Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch)

Hunter Lang 1 David Sontag 1 Aravindan Vijayaraghavan 2

Abstract

We prove that the α-expansion algorithm for MAP inference always returns a globally optimal assignment for Markov Random Fields with Potts pairwise potentials, with a catch: the returned assignment is only guaranteed to be optimal for an instance within a small perturbation of the original problem instance. In other words, all local minima with respect to expansion moves are local minima to slightly perturbed versions of the problem. On “real-world” instances, MAP assignments of small perturbations of the problem should be very similar to the MAP assignment(s) of the original problem instance. We design an algorithm that can certify whether this is the case in practice. On several MAP inference problem instances from computer vision, this algorithm certifies that MAP solutions to all of these perturbations are very close to solutions of the original instance. These results taken together give a cohesive explanation for the good performance of “graph cuts” algorithms in practice. Every local expansion minimum is a global minimum in a small perturbation of the problem, and all of these global minima are close to the original solution.

1. Introduction

Markov random fields are widely used for structured prediction in computer vision tasks such as image segmentation and stereopsis (Geman & Geman, 1984), including in the modern “deep” era (e.g., Zheng et al., 2015). Making predictions involves performing MAP inference. However, in general, exactly solving the MAP inference problem is NP-hard (Wainwright & Jordan, 2008) and one must resort to approximate inference.

“Graph cuts” algorithms for approximate MAP inference in pairwise Markov random fields have been very influential in computer vision. These algorithms are popular because they are simple and efficient, and they return very high-quality solutions in practice (Szeliski et al., 2008; Kappes et al., 2015). The α-expansion method of Boykov et al. (2001) starts with an arbitrary initial labeling (an assignment of labels to variables), then iteratively makes “expansion moves” to improve the current labeling. At each step, the optimal expansion move of the current labeling can be computed very efficiently by solving a binary minimum cut problem (hence the name “graph cuts”). The algorithm converges when no expansion moves can improve the labeling any further.

Algorithm 1 summarizes the high-level algorithm steps. The α-expansion algorithm is only guaranteed to return a local minimum with respect to the moves made by the algorithm. Figure 1 shows a globally optimal (MAP) labeling, which took over four hours to obtain with an integer linear programming (ILP) solver, and the local minimum returned by α-expansion in less than ten seconds. Although α-expansion is only guaranteed to find a local minimum, the two assignments agree on over 99% of the vertices. Despite this good practical performance, the sharpest worst-case theoretical guarantee for α-expansion is that it obtains a 2-approximation to the objective value of the MAP labeling (Boykov et al., 2001). A 2-factor objective approximation often translates to a very weak guarantee for recovering the exact solution: Lang et al. (2019) show that MAP inference problems from computer vision admit 2-approximate labelings that agree with the optimal assignment on fewer than 1% of variables. Compare this to Figure 1, where the expansion solution agrees with the exact solution on over 99% of the nodes. Additionally, objective gap bounds obtained from primal-dual variants of α-expansion are sometimes very close to one in practice (Komodakis et al., 2007). Those bounds (which depend on the algorithm’s initialization) show that graph-cuts algorithms often vastly outperform their theoretical guarantees. So a large gap exists between the worst-case guarantee of 2-approximation and the practical performance (in both objective value and recovery of the true solution) of the α-expansion algorithm. Why are the local minima with respect to expansion moves so good in practice?

In this work, we prove a surprising structural result that
characterizes the local energy minima with respect to (w.r.t.) expansion moves. Informally, we prove that for a widely used model (the Potts model) all local expansion minima are actually global minima of slightly perturbed instances of the input problem. This result implies that the α-expansion algorithm always returns a MAP assignment—the “catch” is that the assignment is not guaranteed to be optimal for the input instance, but rather for some closely-related instance. In other words, we prove that when we run α-expansion on an instance I, it always outputs a MAP solution to an instance I′ that is a small perturbation of I.

Our result implies that real-world instances should have no “spurious” local minima with respect to expansion moves. This is because in practice, MAP solutions to all small perturbations tend to be close to the MAP solution of the original instance. We design an efficient algorithm to check whether this is truly the case. On real-world instances of MAP inference from computer vision, our algorithm certifies that all solutions to these perturbations are very close to the solution of the original instance. Our results thus give a theoretical explanation for the excellent empirical performance of α-expansion and related graph cut methods like FastPD (Komodakis et al., 2007). These algorithms naturally take advantage of the fact that solutions to all small perturbations tend to be close to the original solution in practice.

2. Preliminaries

Before we discuss related work, we formally introduce the inference problem considered in this paper and fix notation. Fix a constant k and a graph G = (V, E) with |V| = n, |E| = m. A labeling of G is a map g : V → [k]. The (pairwise) MAP inference problem on G can be written:

\[
\min_{g: V \to [k]} \sum_{u \in V} \theta_u(g(u)) + \sum_{(u, v) \in E} \theta_{uv}(g(u), g(v)).
\]

In this energy minimization format, \(\theta_u(i)\) is the node cost of assigning label \(i \in \{1, \ldots, k\}\) to node \(u\), and \(\theta_{uv}(i, j)\) is the edge cost or pairwise energy of simultaneously assigning label \(i\) to \(u\) and \(j\) to \(v\). We assume without loss of generality that \(\theta_u(i) \geq 0\) for all \((u, i)\). Consider image segmentation: the nodes \(u \in V\) correspond to image pixels, and the edges \((u, v) \in E\) connect nearby pixels. The node costs \(\theta_u(i)\) can be set as the negative score of pixel \(u\) for segment \(i\), and the pairwise terms \(\theta_{uv}(i, j)\) can be set to encourage nearby pixels to belong to the same segment.

We can identify each labeling \(g : V \to L\) with a point \(x^g \in \{0, 1\}^{nk + mk^2}\) defined by the following indicator functions:

\[
\begin{align*}
 x^g_u(i) &= \begin{cases}
 1 & g(u) = i \\
 0 & \text{otherwise}
 \end{cases} \\
 x^g_{uv}(i, j) &= \begin{cases}
 1 & g(u) = i, g(v) = j \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

The MAP inference problem can then be written as:

\[
\min_{g: V \to [k]} \sum_{u \in V} \sum_{i} \theta_u(i) x^g_u(i) + \sum_{uv \in E} \sum_{i,j} \theta_{uv}(i, j) x^g_{uv}(i, j).
\]

The marginal polytope \(M(G)\) is defined as the convex hull of all \(x^g\):

\[
M(G) \triangleq \text{conv} \left(\{ x^g \mid g : V \to [k] \} \right).
\]

We can denote the coordinates of an arbitrary point in \(x \in M(G)\) as \(x_u(i), x_{uv}(i, j)\), with \(u \in V, uv \in E\), and \(i\) and \(j\) in \([k]\). Collecting the objective coefficients \(\theta_u(i)\) and \(\theta_{uv}(i, j)\) in the vector \(\theta = (\theta_u : u; \theta_{uv} : uv) \in \mathbb{R}^{nk + mk^2}\), we can rewrite MAP inference as a linear optimization over \(M(G)\):

\[
\min_{x \in M(G)} \langle \theta, x \rangle,
\]

since the vertices of this polytope are precisely the points \(x^g\) corresponding to labelings of \(G\). \(M(G)\) typically lacks an efficient description, and optimizing a linear function over it is NP-hard in general (Wainwright & Jordan, 2008). The minimization problem above can be represented as the

Algorithm 1 α-expansion algorithm

Initialize a labeling \(x : V \to [k]\).
	improved ← True.

while improved do
	improved ← False
	for \(\alpha \in [k]\) do
	\(x^\alpha \leftarrow \text{optimal } \alpha\)-expansion of \(x\).
	if \(\text{obj}(x^\alpha) < \text{obj}(x)\) then
	\(x \leftarrow x^\alpha\).
	improved ← True.
end if
end for
return \(x\).

Figure 1. Left: image of venus scene. Center: exact MAP depth labeling, found using ILP solver; Left: a local minimum w.r.t. expansion moves. The two labelings agree on over 99% of nodes.
We refer to (2) as the uniform metric labeling, whether the labels of its endpoints match. While seemingly \(\theta\) (2015)). We still use it here as a tool in our analysis. We say that (2) is related to this relaxation (e.g., MPLP (Globerson & Jaakkola, 2002), but we only accounted for several of the instances studied in Kappes et al. (2018) performs coordinate ascent in its dual), but we only referred to both a vertex of \(M(G)\), referencing the values \(x_u(i), x_{uv}(i, j)\), and to a labeling of \(G\), referencing \(x(u)\). This is justified because these two objects are in one-to-one correspondence. For example, we write the objective value of a labeling \(x : V \rightarrow [k]\) as \(\langle \theta, x \rangle\). We also define the (normalized) Hamming distance between two labelings \(x\) and \(x'\) as:

\[
\frac{1}{n} \sum_u \|x(u) \neq x'(u)\| = \frac{1}{2n} \sum_u \sum_i |x_u(i) - x'_u(i)|.
\]

Finally, for a fixed graph \(G\) and a fixed \(k\), we identify an instance of the MAP inference problem with its objective vector \(\theta = (\theta_u : u, \theta_{uv} : uv)\).

2.1. Expansion

Let \(x : V \rightarrow [k]\) be a labeling of \(G\). For any label \(\alpha \in [k]\), we say that \(x'\) is an \(\alpha\)-expansion of \(x\) if the following hold for all \(u \in V\):

\[
\begin{align*}
x(u) = \alpha & \implies x'(u) = \alpha, \\
x'(u) \neq \alpha & \implies x'(u) = x(u).
\end{align*}
\]

That is, \(x'\) may not shrink the region of nodes labeled \(\alpha\)—that region can only expand—and if \(x'\) changes any label, the new label must be \(\alpha\). The optimal \(\alpha\)-expansion move of \(x\) can be found very efficiently by solving a minimum cut problem in an auxiliary graph \(G^*(\alpha)\) (Boykov et al., 2001). Algorithm 1 starts with an arbitrary labeling \(x : V \rightarrow [k]\), then iteratively improves it by making expansion moves. The algorithm converges when there are no expansion moves that decrease the objective \(\langle \theta, x \rangle\). We say a labeling \(x\) is a local minimum w.r.t. expansion moves if no expansion move of \(x\) strictly decreases the objective.

The approximation guarantee for \(\alpha\)-expansion states that the objective of any local minimum is at most the objective of the MAP solution \(x^*\) plus the edge cost paid by \(x^*\).

Theorem 1 (Boykov et al., 2001) Theorem 6.1. Let \(x\) be a local minimum w.r.t. expansion moves. Then

\[
\langle \theta, x \rangle \leq \langle \theta, x^* \rangle + \sum_{u,v} \theta_{uv}(x^*(u), x^*(v))
\]

In particular, \(\langle \theta, x \rangle \leq 2 \langle \theta, x^* \rangle\).

3. Related work

3.1. Perturbation stability

Lang et al. (2018) define \((1, 2)\)-stable instances of uniform metric labeling as those instances whose MAP solution does not change when any subset of edges \(S \subset E\) can have the integer linear program (ILP):

\[
\begin{align*}
\text{minimize } & \langle \theta, x \rangle \\
\text{subject to:} & \sum_i x_{uv}(i, j) = x_u(j) \quad \forall (u, v) \in E, \ j \in [k] \\
& \sum_j x_{uv}(i, j) = x_u(i) \quad \forall (u, v) \in E, \ i \in [k] \\
& \sum_i x_u(i) = 1 \quad \forall u \in V \\
& x_{uv}(i, j) \in \{0, 1\} \quad \forall (u, v), \ (i, j) \\
& x_u(i) \in \{0, 1\} \quad \forall u, i.
\end{align*}
\]

The feasible points of this ILP are precisely the vertices of \(M(G)\). A common approximate approach to MAP inference is to solve the following linear programming (LP) relaxation:

\[
\begin{align*}
\text{minimize } & \langle \theta, x \rangle \\
\text{subject to:} & \sum_i x_{uv}(i, j) = x_u(j) \quad \forall (u, v) \in E, \ j \in [k] \\
& \sum_j x_{uv}(i, j) = x_u(i) \quad \forall (u, v) \in E, \ i \in [k] \\
& \sum_i x_u(i) = 1 \quad \forall u \in V \\
& x_{uv}(i, j) \in \{0, 1\} \quad \forall (u, v), \ (i, j) \\
& x_u(i) \in \{0, 1\} \quad \forall u, i.
\end{align*}
\]

where \(L(G)\) is the local polytope defined by relaxing all the integrality constraints above from \(\{0, 1\}\) to \([0, 1]\). In general, \(M(G)\) is a strict subset of \(L(G)\). The first two sets of constraints are called marginalization constraints, and ensure the edge variables \(x_{uv}(i, j)\) locally match the “marginals” \(x_u(i)\) and \(x_v(j)\). The third set consists of normalization constraints that ensure the \(x_u\) variables sum to 1. Note that there are some redundant constraints in this formulation. In the LP relaxation, the variables \(x_u(i), x_{uv}(i, j)\) correspond to potentially fractional labelings of \(G\), since we only have that \(\sum_i x_u(i) = 1\).

We refer to (2) as the local LP relaxation of the MAP inference problem. This relaxation has been widely studied (Sontag, 2010; Wainwright & Jordan, 2008), including in the context of stability and the ferromagnetic Potts model (Kleinberg & Tardos, 2002; Lang et al., 2018; 2019; 2021). Many algorithms for approximate MAP inference can be related to this relaxation (e.g., MPLP (Globerson & Jaakkola, 2008) performs coordinate ascent in its dual), but we only use it here as a tool in our analysis. We say that (2) is tight on an instance of the MAP inference problem if there exists a vertex of \(M(G)\) that is a solution to (2). This optimal vertex must correspond to an exact MAP labeling.

In this work, we focus on the ferromagnetic Potts model, where the pairwise terms \(\theta_{uv}(i, j) = w_{uv}[i \neq j]\), with \(w_{uv} \geq 0\). That is, the cost of an edge only depends on whether the labels of its endpoints match. While seemingly simple, this model is popular in practice (for example, it accounts for several of the instances studied in Kappes et al. (2015)). We still use \(\theta_{uv}(i, j)\) in what follows for notational convenience, but in the rest of our results, we assume \(\theta_{uv}(i, j)\) takes this form. MAP inference in this model is also called uniform metric labeling (Kleinberg & Tardos, 2002), and it is NP-hard for variable \(k \geq 3\), even when \(G\) is planar (Dahlhaus et al., 1992).

We often use the same symbol \(x\) to refer to both a vertex of \(M(G)\), referencing the values \(x_u(i), x_{uv}(i, j)\), and to a labeling of \(G\), referencing \(x(u)\). This is justified because these two objects are in one-to-one correspondence. For example, we write the objective value of a labeling \(x : V \rightarrow [k]\) as \(\langle \theta, x \rangle\). We also define the (normalized) Hamming distance between two labelings \(x\) and \(x'\) as:

\[
\frac{1}{n} \sum_u \|x(u) \neq x'(u)\| = \frac{1}{2n} \sum_u \sum_i |x_u(i) - x'_u(i)|.
\]

Finally, for a fixed graph \(G\) and a fixed \(k\), we identify an instance of the MAP inference problem with its objective vector \(\theta = (\theta_u : u, \theta_{uv} : uv)\).

2.1. Expansion

Let \(x : V \rightarrow [k]\) be a labeling of \(G\). For any label \(\alpha \in [k]\), we say that \(x'\) is an \(\alpha\)-expansion of \(x\) if the following hold for all \(u \in V\):

\[
\begin{align*}
x(u) = \alpha & \implies x'(u) = \alpha, \\
x'(u) \neq \alpha & \implies x'(u) = x(u).
\end{align*}
\]

That is, \(x'\) may not shrink the region of nodes labeled \(\alpha\)—that region can only expand—and if \(x'\) changes any label, the new label must be \(\alpha\). The optimal \(\alpha\)-expansion move of \(x\) can be found very efficiently by solving a minimum cut problem in an auxiliary graph \(G^*(\alpha)\) (Boykov et al., 2001). Algorithm 1 starts with an arbitrary labeling \(x : V \rightarrow [k]\), then iteratively improves it by making expansion moves. The algorithm converges when there are no expansion moves that decrease the objective \(\langle \theta, x \rangle\). We say a labeling \(x\) is a local minimum w.r.t. expansion moves if no expansion move of \(x\) strictly decreases the objective.

The approximation guarantee for \(\alpha\)-expansion states that the objective of any local minimum is at most the objective of the MAP solution \(x^*\) plus the edge cost paid by \(x^*\).

Theorem 1 (Boykov et al., 2001) Theorem 6.1. Let \(x\) be a local minimum w.r.t. expansion moves. Then

\[
\langle \theta, x \rangle \leq \langle \theta, x^* \rangle + \sum_{u,v} \theta_{uv}(x^*(u), x^*(v))
\]

In particular, \(\langle \theta, x \rangle \leq 2 \langle \theta, x^* \rangle\).

3. Related work

3.1. Perturbation stability

Lang et al. (2018) define \((1, 2)\)-stable instances of uniform metric labeling as those instances whose MAP solution does not change when any subset of edges \(S \subset E\) can have the
weights \(w_{uv}\) multiplied by an edge-dependent \(\gamma_{uv} \in [1, 2]\). They prove that \(\alpha\)-expansion recovers the exact MAP solution on \((1, 2)\)-stable instances. As is typically the case in work on perturbation stability, few guarantees are given for instances that do not satisfy the stability definition. Unfortunately, the real-world instances that motivated Lang et al. (2018)’s work are not stable—the requirement of stability that the solution doesn’t change at all turns out to be too strict to be practical (Lang et al., 2019). Our results are much more general, since they apply to any instance (stable or not). To go beyond stability, Lang et al. (2019) showed that an LP relaxation has approximate recovery guarantees when “blocks” (sub-instances) of the instance are perturbation stable, and Lang et al. (2021) showed that perturbation-stable instances are still approximately solvable after being corrupted by noise. Neither of these works gives a guarantee for graph cuts.

3.1.1. Checking stability

Lang et al. (2019) designed algorithms for checking stability and sub-instance stability for uniform metric labeling that are based on solving (a series of) integer linear programs. Surprisingly, we show that our algorithm, which bounds the performance of all possible \(\alpha\)-expansion minima, is computationally efficient once an exact MAP solution \(x^*\) is known.

3.2. Primal-dual graph cut algorithms

Komodakis et al. (2007) showed how to interpret \(\alpha\)-expansion as a primal-dual algorithm for solving the energy minimization problem. This view enables the algorithm to compute certificates of (sub)optimality at essentially no extra cost, so bounds on the gap between the objective of the labeling returned by expansion and the optimal objective can be efficiently obtained in practice. Unlike our results, these bounds are initialization-dependent, and they only bound the objective value (they do not bound the difference from the global minimum itself). Our structural result can be taken as an explanation for (i) why these objective bounds tend to be close to 1 regardless of the initialization and (ii) why the returned labelings have small Hamming distance to the optimal labeling: all local minima w.r.t. expansion moves are global minima for some instance within a small perturbation of the input. On practical instances, solutions to small perturbations tend to have near-optimal objective in the original instance and are close in Hamming distance to the original solution.

3.3. Partial optimality results for \(\alpha\)-expansion

A node/label pair \((u, i)\) is a partially optimal assignment (henceforth, a partopt) if \(x^*(u) = i\) for the MAP solution \(x^*\). Several works have developed fast algorithms for finding provable partopts, i.e. identifying parts of the MAP assignment (e.g., Kovtun, 2003; Shekhovtsov, 2013; Swo-boda et al., 2016; Shekhovtsov et al., 2017). Shekhovtsov & Hlavac (2011) showed that if Kovtun’s procedure outputs a partopt \((u, i)\), then any expansion minimum \(x^\alpha\) has \(x^\alpha(u) = i\). Like our result, this gives a guarantee for \(\alpha\)-expansion that is independent of the algorithm’s initialization: expansion always recovers \(x^\alpha(u)\) when Kovtun’s procedure finds the optimal label at a vertex \(u\). However, this result does not explain when Kovtun’s procedure finds a large number of partopts. In contrast, our results only rely on a structural property of the instance itself (that the solutions to perturbations are close to the solutions of the original). Moreover, our algorithm in Section 5 for bounding \(\alpha\)-expansion’s Hamming error is meant to illustrate the tightness of our structural result, not to give a fast method for finding provably partially optimal assignments.

3.4. Certified algorithms

Our results are very related to the study of certified algorithms (Makarychev & Makarychev, 2020; Angelidakis et al., 2019). Informally, a certified algorithm is one that returns a global (exact) solution to a perturbation of the input problem. We prove that \(\alpha\)-expansion is a certified algorithm for uniform metric labeling. Our algorithm in Section 5 for upper bounding \(\alpha\)-expansion’s error could be used to upper bound the error of other certified algorithms. The fact (proven here) that a popular algorithm with a long track record of empirical success is a certified algorithm suggests that this model could be useful for understanding the empirical performance of algorithms on hard problems. Exact solutions to small perturbations of the input can be efficiently obtained despite hardness of the original problem, and these exact solutions are often very close to those of the original problem in practice.

4. Expansion always finds a global optimum

In this section, we give our main theoretical results. Theorem 2 states that every labeling \(x\) that is a local minimum \(w.r.t.\) expansion moves is a global minimum (an exact MAP solution) in a perturbed version of the input problem instance. Theorem 3 then gives a precise characterization of a perturbation in which \(x\) is optimal. The simple structure of these perturbations is useful in the development of our algorithm in Section 5. We defer both proofs to Appendix A.

Theorem 2. Let the labeling \(x\) be a local minimum with respect to expansion moves for the instance with objective \(\theta\). Let \(\mathcal{I}(\theta)\) be the set of \(\theta'\) that for some \(\gamma \in [1, 2]|E|\) satisfy:

\[
\theta'_u = \theta_u \quad \forall u \in V \\
\theta'_{uv} = \gamma_{uv}\theta_{uv} \quad \forall (u,v) \in E
\]

Then there exists \(\theta' \in \mathcal{I}(\theta)\) for which \(x\) is a MAP solution.
The definition of $\mathcal{I}(\theta)$ requires that each $\theta' \in \mathcal{I}(\theta)$ has exactly the same node costs as θ, and that the pairwise potentials $\gamma_{uv} = \gamma_{uv} \theta_{uv}$ for an edge-dependent constant $\gamma_{uv} \in [1, 2]$. Theorem 2 says that for each local minimum x to the input instance θ, there exists at least one instance $\theta' \in \mathcal{I}(\theta)$ for which x is a global minimum. The next theorem gives a closed form for one such θ' in terms of x.

Theorem 3. Given an instance θ with edge weights w_{uv} and an expansion minimum x for θ, define perturbed weights w'_{uv}:

$$w'_{uv} = \begin{cases} w_{uv} & x(u) \neq x(v) \\ 2w_{uv} & x(u) = x(v), \end{cases}$$

and let

$$\theta^*_{uv}(i, j) = w'_{uv} \delta[i \neq j]$$

be the pairwise Potts energies corresponding to the weights w'. Then x is a global minimum in the instance with objective vector $\theta^* = (\theta_u : u; \theta^*_{uv} : uv)$. This is the Potts model instance with the same node costs θ_u (as the original instance, but new pairwise energies $\theta^*_{uv}(i, j)$ defined using the perturbed weights w'). Note that $\theta^* \in \mathcal{I}(\theta)$. Additionally, the LP relaxation (2) is tight on this perturbed instance.

Theorem 2 strictly and significantly generalizes Theorem 2 of Lang et al. (2018), since $\mathcal{I}(\theta)$ is the set of $(1, 2)$-perturbations of the input instance θ. The analysis is similar to that in Lang et al. (2018), but reinterpreted through the certified algorithm lens of Makarychev & Makarychev (2020). The guarantee of Theorem 3 that the LP relaxation (2) is tight in the perturbed instance is crucial to our algorithm in Section 5. Theorems 2 and 3 also apply to any iterative algorithm whose set of iterative moves contain the set of expansion moves, such as FastPD.

5. How “bad” are solutions to perturbations?

Theorem 2 guarantees that when α-expansion is run on an instance θ, it always returns a MAP solution to some instance $\theta' \in \mathcal{I}(\theta)$. To evaluate how informative this guarantee is, we need a method to find the “worst” solution out of all the solutions to instances in $\mathcal{I}(\theta)$. That is, let

$$S(\theta) = \{ x : x \text{ a MAP solution for some } \theta' \in \mathcal{I}(\theta) \}.$$

(6)

Theorem 2 implies all local expansion minima x have $x \in S(\theta)$. This structural condition is informative for an instance θ if every solution in $S(\theta)$ is close to the MAP solution x^\star of θ. In that case, our result explains why α-expansion always performs well. Our hypothesis is that real-world instances should have this property, but we need a method to verify this hypothesis empirically.

In this section, we design an efficient algorithm for upper-bounding the value of any concave function $f(x)$ over $S(\theta)$. For example, $f(x)$ could measure the Hamming distance to x^\star or the objective gap of x in the original instance θ. Note that in these cases, the algorithm must be given x^\star to compute $f(x)$, but this need not be true for general f. For example, in a learning scenario, $f(x)$ could measure Hamming distance to the known ground-truth assignment. Because all local expansion minima are contained in $S(\theta)$ by Theorem 2, bounds for these quantities give initialization-independent bounds on expansion’s performance.

Formally, we want to solve

$$\begin{align*}
\text{maximize } & f(x) \\
\text{subject to } & x \in S(\theta).
\end{align*}$$

(7)

Here $f(x)$ is a concave function that measures the “badness” of x. For example, if x^\star is a MAP solution to the original instance, we could take $f(x) = (\theta, x)/\langle \theta, x^\star \rangle$, the objective gap of x. Similarly, we can let $f(x)$ be the Hamming distance between x and x^\star, which can be expressed as:

$$f(x) = \frac{1}{2n} \left(\sum_{u \in V} \sum_{i \neq x^\star(u)} x_u(i) - \sum_{u \in V} x_u(x^\star(u)) \right),$$

where x^\star is a labeling and x as a point of $M(G)$. This is an affine function of x. Let η be the optimal value of (7). Then by Theorem 2, all local expansion minima x satisfy $f(x) \leq \eta$. Solving (7) thus gives an upper bound on the error of all expansion minima. For simplicity, and because we use the two functions above in our empirical results, we assume in what follows that $f(x)$ is affine. We can then replace maximization of $f(x)$ with maximization of $\langle f, x \rangle$ for some vector f. However, our algorithm works for any concave function.

In the rest of this section, we design an efficient algorithm for upper-bounding the optimal value of (7) by deriving a sequence of equivalent problems, then performing a convex relaxation. In several of our experiments in Section 6, we find that the bound obtained by our algorithm is nearly tight.

Theorem 4. For affine functions f, (7) can be exactly represented by an integer linear program (ILP). Additionally, an upper bound on the optimal value of (7) can be obtained efficiently using a linear program.

Proof. As written, (7) is difficult to optimize because it searches over the set $S(\theta)$ of MAP solutions to instances $\theta' \in \mathcal{I}(\theta)$. This is not a convex set. First, the following lemma gives a simpler characterization of $S(\theta)$.

Lemma 1.

$$S(\theta) = \{ x : x \text{ a MAP solution to the instance } \theta^x \text{ defined by (4) and (5)} \}$$

Proof. We show in Appendix A that if x is optimal for any $\theta' \in \mathcal{I}(\theta)$, x is optimal for θ^x. This immediately gives the result. \[\Box\]
So we can rewrite (7) as:

\[
\begin{align*}
\text{maximize} & \quad f(x) \\
\text{subject to} & \quad x \text{ a vertex of } M(G), \\
& \quad x \text{ optimal in the instance with objective } \theta^x. \\
\end{align*}
\]

(8)

The first constraint ensures that \(x \) is a valid labeling, and the second constraint ensures (by Lemma 1) that \(x \in S(\theta) \). Now we focus on simplifying the optimality constraint. Let \(x \) be an optimal labeling in the instance with objective \(\theta^x \). By Theorem 3, for all LP-feasible points \(y \in L(G) \), we have that \(\langle \theta^x, x \rangle \leq \langle \theta^x, y \rangle \). That is, the local LP relaxation is tight on this instance—even though \(x \) is an integer solution, its objective value \(\langle \theta^x, x \rangle \) is as good as that of any fractional solution. This allows us to rewrite the optimality constraint using the following valid constraint:

\[
\begin{align*}
\text{maximize} & \quad \langle f, x \rangle \\
\text{subject to} & \quad x \text{ a vertex of } M(G) \\
& \quad \langle \theta^x, x \rangle \leq \min_{y \in L(G)} \langle \theta^x, y \rangle.
\end{align*}
\]

(9)

Note that if the local LP relaxation were not tight on the instance with objective \(\theta^x \) (as guaranteed by Theorem 3), this constraint would be invalid. Even with this simplification, the dependence of \(\theta^x \) on \(x \) makes it unclear whether the new constraint is convex. Because \(x \) is a vertex of \(M(G) \), it only takes values in \(\{0,1\} \), so we can rewrite \(w^x_{uv} \) from (4) as a linear function of \(x \):

\[
w^x_{uv} = w_{uv} + w_{uv} \left(1 - \sum_{i \neq j} x_{uv}(i,j) \right).
\]

This is because \(\sum_{i \neq j} x_{uv}(i,j) = 0 \) if \(x(u) = x(v) = 0 \) and \(1 \) otherwise. Then, because \(w^x_{uv} \) is a linear function of \(x \), \(\langle \theta^x, y \rangle \) is a linear function of \(x \) for each \(y \in L(G) \). Additionally, observe that because \(x \in M(G) \), (5) implies \(\langle \theta^x, x \rangle = \langle \theta, x \rangle \): the perturbed objective of \(x \) is equal to its original objective (note, however, \(y \neq x \) may have \(\langle \theta^x, y \rangle \neq \langle \theta, y \rangle \)). Using these simplifications, we can solve the following equivalent problem:

\[
\begin{align*}
\text{maximize} & \quad \langle f, x \rangle \\
\text{subject to} & \quad x \text{ a vertex of } M(G) \\
& \quad \langle \theta, x \rangle \leq \min_{y \in L(G)} \langle \theta^x, y \rangle.
\end{align*}
\]

Because we have shown how to re-write \(\langle \theta^x, y \rangle \) as a linear function of \(x \) and removed \(\theta^x \) from the left-hand-side, the second constraint is convex. However, two barriers remain to solving this problem efficiently: (i) the optimality constraint \(\langle \theta, x \rangle \leq \min_{y \in L(G)} \langle \theta^x, y \rangle \) is not in a convenient form, and (ii) the first constraint is not convex. We address (i) first.

For ease of notation, define \(A \) and \(b \) so that the local polytope \(L(G) = \{ x | Ax = b, x \geq 0 \} \). Because strong duality holds for the local LP relaxation in the instance with objective \(\theta^x \), we know that

\[
\min_{y : Ay = b, y \geq 0} \langle \theta^x, y \rangle = \max_{\nu : A^T \nu \leq \theta^x} \langle b, \nu \rangle.
\]

Indeed, if there exists any feasible \(y, \nu \) pair for which \(\langle \theta^x, y \rangle = \langle b, \nu \rangle \), \(y \) and \(\nu \) are optimal primal and dual solutions, respectively. We want to enforce the constraint that \(x \) is primal-optimal in the instance with objective \(\theta^x \), which is the case if and only if there exists a dual-feasible \(\nu \) with \(\langle \theta^x, x \rangle = \langle \theta, x \rangle = \langle b, \nu \rangle \). So we can rewrite the problem as

\[
\begin{align*}
\text{maximize} & \quad \langle f, x \rangle \\
\text{subject to} & \quad x \text{ a vertex of } M(G) \\
& \quad \langle \theta, x \rangle = \langle b, \nu \rangle \\
& \quad A^T \nu \leq \theta^x.
\end{align*}
\]

(10)

Because \(\theta^x \) is a linear function of \(x \), the latter two constraints are linear in \(x \) and \(\nu \). Together with linearizing \(\theta^x \) and noting \(\langle \theta^x, x \rangle = \langle \theta, x \rangle \), this primal-dual trick allowed us to encode the second constraint of (8) as two sets of linear constraints. This trick heavily relies on the guarantee from Theorem 3 that the local LP is tight on the instance with objective \(\theta^x \).

The only remaining issue is the first constraint, that \(x \) is a vertex of \(M(G) \). We saw in Section 2 how to encode the vertices of \(M(G) \) using linear and integrality constraints, so we can rewrite the above problem as the ILP:

\[
\begin{align*}
\text{maximize} & \quad \langle f, x \rangle \\
\text{subject to} & \quad x \in L(G) \\
& \quad x_u(i) \in \{0,1\} \\
& \quad x_{uv}(i,j) \in \{0,1\} \\
& \quad \langle \theta, x \rangle = \langle b, \nu \rangle \\
& \quad A^T \nu \leq \theta^x.
\end{align*}
\]

Unfortunately, this ILP is too large for off-the-shelf ILP solvers to handle in practice. Instead, we relax this exact formulation to obtain upper bounds.

In particular, we iteratively solve the following optimization problem:
Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch)

Figure 2. Left column: original image; Center-left: ground-truth segmentation map; Center-right: exact MAP solution x^* in the observed instance; Right: a local expansion minimum that nearly achieves our upper bound on the Hamming error. Rows: road, bikes, car. On these instances, our theoretical result guarantees that the Hamming error of any local expansion minimum is at most 17%, 14%, and 8%, respectively. The local expansion minima in the rightmost column have Hamming error of 11%, 8%, and 7% of the nodes, respectively. Our theoretical result implies that these local minima are almost the “worst possible” w.r.t. Hamming error. These “bad” expansion minima were found by initializing the α-expansion algorithm with (a rounded version of) the labeling x output by (10).

where $M(G) \subset K_t$ for all t, and $K_t \subset K_{t-1}$. We start with $K_0 = L(G)$, then use the “cycle constraints” from Sontag & Jaakkola (2008) to go from K_t to K_{t+1}. Violated cycle constraints can be found efficiently by computing shortest paths in an auxiliary graph that depends on the solution x to this program. Even if we could efficiently represent the constraint that $x \in M(G)$, this approach would still be a relaxation of the ILP formulation, because the optimal x may not be attained at a vertex of $M(G)$. However, this relaxation is nearly tight on several of our empirical examples. The exact ILP formulation (9) and its relaxation (10) give both claims of Theorem 4.

There is also a simpler approach to upper-bounding the optimal value of (7) for affine f based on Theorem 1, the original approximation guarantee for α-expansion. That result guarantees that any expansion minimum satisfies\[\langle \theta, x \rangle \leq \langle \theta, x^* \rangle + \sum_{uv} \theta_{uv}(x^*(u), x^*(v)). \] Therefore, we can upper bound (7) with the ILP:

$$\begin{align*}
\text{maximize} & \quad \langle f, x \rangle \\
\text{subject to} & \quad x \text{ a vertex of } M(G) \\
& \quad \langle \theta, x \rangle \leq \langle \theta, x^* \rangle + \sum_{uv} \theta_{uv}(x^*(u), x^*(v)).
\end{align*}$$

Like (9), this is an ILP. We refer to this as the **naïve** bound, since it comes directly from the approximation guarantee for α-expansion. In the next section, we compare (10) to (11) on real-world instances, and find that our bound (10) is much tighter. Intuitively, our bound carefully tries to enforce that the optimization variable x is an *optimal point* in some instance, whereas the naïve bound may allow for feasible points x that are not optimal in any instance.

6. Numerical results

In this section, we run (10) on several real-world MAP inference instances to evaluate the tightness of bounds derived from our structural condition (Theorem 2). Theorem 2 guarantees that all local expansion minima x for instance θ are contained in $S(\theta)$, the set of exact solutions to certain perturbations of the input problem θ. If we upper bound the Hamming distance to x^* and the objective gap $\langle \theta, x \rangle / \langle \theta, x^* \rangle$ over $S(\theta)$, we obtain upper bounds on the Hamming recovery and objective gap that apply to all solutions that can possibly be returned by α-expansion. These “problem-dependent worst-case” bounds hold for every possible initial labeling and every possible update order in Algorithm 1.

Broadly, we find that the real-world examples we study are not pathological: global optima to perturbed instances tend to be quite close to global optima of the original instance. Together with Theorem 2, this implies that these instances have no spurious local minima w.r.t. expansion moves.
We study two types of instances: first, a stereo vision problem, where the weights w and costs $\theta_u(i)$ are set “by hand” according to the model from Tappen & Freeman (2003). Given two images taken from slightly offset locations, the goal is to estimate the depth of every pixel in one of the images. This can be done by estimating, for each pixel, the disparity between the two images, since the depth is inversely proportional to the disparity. In the Tappen & Freeman (2003) model, the node costs are set using the sampling-invariant technique from Birchfield & Tomasi (1998), and the weights w_{uv} are set as:

$$w_{uv} = \begin{cases} P \times s & |I(u) - I(v)| < T \\ s & \text{otherwise}, \end{cases}$$

where $P, T,$ and s are the parameters of the model, and $I(u)$ is the intensity of pixel u in one of the input images to the stereo problem. These edge weights charge more for separating pixels with similar intensities, since nearby pixels with similar intensities are likely to be at the same depth. We also study object segmentation instances, where the weights w and costs θ_u are learned from data. In this problem, the goal is to assign a label to each pixel that represents the object to which that pixel belongs. For these instances, we use the models from Alahari et al. (2010). We include the full details of both models in Appendix C.

Table 1 shows the results of running several rounds of (10) on six of these instances. For each instance, we compare against the naive objective bound $(\theta, x^*) + \sum_{uv} \theta_{uv}(x^*(u), x^*(v))$ obtained from the original proof of α-expansion’s approximation guarantee, and against the naive Hamming bound obtained by solving (11). We used Gurobi (Gurobi Optimization, 2020) to run the iterations of (10) and to solve the ILP (11). We added cycle inequalities using the k-projection graph (Sontag & Jaakkola, 2008), adding several violated inequalities per iteration. We ran between 10 and 20 iterations of (10) for each experiment. Tightening using the cycle inequalities was beneficial in practice. For example, it improved our Hamming error bound on the tsukuba instance from 0.38 to 0.29.

Compared to (11), our procedure results in slightly tighter objective bounds and much tighter Hamming error bounds on these instances. For example, on the car instance, our bound guarantees that any local expansion minimum agrees with the MAP solution on at least 91.9% of the vertices, and we have found a local minimum that agrees with the MAP solution on just 92.6% of the vertices.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Obj. bd. (ours)</th>
<th>Obj. bd. (naive)</th>
<th>Ham. err. bd. (ours)</th>
<th>Ham. bd. (naive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tsukuba</td>
<td>1.213</td>
<td>1.228</td>
<td>0.290</td>
<td>0.821</td>
</tr>
<tr>
<td>venus</td>
<td>1.199</td>
<td>1.268</td>
<td>0.375</td>
<td>0.703</td>
</tr>
<tr>
<td>plastic</td>
<td>1.073</td>
<td>1.095</td>
<td>0.373</td>
<td>0.779</td>
</tr>
<tr>
<td>road</td>
<td>1.031</td>
<td>1.036</td>
<td>0.171 (0.114)</td>
<td>0.256</td>
</tr>
<tr>
<td>bikes</td>
<td>1.027</td>
<td>1.030</td>
<td>0.146 (0.082)</td>
<td>0.229</td>
</tr>
<tr>
<td>car</td>
<td>1.019</td>
<td>1.047</td>
<td>0.081 (0.074)</td>
<td>0.225</td>
</tr>
</tbody>
</table>

7. Conclusion

We have shown that graph cuts algorithms, such as α-expansion and FastPD, take advantage of special structure in real-world problem instances with Potts potentials. Our empirical results show that the solutions (the global energy minima) to small perturbations of the input are often very close to the solutions of the original instance. Our theoretical result states that all local minima w.r.t. expansion moves are global minima in such perturbations. Taken together, these two results imply that there are no spurious local minima w.r.t. expansion moves in practice. This gives a new theoretical explanation for the good performance of graph cuts algorithms in the wild. Moreover, our structural result could have practical consequences for learning Markov random fields. To ensure α-expansion performs well on an instance, one could add a regularization term during learning that encourages the solutions to small perturbations $\mathcal{I}(\theta)$ of the instance to be close to the solution of the original.
Acknowledgments

The authors thank Chandler Squires for his helpful feedback on drafts of this paper and an anonymous reviewer for pointing us to Shekhovtsov & Hlavac (2011). This work was supported by NSF AitF awards CCF-1637585 and CCF-1723344.

References

Shekhovtsov, A. Exact and partial energy minimization in computer vision. 2013.

