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Appendix

A. Preliminaries
We state some useful definitions and lemmas in this section.

Lemma A.1. Let X1 and X2 be a pair of distribution vectors. Let H be the transition matrix of an ergodic Markov chain
with a stationary distribution ν, and ergodicity coefficient (defined in Assumption 2.1) upper-bounded by γ < 1. Then

‖(Hm)>(X1 −X2)‖1 ≤ γm‖X1 −X2‖1 .

Proof. Let {v1, ..., vn} be the normalized left eigenvectors of H corresponding to ordered eigenvalues {λ1, ..., λn}. Then
v1 = ν, λ1 = 1, and for all i ≥ 2, we have that λi < 1 (since the chain is ergodic) and v>i 1 = 0. Write X1 in terms of the
eigenvector basis as:

X1 = α1ν +

n∑
i=2

αivi and X2 = β1ν +

n∑
i=2

βivi .

Since X>1 1 = 1 and X>2 1 = 1, it is easy to see that α1 = β1 = 1. Thus we have

‖H>(X1 −X2)‖1 = ‖H>
n∑
i=2

(αi − βi)vi‖1 ≤ γ‖
n∑
i=2

(αi − βi)vi‖1 = γ‖X1 −X2‖1

where the inequality follows from the definition of the ergodicity coefficient and the fact that 1>vi = 0 for all i ≥ 2. Since

1>H>
n∑
i=2

(αi − βi)vi = 1>
n∑
i=2

λi(αi − βi)vi = 0,

the inequality also holds for powers of H .

Lemma A.2 (Doob martingale). Let Assumption 2.1 hold, and let {(xt, at)}Tt=1 be the state-action sequence obtained when
following policies π1, ..., πk for τ steps each from an initial distribution ν0. For t ∈ [T ], let Xt be a binary indicator vector
with a non-zero element at the linear index of the state-action pair (xt, at). Define for i ∈ [T ],

Bi = E

[
T∑
t=1

Xt|X1, ..., Xi

]
, and B0 = E

[
T∑
t=1

Xt

]
.

Then, {Bi}Ti=0 is a vector-valued martingale: E[Bi − Bi−1|B0, . . . , Bi−1] = 0 for i = 1, . . . , T , and ‖Bi − Bi−1‖1 ≤
2(1− γ)−1 holds for i ∈ [T ].

The constructed martingale is known as the Doob martingale underlying the sum
∑T
t=1Xt.

Proof. That {Bi}Ti=0 is a martingale follows from the definition. We now bound its difference sequence. Let Ht be
the state-action transition matrix at time t, and let Hi:t =

∏t−1
j=i Hj , and define Hi:i = I . Then, for t = 0, . . . , T − 1,

E[Xt+1|Xt] = H>t Xt and by the Markov property, for any i ∈ [T ],

Bi =

i∑
t=1

Xt +

T∑
t=i+1

E[Xt|Xi] =

i∑
t=1

Xt +

T∑
t=i+1

H>i:tXi, and B0 =

T∑
t=1

H>0:tX0.

For any i ∈ [T ],

Bi −Bi−1 =

i∑
t=1

Xt −
i−1∑
t=1

Xt +

T∑
t=i+1

H>i:tXi −
T∑
t=i

H>i−1:tXi−1

=

T∑
t=i

H>i:t(Xi −H>i−1Xi−1). (A.1)
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Since Xi and H>i−1Xi−1 are distribution vectors, under Assumption 2.1 and using Lemma A.1,

‖Bi −Bi−1‖1 ≤
T∑
t=i

‖H>i:t(Xi −H>i−1Xi−1)‖1 ≤ 2

T−i∑
j=0

γj ≤ 2(1− γ)−1 .

Let (Fk)k be a filtration and define Ek[·] := E[·|Fk]. We will make use of the following concentration results for the sum of
random matrices and vectors.

Theorem A.3 (Matrix Azuma, Tropp (2012) Thm 7.1). Consider a finite (F)k-adapted sequence {Xk} of Hermitian
matrices of dimension m, and a fixed sequence {Ak} of Hermitian matrices that satisfy Ek−1Xk = 0 and X2

k � A2
k almost

surely. Let v = ‖
∑
k A

2
k‖. Then with probability at least 1− δ, ‖

∑
kXk‖2 ≤ 2

√
2v ln(m/δ).

A version of Theorem A.3 for non-Hermitian matrices of dimension m1 ×m2 can be obtained by applying the theorem to a
Hermitian dilation of X , D(X) =

[
0 X
X∗ 0

]
, which satisfies λmax(D(X)) = ‖X‖ and D(X)2 =

[
XX∗ 0

0 X∗X

]
. In this case,

we have that v = max (‖
∑
kXkX

∗
k‖, ‖

∑
kX
∗
kXk‖).

Lemma A.4 (Hoeffding-type inequality for norm-subGaussian random vectors, Jin et al. (2019)). Consider random
vectors X1, . . . , Xn ∈ Rd and corresponding filtrations Fi = σ(X1, . . . , Xi) i ∈ [n], such that Xi|Fi−1 is zero-mean
norm-subGaussian with σi ∈ Fi−1. That is:

E[Xi|Fi] = 0, P (‖Xi‖ ≥ t|Fi−1) ≤ 2 exp(−t2/2σ2
i ) ∀t ∈ R,∀i ∈ [n].

If the condition is satisfied for fixed {σi}, there exists a constant c such that for any δ > 0, with probability at least 1− δ,

‖
n∑
i=1

Xi‖ ≤ c

√√√√ n∑
i=1

σ2
i log(2d/δ) .

B. Bounding the Difference Between Empirical and Average Rewards
In this section, we bound the second term in Equation 5.1, corresponding to the difference between empirical and average
rewards.

Lemma B.1. Let Assumption 2.1 hold, and assume that τ ≥ log T
2 log(1/γ) and that r(x, a) ∈ [0, 1] for all x, a. Then, by

choosing η =

√
8 log |A|

Qmax

√
K

, we have with probability at least 1− δ,

K∑
k=1

kτ∑
t=(k−1)τ+1

(rt − Jπk) ≤ 2(1− γ)−1
√

2T log(2/δ) + 2
√
T + (1− γ)−2

√
8K log |A| .

Proof. Let r denote the vector of rewards, and recall that Jπ = ν>π r. Let Xt be the indicator vector for the state-action pair
at time t, as in Lemma A.2, and let νt = E[Xt]. We have the following:

VT :=

K∑
k=1

kτ∑
t=(k−1)τ+1

(rt − Jπk) =

K∑
k=1

kτ∑
t=(k−1)τ+1

r>(Xt − νt + νt − νπk)

We slightly abuse the notation above by letting νt denote the state-action distribution at time t, and νπ the stationary
distribution of policy π. Let {Bi}Ti=0 be the Doob martingale in Lemma A.2. Then B0 =

∑T
t=1 νt and BT =

∑T
t=1Xt,

and the first term can be expressed as

VT1 :=

T∑
t=1

r>(Xt − νt) = r>(BT −B0).
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By Lemma A.2, |〈Bi −Bi−1, r〉| ≤ ‖Bi −Bi−1‖1‖r‖∞ ≤ 2(1− γ)−1. Hence by Azuma’s inequality, with probability at
least 1− δ,

VT1 ≤ 2(1− γ)−1
√

2T log(2/δ). (B.1)

For the second term we have

VT2 :=

K∑
k=1

kτ∑
t=(k−1)τ+1

r>(νt − νπk)

=

K∑
k=1

r>
( τ∑
i=1

(Hi
πk

)>ν(k−1)τ − νπk
)

≤
K∑
k=1

‖r‖∞
τ∑
i=1

∥∥(Hi
πk

)>(ν(k−1)τ − νπk−1
+ νπk−1

)− νπk
∥∥

1

≤
K∑
k=1

τ∑
i=1

‖ν(k−1)τ − νπk−1
‖1 + ‖(Hi

πk
)>νπk−1

− νπk‖1

≤
K∑
k=1

τ∑
i=1

‖(Hτ
π(k−1)

)>ν(k−2)τ − νπk−1
‖1 + γi‖νπk−1

− νπk‖1

≤ 2Tγτ +
1

1− γ

K∑
k=1

‖νπk − νπk−1
‖1 .

For τ ≥ log T
2 log(1/γ) , the first term is upper-bounded by 2

√
T .

Using results on perturbations of Markov chains (Seneta, 1988; Cho & Meyer, 2001), we have that

‖νπk − νπk−1
‖1 ≤

1

1− γ
‖Hπk −Hπk−1

‖∞ ≤
1

1− γ
max
x
‖πk(·|x)− πk−1(·|x)‖1

Note that the policies πk(·|x) are generated by running mirror descent on reward functions Q̂πk(x, ·). A well-known property
of mirror descent updates with entropy regularization (or equivalently, the exponentially-weighted-average algorithm) is that
the difference between consecutive policies is bounded as

‖πk+1(·|x)− πk(·|x)‖1 ≤ η‖Q̂πk(x, ·)‖∞ .

See e.g. Neu et al. (2014) Section V.A for a proof, which involves applying Pinsker’s inequality and Hoeffding’s lemma
(Cesa-Bianchi & Lugosi (2006) Section A.2 and Lemma A.6). Since we assume that ‖Q̂πk‖∞ ≤ Qmax, we can obtain

VT2 ≤ 2
√
T + (1− γ)−2KηQmax.

By choosing η =

√
8 log |A|

Qmax

√
K

, we can bound the second term as

VT2 ≤ 2
√
T + (1− γ)−2

√
8K log |A|. (B.2)

Putting Eq. (B.1) and (B.2) together, we obtain that with probability at least 1− δ,

VT ≤ 2(1− γ)−1
√

2T log(2/δ) + 2
√
T + (1− γ)−2

√
8K log |A| .
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C. Proof of Lemma 6.3
Proof. Recall that we split each phase into 2m blocks of size b and letHi and Ti denote the starting indices of odd and even
blocks, respectively. We let Rt denote the empirical b-step returns from the state action pair (xt, at) in phase i:

Rt =

t+b∑
i=t

(ri − Ĵπi), Ĵπi =
1

|Ti|
∑
t∈Ti

rt.

We start by bounding the error in Rt. Let X be a binary indicator vector for a state-action pair (x, a). Let Hπ be the
state-action transition kernel for policy π, and let νπ be the corresponding stationary state-action distribution. We can write
the action-value function at (x, a) as

Qπ(x, a) = r(x, a)− Jπ +X>HπQπ

= (X − νπ)>r +X>Hπ(r − Jπ1 +HπQπ)

=

∞∑
i=0

(X − νπ)>Hi
πr .

Let Qbπ(x, a) =
∑b
i=0(X − νπ)>Hi

πr be a version of Qπ truncated to b steps. Under uniform mixing, the difference to the
true Qπ is bounded as

|Qπ(x, a)−Qbπ(x, a)| ≤
∞∑
i=1

∣∣(X − νπ)>Hi+b
π r

∣∣ ≤ 2γb+1

1− γ
. (C.1)

Let bt = Qbπi(xt, at) − Qπi(xt, at) denote the truncation bias at time t, and let zt =
∑t+b
i=t ri −X>t H

(i−t)
πi r denote the

reward noise. We will write

Rt = Qπi(xt, at) + b(Jπi − Ĵπi) + zt + bt.

Note that m = |Hi| and let

M̂i =
1

m

∑
t∈Hi

φtφ
>
t +

α

m
I .

We estimate the value function of each policy πi using data from phase i as

ŵπi = M̂−1
i m−1

∑
t∈Hi

φtRt

= M̂−1
i m−1

∑
t∈Hi

φt(φ
>
t wπi + bt + zt + b(Jπi − Ĵπi)) + M̂−1

i

α

m
(wπi − wπi)

= wπi + M̂−1
i m−1

∑
t∈Hi

φt(zt + bt + b(Jπi − Ĵπi))− M̂−1
i m−1αwπi

Our estimate ŵk of wk = 1
k

∑k
i=1 wπi can thus be written as follows:

ŵk − wk =
1

km

k∑
i=1

∑
t∈Hi

M̂−1
i φt(zt + bt + b(Jπi − Ĵπi))−

α

km

k∑
i=1

M̂−1
i wπi .

We proceed to upper-bound the norm of the RHS.

Set α =
√
m/k. Let Cw be an upper-bound on the norm of the true value-function weights ‖wπi‖2 for i = 1, ...,K. In

Appendix C.3, we show that with probability at least 1 − δ, for m ≥ 72C4
Φσ
−2(1 − γ)−2 log(d/δ), ‖M̂−1

i ‖2 ≤ 2σ−2.
Thus with probability at least 1− δ, the last error term is upper-bounded as

α

km

∥∥∥∥∥
k∑
k=1

M̂−1
i wπi

∥∥∥∥∥
2

≤ 2σ−2Cw(km)−1/2. (C.2)
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Similarly, for

b ≥ log((1− γ)−1
√
km)

log(1/γ)
, (C.3)

the norm of the truncation bias term is upper-bounded as

1

km

k∑
i=1

∑
t∈Hi

‖M̂−1
i φtbt‖2 ≤

2γb

km(1− γ)

k∑
i=1

∑
t∈Hi

‖M̂−1
i φt‖2 ≤ 2σ−2CΦ(km)−1/2. (C.4)

To bound the error terms corresponding to reward noise zt and average-error noise Jπi − Ĵπi , we rely on the independent
blocks techniques of Yu (1994). We show in Sections C.1 and C.2 that with probability 1− 2δ, for constants c1 and c2, each
of these terms can be bounded as:

1

km

∥∥∥∥∥
k∑
i=1

∑
t∈Hi

M̂−1
i φtzt

∥∥∥∥∥
2

≤ 2c1CΦσ
−2

√
b log(2d/δ)

km

b

km

∥∥∥∥∥
k∑
i=1

(Jπi − Ĵπi)
∑
t∈Hi

M̂−1
i φt

∥∥∥∥∥
2

≤ 2c2CΦσ
−2b

√
log(2d/δ)

km
.

Thus, putting terms together, we have for an absolute constant c, with probability at least 1− δ,

‖ŵk − wk‖2 ≤ cσ−2(Cw + CΦ)b

√
log(2d/δ)

km
.

Note that this result holds for every k ∈ [K] and thus also holds for k = K.

C.1. Bounding
∑k
i=1 M̂

−1
i

∑
t∈Hi φtzt

Let ‖ · ‖tv denote the total variation norm.

Definition C.1 (β-mixing). Let {Zt}t=1,2,... be a stochastic process. Denote by Z1:t the collection (Z1, . . . , Zt), where we
allow t =∞. Let σ(Zi:j) denote the sigma-algebra generated by Zi:j (i ≤ j). The kth β-mixing coefficient of {Zt}, βk, is
defined by

βk = sup
t≥1

E sup
B∈σ(Zt+k:∞)

|P (B|Z1:t)− P (B)|

= sup
t≥1

E‖PZt+k:∞|Z1:t
(·|Z1:t)− PZt+k:∞(·)‖tv .

{Zt} is said to be β-mixing if βk → 0 as k →∞. In particular, we say that a β-mixing process mixes at an exponential rate
with parameters β, α, γ > 0 if βk ≤ β exp(−αkγ) holds for all k ≥ 0.

Let Xt be the indicator vector for the state-action pair (xt, at) as in Lemma A.2. Note that the distribution of (xt+1, at+1)

given (xt, at) can be written as E[Xt+1|Xt]. Let Ht be the state-action transition matrix at time t, let Hi:t =
∏t−1
j=i Hj ,

and define Hi:i = I . Then we have that E[Xt+k|X1:t] = H>t:t+kXt and E[Xt+k] = H>1:t+kν0, where ν0 is the initial state
distribution. Thus, under the uniform mixing Assumption 2.1, the kth β-mixing coefficient is bounded as:

βk ≤ sup
t≥1

E
∞∑
j=k

‖H>t:t+jXt −H>1:t+jν0‖1 ≤ sup
t≥1

E
∞∑
j=k

γj‖Xt −H>1:tν0‖1 ≤
2γk

1− γ
.

We bound the noise terms using the independent blocks technique of Yu (1994). Recall that we partition each phase into 2m
blocks of size b. Thus, after k phases we have a total of 2km blocks. Let P denote the joint distribution of state-action pairs
in odd blocks. Let Ii denote the set of indices in the ith block, and let xIi , aIi denote the corresponding states and actions.
We factorize the joint distribution according to blocks:

P(xI1 , aI1 , xI3 , aI3 , . . . , xI2km−1
, aI2km−1

) = P1(xI1 , aI1)× P3(xI3 , aI3 |xI1 , aI1)× · · ·
× P2km−1(xI2km−1

, aI2km−1
|xI2km−3

, aI2km−3
).
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Let P̃i be the marginal distribution over the variables in block i, and let P̃ be the product of marginals of odd blocks.

Corollary 2.7 of Yu (1994) implies that for any Borel-measurable set E,

|P(E)− P̃(E)| ≤ (km− 1)βb (C.5)

where βb is the bth β-mixing coefficient of the process. The result follows since the size of the “gap” between successive
blocks is b; see Appendix E for more details.

Recall that our estimates ŵπi are based only on data in odd blocks in each phase. Let Ẽ denote the expectation w.r.t.
the product-of-marginals distribution P̃. Then Ẽ[M̂−1

i

∑
t∈Hi φtzt] = 0 because for t ∈ Hi and under P̃, zt is zero-

mean given φt and is independent of other feature vectors outside of the block. Furthermore, by Hoeffding’s inequality
P̃(|zt|/b ≥ a) ≤ 2 exp(−2ba2). Since ‖φt‖2 ≤ CΦ and ‖M̂−1

i ‖2 ≤ 2σ−2 for large enough m, we have that

P̃(‖M̂−1
i φtzt‖2 ≥ 2bσ−2CΦa) ≤ 2 exp(−2ba2).

Since M̂−1
i φtzt are norm-subGaussian vectors, using Lemma A.4, there exists a constant c1 such that for any δ ≥ 0

P̃

∥∥∥∥∥
k∑
i=1

M̂−1
i

∑
t∈Hi

φtzt

∥∥∥∥∥
2

≥ 2c1CΦσ
−2
√
bkm log(2d/δ)

 ≤ δ .
Thus, using (C.5),

P

∥∥∥∥∥
k∑
i=1

M̂−1
i

∑
t∈Hi

φtzt

∥∥∥∥∥
2

≥ 2c1CΦσ
−2
√
bkm log(2d/δ)

 ≤ δ + (km− 1)βb .

Under Assumption 2.1, we have that βb ≤ 2γb(1− γ)−1. Setting δ = 2kmγb(1− γ)−1 and solving for b we get

b =
log(2kmδ−1(1− γ)−1)

log(1/γ)
. (C.6)

Notice that when b is chosen as in Eq. (C.6), the condition (C.3) is also satisfied. Plugging this into the previous display
gives that with probability at least 1− 2δ,∥∥∥∥∥

k∑
i=1

M̂−1
i

∑
t∈Hi

φtzt

∥∥∥∥∥
2

≤ 2c1CΦσ
−2
√
bkm log(2d/δ).

C.2. Bounding
∥∥∥∑k

i=1 M̂
−1
i

∑
t∈Hi φt(Jπi − Ĵπi)

∥∥∥
2

Recall that the average-reward estimates Ĵπi are computed using time indices corresponding to the starts of even blocks,
Ti. Thus this error term is only a function of the indices corresponding to block starts. Now let P denote the distribution
over state-action pairs (xt, at) for indices t corresponding to block starts, i.e. t ∈ {1, b+ 1, 2b+ 1, ..., (2km− 1)b+ 1}.
We again factorize the distribution over blocks as P = P1 ⊗ P2 ⊗ · · · ⊗ P2km. Let P̃ = P̃1 ⊗ P̃2 ⊗ · · · ⊗ P̃2km be a
product-of-marginals distribution defined as follows. For odd j, let P̃j be the marginal of P over (xjb+1, ajb+1). For even j
in phase i, let P̃j = νπi correspond to the stationary distribution of the corresponding policy πi. Using arguments similar to
independent blocks, we show in Appendix E that

‖P− P̃‖1 ≤ 2(2km− 1)γb−1.

Let Ẽ denote expectation w.r.t. the product-of-marginals distribution P̃. Then Ẽ[M̂−1
i

∑
t∈Hi φt(Jπi − Ĵπi)] = 0, since

under P̃, Ĵπi is the sum of rewards for state-action pairs distributed according to νπi , and these state-action pairs are
independent of other data. Using a similar argument as in the previous section, for b = 1+ log(4km/δ)

log(1/γ) , there exists a constant
c2 such that with probability at least 1− 2δ,∥∥∥∥∥

k∑
i=1

M̂−1
i

∑
t∈Hi

φt(Jπi − Ĵπi)

∥∥∥∥∥
2

≤ 2c2CΦσ
−2
√
km log(2d/δ) .
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C.3. Bounding ‖M̂−1
i ‖2

In this subsection, we show that with probability at least 1− δ, for m ≥ 72C4
Φσ
−2(1− γ)−2 log(d/δ)), ‖M−1

i ‖2 ≤ 2σ−2.

Let Φ be a |X ||A|×d matrix of all features. Let Di = diag(νπi), and let D̂i = diag(
∑
t∈Hi Xt), where Xt is a state-action

indicator as in Lemma A.2. Let Mi = Φ>DiΦ + αm−1I . We can write M̂−1
i as

M̂−1
i = (Φ>D̂iΦ + ατ−1I + Φ>(Di −Di)Φ)−1

= (Mi + Φ>(Di −Di)Φ)−1

= (I +M−1
i Φ>(Di −Di)Φ)−1M−1

i

By Assumption 6.2 and 6.1, ‖M−1
i ‖2 ≤ σ−2. In Appendix C.4, we show that w.p. at least 1− δ,

‖Φ>(D̂i −Di)Φ‖2 ≤ 6m−1/2C2
Φ(1− γ)−1

√
2 log(d/δ)

Thus

‖M̂−1
i ‖2 ≤ σ

−2(1− σ−26m−1/2C2
Φ(1− γ)−1

√
2 log(d/δ))−1

For m ≥ 72C4
Φσ
−2(1− γ)−2 log(d/δ)), the above norm is upper-bounded by ‖M̂−1

i ‖2 ≤ 2σ−2.

C.4. Bounding ‖Φ>(D̂i −Di)Φ
>‖2

For any matrix A,

‖Φ>AΦ‖2 =

∥∥∥∥∑
ij

Aijφiφ
>
j

∥∥∥∥
2

≤
∑
i,j

|Aij |‖φiφ>j ‖2 ≤ C2
Φ

∑
i,j

|Aij | = C2
Φ‖A‖1,1 . (C.7)

where ‖A‖1,1 denotes the sum of absolute entries of A. Using the same notation for Xt as in Lemma A.2,

‖Φ>(D̂i −Di)Φ‖2 =
1

m

∑
t∈Hi

Φ>diag(Xt − νt + νt − νπi)Φ

≤ 1

m

∥∥∥∥ ∑
t∈Hi

Φ>diag(Xt − νt)Φ
∥∥∥∥

2

+
C2

Ψ

m

∑
t∈Hi

‖νt − νπi‖1 .

Under the fast-mixing assumption 2.1, the second term is bounded by 2C2
Ψm
−1(1− γ)−1.

For the first term, we can define a martingale (Bi)
m
i=0 similar to the Doob martingale in Lemma A.2, but defined only on the

m indices Hi. Note that
∑
t∈Hi Φ>diag(Xt − νt)Φ = Φ>diag(Bm − B0)Φ. Thus we can use matrix-Azuma to bound

the difference sequence. Given that

‖(Φ>(Bi −Bi−1)Φ)2‖2 ≤ 4C4
Φ(1− γ)−2,

combining the two terms, we have that with probability at least 1− δ,

‖Φ>(D̂i −Di)Φ‖2 ≤ 4m−1/2C2
Φ(1− γ)−1

√
2 log(d/δ) + 2m−1C2

Φ(1− γ)−1

≤ 6m−1/2C2
Φ(1− γ)−1

√
2 log(d/δ) .

D. Bounding ‖VK − V̂K‖µ∗
We write the value function error as follows:

Ex∼µ∗[V̂K(x)− VK(x)] =
∑
x

µ∗(x)
∑
a

φ(x, a)>
1

K

K∑
i=1

πi(a|x)(ŵπi − wπi)

≤ 1

K

∑
x

µ∗(x)
∑
a

‖φ(x, a)‖2

∥∥∥∥∥
K∑
i=1

πi(a|x)(ŵπi − wπi)

∥∥∥∥∥
2
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Note that for any set of scalars {pi}Ki=1 with pi ∈ [0, 1], the term
∥∥∥∑K

i=1 pi(ŵπi − wπi)
∥∥∥

2
has the same upper bound as

‖
∑K
i=1(ŵπi − wπi)‖2. The reason is as follows. One part of the error includes bias terms (C.2) and (C.4), whose upper

bounds are only smaller when reweighted by scalars in [0, 1]. Thus we can simply upper-bound the bias by setting all
{pi}Ki=1 to 1. Another part of the error, analyzed in Appendices C.1 and C.2 involves sums of norm-subGaussian vectors. In
this case, applying the weights only results in these vectors potentially having smaller norm bounds. We keep the same
bounds for simplicity, again corresponding to all {pi}Ki=1 equal to 1. Thus, reusing the results of the previous section, we
have

Ex∼µ∗[V̂K(x)− VK(x)] ≤ CΦ|A|cσ−2(Cw + CΦ)b

√
log(2d/δ)

Km
.

E. Independent Blocks
Blocks. Recall that we partition each phase into 2m blocks of size b. Thus, after k phases we have a total of 2km blocks.
Let P denote the joint distribution of state-action pairs in odd blocks. Let Ii denote the set of indices in the ith block, and let
xIi , aIi denote the corresponding states and actions. We factorize the joint distribution according to blocks:

P(xI1 , aI1 , xI3 , aI3 , . . . , xI2km−1
, aI2km−1

) = P1(xI1 , aI1)× P3(xI3 , aI3 |xI1 , aI1)× · · ·
× P2km−1(xI2km−1

, aI2km−1
|xI2km−3

, aI2km−3
).

Let P̃i be the marginal distribution over the variables in block i, and let P̃ be the product of marginals. Then the difference
between the distributions P̃ and P can be written as

P− P̃ = P1 ⊗ P3 ⊗ · · · ⊗ P2km−1 − P1 ⊗ P̃3 · · · ⊗ P̃2km−1

= P1 ⊗ (P3 − P̃3)⊗ P5 ⊗ · · · ⊗ P2km−1

+ P1 ⊗ P̃3 ⊗ (P5 − P̃5)⊗ P7 ⊗ . . .⊗ P2km−1

+ · · ·

+ P1 ⊗ P̃3 ⊗ P̃5 ⊗ · · · ⊗ P̃2km−3 ⊗ (P2km−1 − P̃2km−1).

Under β-mixing, since the gap between the blocks is of size b, we have that

‖Pi(xIi , aIi |xIi−2
, aIi−2

)− P̃i(xIi , aIi)‖1 ≤ βb =
2γb

1− γ
.

Thus the difference between the joint distribution and the product of marginals is bounded as

‖P− P̃‖1 ≤ (km− 1)βb.

Block starts. Now let P denote the distribution over state-action pairs (xt, at) for indices t corresponding to block starts,
i.e. t ∈ {1, b+ 1, 2b+ 1, ..., (2km− 1)b+ 1}. We again factorize the distribution over blocks:

P(x1, a1, xb+1, ab+1, . . . , x(2km−1)b+1, a(2km−1)b+1) = P1(x1, a1)

2km∏
j=2

Pi(xjb+1, ajb+1|x(j−1)b+1, a(j−1)b+1).

Define a product-of-marginals distribution P̃ = P̃1 ⊗ P̃2 ⊗ · · · ⊗ P̃2km over the block-start variables as follows. For odd j,
let P̃j be the marginal of P over (xjb+1, ajb+1). For even j in phase i, let P̃j = νπi correspond to the stationary distribution
of the policy πi. Using the same notation as in Appendix A, let Xt be the indicator vector for (xt, at) and let Hi:j be the
product of state-action transition matrices at times i+ 1, ..., j. For odd blocks j, we have

‖Pj(·|x(j−1)b+1, a(j−1)b+1)− P̃j(·)‖1 = ‖H>(j−1)b+1:jb(X(j−1)b+1 − P̃j−1)‖1 ≤ 2γb−1 .

Slightly abusing notation, let Hπi be the state-action transition matrix under policy πi. For even blocks j in phase i, since
they always follow an odd block in the same phase,

‖Pj(·|x(j−1)b+1, a(j−1)b+1)− P̃j(·)‖1 = ‖(Hb−1
πi )>(X(j−b)+1 − νπi)‖1 ≤ 2γb−1 .

Thus, using a similar distribution decomposition as before, we have that ‖P− P̃‖1 ≤ 2(2km− 1)γb−1.


