters were tuned
independently for each action dimension and for each envi-
ronment. To tune hyperparameters, we performed a small
grid search, considering batch size ∈ {100, 200}, train-
ing episodes per reward evaluation Ntrain ∈ {5, 10, 20},
fixing training seeds ∈ {True,False} entropy weight
η ∈ {0.01, 0.02}, entropy decay γ ∈ {0.85, 1.0} and soft
length prior ∈ {True,False}. No other hyperparame-
ters were tuned. For each hyperparameter combination, we
performed 3 independent runs of DSP. We selected the hy-
perparameter combination with the highest evaluation score

(average episodic reward across 1,000 episodes).

Computing infrastructure. Experiments were executed
on an Intel Xeon E5-2695 v4 equipped with NVIDIA Tesla
P100 GPUs, with 32 cores per node, 2 GPUs per node, and
256 GB RAM per node.

7. Ablation Studies for Exploration
Techniques

We consider ablation studies for the two inverted pendulum
environments (InvertedDoublePendulum and InvertedPen-
dulumSwingup) using the following variants:

• SE: Standard entropy regularizerH

• HE: Hierarchical entropy regularizerHγ (γ = 0.85)

• SLP: Soft length prior (λ = 10, σ2 = 5) with SE

• SLP+HE: Soft length prior with HE

In Table 4, we report the mean and standard deviation of
the evaluation metric (average episodic reward over 1,000
episodes) of the best policy discovered by DSP, averaged
over 10 independent training runs. We consider the best hy-
perparameters found in the hyperparameter study for each
environment and consider Ntotal = 1M. Using the proposed
techniques separately (variants HE and SLP), the results
improve over the baseline (SE). The best results are ob-
tained when both methods SLP and HE are used together
(SLP+HE).

Evaluating DSP solely on the benchmark RL environments
is challenging for two reasons: (1) the optimal policy is
unknown, precluding a simple “success” criteria; and (2)
environments are computationally expensive, preventing
large numbers of replicates. To address these issues and
provide stronger evidence of the performance gains using
our two exploration techniques, we consider the follow-
ing deterministic environment with one-dimensional action
space A ⊂ R, m-dimensional state space S ⊂ Rm, and a
single episodic step T = 1. Given a target policy g(s) and
a dataset of states {s(i) ∈ Rm}ni=1, we define the instanta-
neous deterministic reward at time step t = 1 as

r1 = 1/(1 + NRMSEg(τ)),

where

NRMSEg(τ) =
1

σ

√√√√ 1

n

n∑
i=1

(g(s(i))− fτ (s(i)))2,

where fτ (s) is the expression defined by τ and σ is the
standard deviation of the set {g(s(i))}ni=1. Note that this
environment reduces to the classical problem of symbolic
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Table 4: Performance comparison of DSP using SE, HE, and SLP, in the InvertedDoublePendulum and InvertedPendulum-
Swingup environments. Values are mean ± standard deviation (10 independent runs) of the episodic reward (averaged over
1,000 episodes) of the best policy discovered by DSP.

Environment SE HE SLP SLP+HE
InvDoublePend 9062.83± 38.68 9132.33± 16.21 9105.95± 58.35 9140.32± 6.11

InvPendSwingup 861.83± 59.16 887.27± 1.04 887.09± 1.36 887.28± 1.46

Table 5: Recovery rate comparison of DSP using SE, HE, and SLP in the deterministic environments with target policy g(s).

Environment with target policy g(s) SE HE SLP SLP+HE
m = 1 g(s1) = s31 + s21 + s1 100% 100% 100% 100%
m = 1 g(s1) = s41 + s31 + s21 + s1 100% 100% 100% 100%
m = 1 g(s1) = s51 + s41 + s31 + s21 + s1 100% 100% 100% 100%
m = 1 g(s1) = s61 + s51 + s41 + s31 + s21 + s1 100% 99% 100% 100%
m = 1 g(s1) = sin(s21) cos(s1)− 1 72% 75% 91% 97%
m = 1 g(s1) = sin(s1) + sin(s1 + s21) 100% 100% 100% 100%
m = 1 g(s1) = log(s1 + 1) + log(s21 + 1) 35% 71% 48% 82%
m = 1 g(s1) =

√
s1 96% 97% 100% 100%

m = 2 g(s1, s2) = sin(s1) + sin(s22) 100% 100% 100% 100%
m = 2 g(s1, s2) = 2 sin(s1) cos(s2) 100% 100% 78% 74%
m = 2 g(s1, s2) = ss21 100% 100% 91% 90%
m = 2 g(s1, s2) = s41 − s31 + 1

2s
2
2 − s2 0% 0% 0% 0%
Average 83.6% 86.8% 84.0% 86.9%

regression. Thus, we choose functions g(s) and datasets of
states {s(i) ∈ Rm}ni=1 according to (Uy et al., 2011), a stan-
dard set of benchmark problems for symbolic regression.

By design, this environment has a known global optimal
policy; thus, we can measure recovery rate, or the fraction of
independent training runs in which DSP produces a policy
exactly symbolically equivalent to the target policy g(s).
Since the environment is computationally expedient, we
report recovery rate over 100 independent runs, increase the
batch size to 1,000 with a risk factor of 0.05, and reduce
learning rate to 0.0005, for all variants. In Table 5, we
provide the best result obtained with each variant sweeping
across η ∈ {0.0005, 0.001, 0.01, 0.02} and keeping the rest
of parameters fixed. We observe improvements in average
recovery rate with both HE and SLP techniques separately.
The combination of both provides the best results. Finally,
it is worth noting that both contributions improve upon the
state-of-the-art results for symbolic regression reported in
Petersen et al. (2021).
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