
Supplementary Material for
“LAMDA: Label Matching Deep Domain Adaptation”

In this supplementary material, we provide complete detail for all proofs presented in our main paper together with the related
background so that it can be as self-contained as possible. In the following part, we present the experiment on a synthetic dataset to
verify our theory, followed by the experimental settings and datasets for our LAMDA.

1 Related Background
In this section, we present the related background for our paper. We depart with the introduction of pushforward measure followed
by the definition of optimal transport and the introduction of a standard machine learning setting.

1.1 Pushforward Measure
Given two probability spaces (X ,F , µ) and (Y,G) where X ,Y are two sample spaces, F ,G are two σ-algebras over X ,Y respec-
tively, and µ is a probability measure, a map T : X → Y is said to be (Y,G)- (X ,F) measurable if for every A ∈ G, the inverse
T−1 (A) ∈ F . The (Y,G)- (X ,F) measurable map T when applied to (X ,F , µ) induces a distribution ν over (Y,G) which is
defined as:

ν (A) = µ
(
T−1 (A)

)
, ∀A ∈ G

We also say that the map T transport the probability measure µ to ν and denote as ν = T#µ. Furthermore, if µ and ν are two
given atomless probability measures over (X ,F) and (Y,G), there exists a bijection T : X → Y that transports µ to ν. This is
known as measurable isomorphism and formally stated in [32] (Chapter 1, Page 19).

Theorem 1. Given two probability spaces (X ,F , µ) and (Y,G, ν) with two atomless probability µ, ν over two Polish spaces X , Y
(i.e., separably complete metric spaces), there exist a bijection T : X → Y that transports µ to ν, i.e., T#µ = ν.

1.2 Optimal Transport
Given two probability measures (X , µ) and (Y, ν) and a cost function c (x, x′), under the conditions stated in Theorems 1.32 and
1.33 [26], two following definitions of Wasserstein (WS) distance are equivalent:

Wc,p (µ, ν) = inf
T#µ=ν

Ex∼µ [c (x, T (x))
p
]
1/p

Wc,p (µ, ν) = inf
π∈Γ(µ,ν)

E(x,x′)∼π
[
c (x,x′)

p]1/p
where p > 0 and Γ (µ, ν) specifies the set of joint distributions over X × Y which admits µ and ν as marginals. The first definition
is known as Monge problem (MP), while the second one is known as Kantorovich problem (KP).

We now restate the sufficient conditions for which (MP) and (KP) are equivalent (cf. Theorems 1.32 and 1.33 [26]).
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Theorem 2. If X and Y are compact, Polish metric spaces, µ and ν are atomless, and c is a lower semi-continuous function, (KP)
is equivalent to (MP) in the sense that two infima are equal.

In what follows, we assume that the relevant conditions are satisfied and use (KP) and (MP) interchangeably depending
on the contexts. More specifically, we use (MP) in Theorem (9), while using (KP) in the rest.

1.3 Machine Learning Setting and General Loss
According to [31], a standard machine learning system consists of three components: the generator, the supervisor, and the hypothesis
class.

Generator The generator is the mechanism to generate data examples x ∈ Rd and is mathematically formulated by an existed but
unknown distribution p (x).

Supervisor The supervisor is the mechanism to assign labels y (e.g., y ∈ {1, 2, . . . , C} for the classification problem and y ∈ R
for the regression problem) to a data example x and is mathematically formulated as a conditional distribution p (y | x).

Hypothesis class This specifies the hypothesis set H = {hθ | θ ∈ Θ} parameterized by θ which is used to predict label for the
data examples x.

Given a loss function l (x, y;θ) = ` (y, hθ (x)) where ` : ∆C → R (∆C is the C-simplex) and ` (y, y′) specifies the loss
suffered if predicting the data example x with the label y′ while its true label is y, the general loss of the hypothesis hθ is defined as
the expected loss caused by hθ :

R (θ) = Ep(x,y) [` (y, hθ (x))] =

∫
` (y, hθ (x)) p (x, y) dxdy

The optimal parameter θ∗ ∈ Θ is sought by minimizing the general loss as:

θ∗ = argmin
θ∈Θ

R (θ)

2 Theoretical Results

2.1 Gap between target and source domains
In this section, we investigate the variance ∆R (hs, ht) between the expected loss in target domain Rt (ht) and the expected loss in
source domain Rs (hs) where ht = hs ◦ T . We embark on with the following simple yet key proposition indicating the connection
between Rt (ht) and R# (hs).

Proposition 3. As long as ht = hs ◦ T , we have Rt (ht) = R# (hs).

Proof. The proof of the proposition is directly from the definitions of ht, hs, and expected losses. In particular, we find that

R# (hs) =

∫
` (y, hs (x)) p# (y | x) p# (x) dxdy = EP#

[∫
` (y, hs (x)) p# (y | x) dy

]
.
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Recall that, T transports the target distribution Pt to the source distribution P#, we achieve that

R# (hs) = EPt

[∫
` (y, hs (T (x))) p# (y | T (x)) dy

]
= EPt

[∫
`
(
y, ht (x)

)
pt (y | x) dy

]
= Rt

(
ht
)
,

where the second equality is due to the connection ht = hs ◦ T . As a consequence, we reach the conclusion of the proposition.

Theorem 4. (Theorem 1 in the main paper) Given Assumption (A.1), then for any hypothesis hs ∈ Hs, the following inequality
holds:

∆R
(
hs, ht

)
≤M

(
Wc0/1

(
Ps,P#

)
+ EPt [‖∆p (· | x)‖1]

)
,

where ∆p (· | x) :=
∥∥∥[pt (y = i | x)− ps (y = i | T (x))

]C
i=1

∥∥∥
1
, and Wc0/1

(·, ·) is the Wasserstein distance with respect to the cost
function c0/1 (x,x′) = 1x6=x′ , returning 1 if x 6= x′ and 0 otherwise.

Proof. Invoking the result from Proposition 3 and the basic triangle inequality, we obtain that

∆R
(
hs, ht

)
=
∣∣Rt (ht)−Rs (hs)

∣∣ =
∣∣R# (hs)−Rs (hs)

∣∣
=
∣∣R# (hs)−R#,s (hs) +R#,s (hs)−Rs (hs)

∣∣
≤
∣∣R# (hs)−R#,s (hs)

∣∣+
∣∣R#,s (hs)−Rs (hs)

∣∣ .
To achieve the conclusion of the theorem, it is sufficient to upper bound the two terms

∣∣R# (hs)−R#,s (hs)
∣∣ and

∣∣R#,s (hs)−Rs (hs)
∣∣.

For the first term, according the definition of expected losses, we find that

∣∣R# (hs)−R#,s (hs)
∣∣ =

∣∣∣∣∫ ` (hs (x) , y)
(
p# (y | x)− ps (y | x)

)
p# (x) dxdy

∣∣∣∣
=

∣∣∣∣∣
C∑
y=1

∫
` (hs (x) , y)

(
p# (y | x)− ps (y | x)

)
p# (x) dx

∣∣∣∣∣
≤

C∑
y=1

∫
` (hs (x) , y)

∣∣p# (y | x)− ps (y | x)
∣∣ p# (x) dx

≤M
C∑
y=1

∫ ∣∣p# (y | x)− ps (y | x)
∣∣ p# (x) dx

= M

∫ C∑
y=1

∣∣p# (y | x)− ps (y | x)
∣∣ p# (x) dx

≤MEP#

[∥∥∥[p# (y | x)− ps (y | x)
]C
y=1

∥∥∥
1

]
(1)
= MEPt

[∥∥∥[p# (y | T (x))− ps (y | T (x))
]C
y=1

∥∥∥
1

]
= MEPt

[∥∥∥[pt (y | x)− ps (y | T (x))
]C
y=1

∥∥∥
1

]
, (1)

where (1) is from the fact that T#Pt = P#.
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For the second term, similar argument as the above argument leads to

∣∣R#,s (hs)−Rs (hs)
∣∣ =

∣∣∣∣∣
C∑
y=1

∫
` (hs (x) , y) ps (y | x)

[
p# (x)− ps (x)

]
dx

∣∣∣∣∣
≤

C∑
y=1

∫
` (hs (x) , y) ps (y | x)

∣∣p# (x)− ps (x)
∣∣ dx

≤M
C∑
y=1

∫
ps (y | x)

∣∣p# (x)− ps (x)
∣∣ dx

= M

∫ C∑
y=1

ps (y | x)
∣∣p# (x)− ps (x)

∣∣ dx
= M

∫ ∣∣p# (x)− ps (x)
∣∣ dx = MWc0/1

(
Ps,P#

)
, (2)

where the final equality is from the fact that cost matrix c0/1 is given by c0/1 (x,x′) = 1x6=x′ , which returns 1 if x 6= x′ and 0
otherwise (for the second equality, please refer to [12], Page 7 and the coupling characterization of total variance distance).

Combining the results from (1) and (2), we arrive at the bound that

∆R
(
hs, ht

)
≤M

(
Wc0/1

(
Ps,P#

)
+ EPt

[∥∥pt (y | x)− ps (y | T (x))
∥∥

1

])
= M

(
Wc0/1

(
Ps,P#

)
+ EPt [‖∆p (y | x)‖1]

)
.

As a consequence, we reach the conclusion of the theorem.

Remark 5. If the following assumptions hold:

(i) The transformation mapping T (x) = x, i.e., we use the same hypothesis set for both the source and target domains,

(ii) The loss ` (y, h (x)) = 1
2 |y − h (x)| where we restrict to consider hypothesis h : X → {−1, 1},

then we recover the theoretical result obtained in [2].
Remark 6. When Wc0/1

(
Ps,P#

)
= 0 , i.e., T#Pt = Ps, and there is a harmony between two supervisors of source and target

domain, i.e., pt (y | x) = ps (y | T (x))), Theorem 4 suggests that we can perfectly do transfer learning without loss of performance.
This fact is summarized in the following corollary.

Corollary 7. Assume that T#Pt = Ps and the source and target supervisor distributions are harmonic in the sense that ps (y | T (x)) =
pt (y | x) for x ∼ Pt. Then, we can do a perfect transfer learning between the source and target domains.

Proof. For any hs ∈ Hs, denote ht = hs ◦ T , we have

Rs (hs) = EPs

[∫
` (y, hs (x)) ps (y | x) dy

]
=EPt

[∫
` (y, hs (T (x))) ps (y | T (x)) dy

]
=EPt

[∫
`
(
y, ht (x)

)
pt (y | x) dy

]
= Rt

(
ht
)
,

where the second equality is from the fact T transport Pt to Ps.
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Furthermore, given a decreasing function φ : R → [0, 1], a hypothesis hs is said to be φ-Lipschitz transferable [6] w.r.t. a joint
distribution γ ∈ Γ

(
Ps,P#

)
, the metric c, and the norm ‖·‖ if for all λ > 0, we have

P(xs,x#)∼γ [‖hs (xs)− hs (x#)‖ > λc (xs,x#)] ≤ φ (λ) .

Theorem 8. (Theorem 3 in the main paper) Assume that Assumptions (A.1) and (A2) hold, the hypothesis hs satisfies φ-Lipschitz
transferable w.r.t the optimal joint distribution (transport plan) γ∗ ∈ Γ

(
Ps,P#

)
, c and ‖·‖, the following inequality holds for all

λ > 0:

∆R
(
hs, ht

)
≤M (EPt [‖∆p (· | x)‖1] + 2φ (λ))

+ kCλWc,p

(
Ps,P#

)
.

Proof. We have

∆R
(
hs, ht

)
=
∣∣Rt (ht)−Rs (hs)

∣∣ =
∣∣R# (hs)−Rs (hs)

∣∣
=
∣∣R# (hs)−R#,s (hs) +R#,s (hs)−Rs (hs)

∣∣
≤
∣∣R# (hs)−R#,s (hs)

∣∣+
∣∣R#,s (hs)−Rs (hs)

∣∣ .
We know that the first term can be bounded as∣∣R# (hs)−R#,s (hs)

∣∣ ≤MEPt [‖∆p (· | x)‖1] .

We manipulate the second term as

∣∣R#,s (hs)−Rs (hs)
∣∣ =

∣∣∣∣∫ ` (hs (x) , y) ps (y | x)
[
p# (x)− ps (x)

]
dxdy

∣∣∣∣
=

∣∣∣∣∣
C∑
y=1

∫
` (hs (x) , y) ps (y | x)

(
p# (x)− ps (x)

)
dx

∣∣∣∣∣
≤

C∑
y=1

∣∣∣∣∫ ` (hs (x) , y) ps (y | x) p# (x) dx−
∫
` (hs (x) , y) ps (y | x) ps (x) dx

∣∣∣∣
=

C∑
y=1

∣∣∣∣∫ `
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
dP#

(
x#
)
−
∫
` (hs (xs) , y) ps (y | xs) dPs (xs)

∣∣∣∣
=

C∑
y=1

∣∣∣∣∫ [` (hs (x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
≤

C∑
y=1

(∣∣∣∣∫
A

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
+

∣∣∣∣∫
Ac

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
)
,

where we denote A =
{(

x#,xs
)

:
∥∥h (x#

)
− h (xs)

∥∥ ≤ λc (x#,xs
)}

, hence γ∗ (Ac) ≤ φ (λ).
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We manipulate the second term as:

C∑
y=1

∣∣∣∣∫
Ac

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
≤

C∑
y=1

∫
Ac

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
+ ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)
≤M

C∑
y=1

∫
Ac

[
p
(
y | x#

)
+ ps (y | xs)

]
dγ∗

(
x#,xs

)
= M

∫
Ac

[
C∑
y=1

p
(
y | x#

)
+

C∑
y=1

ps (y | xs)
]
dγ∗

(
x#,xs

)
= 2Mγ∗ (Ac) ≤ 2Mφ (λ) .

We derive the first term as:

U =

C∑
y=1

∣∣∣∣∫
A

[
`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
− ` (hs (xs) , y) ps (y | xs)

]
dγ∗

(
x#,xs

)∣∣∣∣
=

C∑
y=1

∣∣∣∣∫
A

`
(
hs
(
x#
)
, y
)
ps
(
y | x#

)
dP#

(
x#
)
−
∫
A

` (hs (xs) , y) ps (y | xs) dPs (xs)

∣∣∣∣
=

C∑
y=1

∣∣∣∣∫
A

` (hs (x) , y) ps (y | x) p# (x) dx−
∫
A

` (hs (x) , y) ps (y | x) ps (x) dx

∣∣∣∣
≤

C∑
y=1

∫
A

` (hs (x) , y) ps (y | x)
∣∣p# (x)− ps (x)

∣∣ dx
≤

C∑
y=1

∫
A

` (hs (x) , y)
∣∣p# (x)− ps (x)

∣∣ dx
Denote A1 =

{
x ∈ A : p# (x)− ps (x) ≥ 0

}
, we then have

U ≤
C∑
y=1

∫
A

` (hs (x) , y)
∣∣p# (x)− ps (x)

∣∣ dx
=

C∑
y=1

[∫
A1

` (hs (x) , y)
(
p# (x)− ps (x)

)
dx +

∫
A\A1

` (hs (x) , y)
(
ps (x)− p# (x)

)
dx

]

=

C∑
y=1

[∫
A1

[
`
(
hs
(
x#
)
, y
)
− ` (hs (xs) , y)

]
dγ∗

(
x#,xs

)
+

∫
A\A1

[
` (hs (xs) , y)− `

(
hs
(
x#
)
, y
)]
dγ∗

(
x#,xs

)]

≤
C∑
y=1

∫
A

∣∣` (hs (x#
)
, y
)
− ` (hs (xs) , y)

∣∣ dγ∗ (x#,xs
)
.
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U ≤
C∑
y=1

∫
A

∣∣` (hs (x#
)
, y
)
− ` (hs (xs) , y)

∣∣ dγ∗ (x#,xs
)

(1)

≤ k

C∑
y=1

∫
A

∥∥hs (x#
)
− hs (xs)

∥∥
1
dγ∗

(
x#,xs

)
= kC

∫
A

∥∥hs (x#
)
− hs (xs)

∥∥
1
dγ∗

(
x#,xs

)
(2)

≤ λkC

∫
A

c
(
x#,xs

)
dγ∗

(
x#,xs

)
≤ λkC

∫
c
(
x#,xs

)
dγ∗

(
x#,xs

)
= λkCWc

(
P#,Ps

)
(3)

≤ λkCWc,p

(
P#,Ps

)
.

Here we note that we have (1) due to ` is k-Lipschitz w.r.t ‖·‖, (2) due to the definition of A, and (3) due to p ≥ 1 hence
Wc

(
P#,Ps

)
≤Wc,p

(
P#,Ps

)
(see Section 5.1 in [26]).

2.2 Data shift via Wasserstein metric
Let Z be an intermediate space (i.e., the joint space Z = Rm). We consider the composite mappings: T (x) = T 2

(
T 1 (x)

)
where

T 1 is a mapping from the target domain X t to the joint space Z and T 2 maps from the joint space Z to the source domain X s (note
that if Z = X s then T 2 = id is the identity function). Based on this structure, we consider the following optimization problem:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
. (3)

In the following theorem, we demonstrate that the above optimization problem can be equivalently transformed into another form
involving the joint space (see Figure 1 for an illustration of that theorem).

Theorem 9. (Theorem 4 in the main paper) The optimal objective value of the OP (3) is equal to that of the OP (4), that is

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
=

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p (4)

where G1 is a map from X s to Z .

Proof. From the definition of Wasserstein metric, we obtain that

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
= inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

Therefore, we can rewrite the optimization problem in the left side of (4) as follows:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
= min
T 1,T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

We first prove that

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p ≥ min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
.
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Figure 1: The mapping T = T 2 ◦ T 1 maps from the target to source domains. We minimize D
(
G1

#Ps, T 1
#Pt

)
to close the

discrepancy gap of the source and target domains in the joint space.

Given the mappings T 1, T 2, for any mapping G1 satisfying the equation T 1
#Pt = G1

#Ps, we let T ′ = T 2 ◦ G1. Then, we arrive at
T ′#Ps = T#Pt. Hence, we find that

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
= Ex∼Ps

[
c (x, T ′ (x))

p]1/p ≥ inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

The above inequality directly leads to

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p ≥ inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

As a consequence, we achieve the following inequality

min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p ≥ min
T 1,T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

= min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
.

We now prove that

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
≥ min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Given the mapping T 1, we consider the distribution Q over the source domain such that there exists a map T 2 for which T 2
#

(
T 1

#Pt
)

=

Q. For any mapping L satisfying the equation L#Ps = Q, we can find mappings U, V such that U#Ps = T 1
#Pt and L = V ◦ U . To
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this end, there exists a bijective mapping V satisfying V#

(
T 1

#Pt
)

= Q since these two distributions are atomless (see Theorem 1).

Additionally, we can set U = V −1 ◦L. It is obvious that U#Ps = T 1
#Pt and L = V ◦U from the definitions of U and V . Therefore,

we have that

Ex∼Ps [c (x, L (x))
p
]
1/p

=Ex∼Ps [c (x, V (U (x)))
p
]
1/p

≥ min
T 2:T 2

#(T 1
#Pt)=Q

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Invoking the above equality, we find that

inf
L:L#Ps=Q

Ex∼Ps [c (x, L (x))
p
]
1/p ≥ min

T 2:T 2
#(T 1

#Pt)=Q
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

With that inequality, we directly achieve the following inequality

min
Q

inf
L:L#Ps=Q

Ex∼Ps [c (x, L (x))
p
]
1/p

≥ min
Q

min
T 2:T 2

#(T 1
#Pt)=Q

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

min
T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p ≥ min

T 2
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Note that from the definitions of Q and T 2, it is obvious that

min
Q

inf
L:L#Ps=Q

Ex∼Ps [c (x, L (x))
p
]
1/p

= min
T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p

.

min
T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
= min

Q
min

T 2:T 2
#(T 1

#Pt)=Q
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

By varying the mapping T 1 in both sides of the above inequality, we arrive at the following inequality

min
T 1,T 2

inf
L:L#Ps=T#Pt

Ex∼Ps [c (x, L (x))
p
]
1/p ≥ min

T 1,T 2
min

G1:T 1
#Pt=G1

#Ps
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Hence, we obtain that

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
≥ min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.

Finally, we reach the conclusion as:

min
T 1,T 2

Wc,p

((
T 2 ◦ T 1

)
#
Pt,Ps

)
= min
T 1,T 2

min
G1:T 1

#Pt=G1
#Ps

Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
.
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It is interesting to interpret G1 and T 1 as two generators that map the source and target domains to the common joint space Z
respectively. The constraint T 1

#Pt = G1
#Ps further indicates that the gap between the source and target distributions is closed in the

joint space via two generators G1 and T 1. Furthermore, T 2 maps from the joint space to the source domain and aims to reconstruct
G1. Similar to [29], we do relaxation and arrive at the optimization problem:

min
T 1,T 2,G1

(
Ex∼Ps

[
c
(
x, T 2

(
G1 (x)

))p]1/p
+ αD

(
G1

#Ps, T 1
#Pt

))
, (5)

where D (·, ·) specifies a divergence between two distributions over the joint space and α > 0.

2.3 Label shift via Wasserstein metric
Since G1 and T 1 are two maps from the source and target domains to the joint space, we can further define two source and target
supervisor distributions on the joint space as p#,s

(
y | G1 (x)

)
= ps (y | x) and p#,t

(
y | T 1 (x)

)
= pt (y | x). With respect to the

joint space, the second term of the upper bound in Theorem 4 can be rewritten as in the following corollary.

Corollary 10. (Corollary 5 in the main paper) The second term of the upper bound in Theorem 4 can be rewritten as

EPt

[∥∥p#,s
(
y | G1

(
T 2
(
T 1 (x)

)))
− p#,t

(
y | T 1 (x)

)∥∥
1

]
. (6)

Proof. The proof is trivial from the definitions of p#,s
(
y | G1 (x)

)
= ps (y | x) and p#,t

(
y | T 1 (x)

)
= pt (y | x).

Corollary 11. (Corollary 6 in the main paper) Under the ideal scenario, the label mismatch term in (6) has a lower-bound∥∥∥[ps (y = i)− pt (y = i)
]C
i=1

∥∥∥
1
.

Proof. Under the ideal scenario, the label mismatch term becomes

EPt

[∥∥p#,s
(
y |
(
T 1 (x)

))
− p#,t

(
y | T 1 (x)

)∥∥
1

]
.

We derive as follows:

U =EPt

[∥∥p#,s
(
y |
(
T 1 (x)

))
− p#,t

(
y | T 1 (x)

)∥∥
1

]
=

C∑
i=1

∫ ∣∣p#,s
(
y = i |

(
T 1 (x)

))
− p#,t

(
y = i | T 1 (x)

)∣∣ pt (x) dx

≥
C∑
i=1

∣∣∣∣∫ (p#,s
(
y = i |

(
T 1 (x)

))
− p#,t

(
y = i | T 1 (x)

))
pt (x) dx

∣∣∣∣
=

C∑
i=1

∣∣∣∣∫ p#,s
(
y = i |

(
T 1 (x)

))
pt (x) dx−

∫
p#,t

(
y = i | T 1 (x)

)
pt (x) dx

∣∣∣∣
=

C∑
i=1

∣∣∣∣∫ p#,s
(
y = i |

(
T 1 (x)

))
dPt −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ p#,s (y = i | z) dT 1
#Pt −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ p#,s (y = i | z) dG1
#Ps −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

10



U ≥
C∑
i=1

∣∣∣∣∫ p#,s (y = i | z) dG1
#Ps −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ p#,s
(
y = i | G1 (x)

)
dPs −

∫
p#,t

(
y = i | T 1 (x)

)
dPt
∣∣∣∣

=

C∑
i=1

∣∣∣∣∫ ps (y = i | x) dPs −
∫
pt (y = i | x) dPt

∣∣∣∣
=

C∑
i=1

∣∣∣∣∫ ps (y = i | x) ps (x) dx−
∫
pt (y = i | x) pt (x) dx

∣∣∣∣
=

C∑
i=1

∣∣ps (y = i)− pt (y = i)
∣∣

=
∥∥∥[ps (y = i)− pt (y = i)

]C
i=1

∥∥∥
1
.

It is also worth mentioning that with regard to the latent space and the above equipment for T = T 2 ◦ T 1, we have the following
formulations for the source classifier (i.e., hs) and target classifier (i.e., ht) now become:

hs (x) = A
(
G1 (x)

)
andht (x) = A

(
G1 (T (x))

)
. (7)

We define a new metric c̃ w.r.t. the familyHa of the classifier A as:

c̃ (z1, z2) = sup
A∈Ha

‖A (z1)−A (z2)‖1 ,

where z1 and z2 lie on the latent space. The following lemma states under which conditions, c̃ is a proper metric on the latent space.

Lemma 12. (Lemma 7 in the main paper) For any z1 and z2, if A (z1) = A (z2) ,∀A ∈ Ha leads to z1 = z2, c̃ is a proper metric.

Proof. First, c̃ (z1, z2) ≥ 0 and c̃ (z1, z2) = 0 meansA (z1) = A (z2) ,∀A ∈ Ha, which leads to z1 = z2. Second, it is obvious that
c̃ (z1, z2) = c̃ (z2, z1) ,∀z1, z2.

Given any z1, z2, z3, we have

c̃ (z1, z3) = sup
A∈Ha

‖A (z1)−A (z3)‖1 ≤ sup
A∈Ha

(‖A (z1)−A (z2)‖1 + ‖A (z2)−A (z3)‖1)

≤ sup
A∈Ha

(‖A (z1)−A (z2)‖1) + sup
A∈Ha

(‖A (z2)−A (z3)‖1)

= c̃ (z1, z2) + c̃ (z2, z3) .

Therefore, c̃ is a proper metric.

It turns out that the necessary (also sufficient) condition in Lemma 12 is realistic and not hard to be satisfied (e.g., the familyHa
contains any bijection). We now can define a WS distanceWc̃,p that involves in Theorem 14 whose proof needs the following lemma.
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Lemma 13. Let ph
s

be the density of the distribution Phs

formed by pushing forward Ps via hs and ph
t

be the density of the
distribution Pht

formed by pushing forward Pt via ht. If γ ∈ Γ
(
Phs

,Pht
)

, there exists γ′ ∈ Γ (Ps,Pt) such that (hs, ht)# γ′ = γ.

Proof. Let denote γs as the joint distribution of the samples (xs, hs (xs)) where xs ∼ Ps and γt as the joint distribution of the
samples (xt, ht (xt)) where xt ∼ Pt. It is obvious that γs is a joint distribution of Ps and Phs

and γt is a joint distribution of
Pt and Pht

. According to the gluing lemma (see Lemma 5.5 in [26]), there exists a joint distribution µ such that for any draw
(xs, τ s, τ t,xt) ∼ µ then (xs, τ s) ∼ γs, (τ s, τ t) ∼ γ, and (xt, τ t) ∼ γt.

Let γ′ be the distribution of samples (xs,xt) (i.e., the projection of µ onto the first and fourth dimensions). This follows that
γ′ is a joint distribution of Ps and Pt (i.e., γ′ ∈ Γ (Ps,Pt)). In addition, since (xs, τ s) ∼ γs, τ s = hs (xs), since (xt, τ t) ∼ γt,
τ t = ht (xt), and (τ s, τ t) ∼ γ. Therefore, we reach (hs, ht)# γ′ = γ.

We note that in the above proof, we employ a general form of the gluing lemma for 4 distributions and spaces. The proof is
mainly based on the gluing lemma for 3 distributions and spaces and trivial.

Theorem 14. (Theorem 8 in the main paper) If c̃ is a proper metric and p ≥ 1, the quantity
∥∥∥[ps (y = i)− pt (y = i)]

C
i=1

∥∥∥
1

has the
upper-bounds:

i) Rs1 (hs) +Rt1 (ht) +Wc̃,p

(
G1

#Ps, T 1
#Pt

)
if hs := A

(
G1 (x)

)
and ht := A

(
T 1 (x)

)
.

ii) Rs1 (hs) +Rt1 (ht) +Wc̃,p

(
G1

#Ps, T 1
#Pt

)
+Wc̃,p

(
L#Pt, T 1

#Pt
)

where L := T ◦G1, and hs and ht are defined in (7).

Here Rs1 (hs) :=
∫
‖ps (· | x)− hs (x)‖1 ps (x) dx and Rt1 (ht) :=

∫
‖pt (· | x)− ht (x)‖1 pt (x) dx are the general losses of hs

and ht w.r.t. ‖·‖1.

Proof. i) We derive as follows:∥∥∥[ps (y = i)− pt (y = i)
]C
i=1

∥∥∥
1
≤
∥∥∥∥[ps (y = i)− phs

(y = i)
]C
i=1

∥∥∥∥
1

+

∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

+

∥∥∥∥[pht

(y = i)− pt (y = i)
]C
i=1

∥∥∥∥
1

,

where ph
s

is the density of the distribution Phs

formed by pushing forward Ps via hs and ph
t

is the density of the distribution Pht

formed by pushing forward Pt via ht.
We manipulate the first term as:∥∥∥∥[ps (y = i)− phs

(y = i)
]C
i=1

∥∥∥∥
1

=

C∑
i=1

∣∣∣ps (y = i)− phs

(y = i)
∣∣∣

=

C∑
i=1

∣∣∣∣∫ (ps (y = i,x)− phs

(y = i,x)
)
ps (x) dx

∣∣∣∣ =

C∑
i=1

∣∣∣∣∫ (ps (y = i,x)− hsi (x)) ps (x) dx

∣∣∣∣
≤
∫ C∑

i=1

|ps (y = i,x)− hsi (x)| ps (x) dx =

∫ C∑
i=1

∥∥∥[ps (y = i,x)− hsi (x)]
C
i=1

∥∥∥
1
ps (x) dx = Rs1 (hs) .

Similarly, we can bound the third term as:∥∥∥∥[pht

(y = i)− pt (y = i)
]C
i=1

∥∥∥∥
1

≤ Rt1
(
ht
)
.
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To handle the second term
∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

, we first prove that

∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

≤W1

(
Ph

s

,Ph
t
)
,

where the WS w.r.t. the metric ‖·‖1 . Indeed, consider a joint distribution γ ∈ Γ
(
Phs

,Pht
)

. According to Lemma 13, there exists

γ′ ∈ Γ (Ps,Pt) such that (hs, ht)# γ′ = γ, we then have

E(ys,yt)∼γ
[∥∥ys − yt

∥∥
1

]
= E(xs,xt)∼γ′

[∥∥hs (xs)− ht
(
xt
)∥∥

1

]
=

∫ ∥∥hs (xs)− ht
(
xt
)∥∥

1
dγ′
(
xs,xt

)
=

C∑
i=1

∫ ∣∣hsi (xs)− hti
(
xt
)∣∣ dγ′ (xs,xt)

≥
C∑
i=1

∣∣∣∣∫ (hsi (xs)− hti
(
xt
))
dγ′
(
xs,xt

)∣∣∣∣ =

C∑
i=1

∣∣∣∣∫ hsi (xs) dPs (xs)−
∫
hti
(
xt
)
dPt

(
xt
)∣∣∣∣

=

C∑
i=1

∣∣∣phs

(y = i)− pht

(y = i)
∣∣∣ =

∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

.

Therefore, we achieve

W1

(
Ph

s

,Ph
t
)

= inf
γ∈Γ(Phs ,Pht)

E(ys,yt)∼γ
[∥∥ys − yt

∥∥
1

]
≥
∥∥∥∥[phs

(y = i)− pht

(y = i)
]C
i=1

∥∥∥∥
1

.

We now need to prove that W1

(
Phs

,Pht
)
≤ Wc̃,p

(
G1

#Ps, T 1
#Pt

)
(p ≥ 1). Indeed, given any γ′ ∈ Γ

(
G1

#Ps, T 1
#Pt

)
, let

denote γ = A#γ
′, then γ ∈ Γ

(
Phs

,Pht
)

. We then have:

E(ys,yt)∼γ
[∥∥ys − yt

∥∥
1

]
= E(τs,τ t)∼γ′

[∥∥A (τ s)−A
(
τ t
)∥∥

1

]
≤E(τs,τ t)∼γ′

[
c̃
(
τ s, τ t

)]
.

This follows that
W1

(
Ph

s

,Ph
t
)
≤ E(ys,yt)∼γ

[∥∥ys − yt
∥∥

1

]
≤ E(τs,τ t)∼γ′

[
c̃
(
τ s, τ t

)]
,

which further implies

W1

(
Ph

s

,Ph
t
)
≤ inf
γ′∈Γ(G1

#Ps,T 1
#Pt)

E(τs,τ t)∼γ′
[
c̃
(
τ s, τ t

)]
= Wc̃

(
G1

#Ps, T 1
#Pt

)
≤Wc̃,p

(
G1

#Ps, T 1
#Pt

)
.

ii) Using the same derivation as in (i) in which T 1 is replaced by L, we achieve∥∥∥[ps (y = i)− pt (y = i)
]C
i=1

∥∥∥
1
≤ Rs1 (hs) +Rt1

(
ht
)

+Wc̃,p

(
G1

#Ps, L#Pt
)

≤Rs1 (hs) +Rt1
(
ht
)

+Wc̃,p

(
G1

#Ps, T 1
#Pt

)
+Wc̃,p

(
T 1

#Pt, L#Pt
)
.

We note that our proof is still applicable if we generalize ‖·‖1 to any metric d in ∆C , which can be decomposed d (ys,yt) =∑C
i=1 di (ysi ,y

t
i) .
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3 Experiments

3.1 Ablation Study
3.1.1 Experiment on Synthetic Data

Synthetic Dataset for the Source and Target Domains

We generate two synthetic labeled datasets for the source and target domains. We generate the 10, 000 data examples of the source
dataset from the mixture of two Gaussian distributions: ps (x) = πs1N (x | µs1,Σs1) + πs2N (x | µs2,Σs2) where πs1 = πs2 = 1

2 ,
µs1 = [1, 1, ..., 1] ∈ R10, µs2 = [2, 2, ..., 2] ∈ R10 and Σs1 = Σs2 = I10. Similarly, we generate the another 10, 000 data examples of
the target dataset from the mixture of two Gaussian distributions: pt (x) = πt1N (x | µt1,Σt1) + πt2N (x | µt2,Σt2) where πt1 = 1

3 ,
πt2 = 2

3 , µt1 = [4, 4, ..., 4] ∈ R10, µt2 = [5, 5, ..., 5] ∈ R10 and Σt1 = Σt2 = I10. For each data example in the source and target
domains, we assign label y = 0 if this data example is generated from the first Gauss and y = 1 if this data example is generated
from the second Gauss using Bayes’ s rule.

Figure 2: Architecture of networks for deep domain adaptation on the synthetic datasets.

Deep Domain Adaptation on the Synthetic Dataset

Figure 2 shows the architectures of networks used in our experiments on the synthetic datasets. Two generators G1, T 1 with the
same architectures (10 → 5 (ReLu) → 5 (ReLu)) map the source and target data to the intermediate joint layer. Note that different
from other works in deep domain adaptation, we did not tie G1 and T 1. The network T 2 with the architecture (10 → 5 (ReLu) →
5 (ReLu)) maps from the intermediate joint layer to the source and target domains respectively. To break the gap between the
source and target domains in the joint layer, we employ GAN principle [13, 10] wherein we invoke a discriminator network d
(5 → 5 (ReLu) → 1 (sigmoid)) to discriminate the source and target data examples in the joint space. The classifier network A
(5 → 5 (ReLu) → 1 (sigmoid)) is employed to classify the labeled source data examples. To approximate the 0/1 cost function,
we use the modified sigmoid function [23]: cγ (x,x′) = 2/ [1 + exp {−γ ‖x− x′‖2}] − 1 with γ = 100. It can be seen that when
γ → +∞, the cost function cγ approaches the 0/1 cost function. More specifically, we need to update G1, T 1, T 2,A, and d as
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Figure 3: Left: the accuracies on the source and target datasets. Middle: the plots of three terms in Theorem 4. Right: the plot of
empirical losses on the source and target datasets.

follows: (
G1, T 1, T 2,A

)
= argmin

G1,T1,T2,A

I
(
G1, T 1, T 2,A

)
and d =argmax

d

J (d),

where α is set to 0.1 and we have defined

I
(
G1, T 1, T 2,A

)
=

+ Ex∼Ps

[
cγ
(
x, T 2

(
G1 (x)

))]
+ E(x,y)∼Ds

[
`
(
y,A

(
G1 (x)

))]
+ α

[
Ex∼Ps

[
log
(
d
(
G1 (x)

))]
+ Ex∼Pt

[
log
(
1− d

(
T 1 (x)

))]]
J (d) = Ex∼Ps

[
log
(
d
(
G1 (x)

))]
+ Ex∼Pt

[
log
(
1− d

(
T 1 (x)

))]
.

Based on the classifier A on the joint space, we can identify the corresponding hypotheses on the source and target domains as:
hs (x) = A

(
G1 (x)

)
and ht (x) = A

(
T 1 (x)

)
.

Verification of Our Theory for Unsupervised Domain Adaptation

In this experiment, we assume that none of data example in the target domain has label. We measure three terms, namely |R (ht)−R (hs)|,
W
(
Ps,P#

)
and EPt [‖∆p (y | x)‖1] (M = 1 since we are using the logistic loss) as defined in Theorem 4 across the training

progress. Actually, we approximate R (ht) , R (hs) using the corresponding empirical losses. As shown in Figure 3 (middle), the
green plot is always above the blue plot and this empirically confirms the inequality in Theorem 4. Furthermore, the fact that three
terms consistently decrease across the training progress indicates an improvement when P# is shifting toward Ps. This improvement
is also reflected in Figure 3 (left and right) wherein the target accuracy and empirical loss gradually increase and decrease accordingly.

3.1.2 The Effect of Class Alignment in the Joint Space.

In this experiment, we inspect the influence of the harmony of two labeling assignment mechanisms to the predictive performance.
In particular, we assume that a portion (r = 5%, 15%, 25%, 50% ) of the target domain has label and consider two settings: i) the
labels of the target and source domains are totally properly matched in the joint space (i.e., 0 matches 0, 1 matches 1,..., and 9 matches
9) and ii) the labels of the target and source domains are totally improperly matches in the joint space (i.e., 0 matches 1, 1 matches
2,..., and 9 matches 0).

To push a specific labeled portion of the target domain to the corresponding label portion of the source domain in the joint space
(the label i to i in the first setting and the label i to (i + 1) mod 10 in the second setting for i = 0, 1, . . . , 9), we again make use of
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GAN principle and employ additional discriminators to push the corresponding labeled portions together. Note that the parameters
of the additional discriminators and the primary discriminator (used to push the target data toward source data in the joint space) are
tied up to the penultimate layer.

It can be observed from Table 1 that for the case of proper matching, when increasing the ratio of labeled portion, we increase the
chance to match the corresponding labeled portions properly, hence significantly improving the predictive performance. In contrast,
for the case of improper matching, when increasing the ratio of labeled portion, we increase the chance to match the corresponding
labeled portions improperly, hence significantly reducing the predictive performance.

Table 1: The variation of predictive performance in percentage as increasing the ratio of labeled portion when the labels of the target
domain are properly or improperly matched to those in the source domain. Note that we emphasize in bold and italic/bold the best
and worse performance.

Proper match Improper match Base
r 5% 15% 25% 50% 5% 15% 25% 50% 0%

MNIST→MNIST-M 86.4 88.8 92.9 93.2 75.5 70.2 64.5 58.4 81.5
SVHN→MNIST 72.3 74.1 76.2 77.5 69.8 60.8 56.8 56.4 71.0

3.2 Experimental Setting for our LAMDA
3.2.1 The Objective Function of LAMDA

Note that in our implementation, to reduce the model complexity, we set G1 = T 1 = G, T 2 = T , S = A (S is a transportation
probability network which is shared weights with the classifier A). Let us further denote:

LA := E(x,y)∼Ds [` (y,A (G (x)))] ,

Lg := Ex∼Ps [log (1− dC+1 (G(x)))] + Ex∼Pt [log dC+1 (G (x))]

+ αEx∼Pt

[
−

C∑
i=1

Ai (x) log di (G (x))

]
+ βR (T,G) + LA,

where R (T,G) is the reconstruction term defined as

R (T,G) := EPs

[
‖T (G (x))− x‖22

]
.

Ld :=

C∑
i=1

E(x,y)∼Ds∧y=i [log di (G (x))] +Ex∼Pt [log dC+1 (G (x))]

+Ex∼Ps [log (1− dC+1 (G (x)))] .

To update G,T and A, we solve:
min
G,T,A

Lg.

To update d, we solve:
max
d
Ld.
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Table 2: The full experimental results in percent of our LAMDA and the baselines on digits, traffic sign, and natural image datasets.
Source MNIST USPS MNIST SVHN MNIST DIGITS SIGNS CIFAR STL
Target USPS MNIST MNIST-M MNIST SVHN SVHN GTSRB STL CIFAR

MMD [21] - - 76.9 71.1 - 88.0 91.1 - -
DANN [10] - - 81.5 71.1 35.7 90.3 88.7 - -
DRCN [11] - - - 82.0 40.1 - - 66.4 58.7

DSN [4] - - 83.2 82.7 - 91.2 93.1 - -
kNN-Ad [27] - - 86.7 78.8 40.3 - - - -
PixelDA [3] - - 98.2 - - - - - -

ATT [24] - - 94.2 86.2 52.8 92.9 96.2 - -
Π-model [9] - - - 92.0 71.4 94.2 98.4 76.3 64.2
ADDA [30] 89.4 90.1 - 76.0 - - - - -

CyCADA [15] 95.6 96.5 - 90.4 - - - - -
MSTN [33] 92.9 97.6 - 91.7 - - - - -
CDAN [22] 95.6 98.0 - 89.2 - - - - -
MCD [25] 94.2 94.1 - 96.2 - - 94.4 - -
PFAN [5] 95.0 - - 93.9 57.6 - - - -

DADA [28] 96.1 96.5 - 95.6 - - - - -
DeepJDOT[7] 95.7 96.4 92.4 96.7 30.8 84.2 70.0 61.6 49.6
DASPOT [34] 97.5 96.5 94.9 96.2 - - - - -

GPDA [16] 96.5 96.4 - 98.2 - - 96.2 - -
SWD [18] 98.1 97.1 90.9 98.9 49.5 88.7 98.6 65.3 52.1

rRevGrad+CAT [8] 94.0 96.0 - 98.8 - - - - -
SHOT [20] 98.0 98.4 - 98.9 - - - - -
RWOT [35] 98.5 97.5 - 98.8 - - - - -

LAMDA 99.5 98.3 98.4 99.5 82.1 95.9 99.2 78.0 71.6
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3.2.2 Experimental Datasets

Digit datasets

MNIST. The dataset is commonly used in domain adaptation literature. To adapt from MNIST to MNIST-M or SVHN, the MNIST
images are replicated from single greyscale channel to obtain digit images which has three channels.
MNIST-M. Following by the implementation in [10], we generate the MNIST-M images by replacing the black background of
MNIST images by the color ones and obtain the same number of training and test samples as the MNIST dataset.
SVHN. The dataset consists of images obtained by detecting house numbers from Google Street View images. This dataset is a
benmark for recognizing digits and numbers in real-world images.
DIGITS. There are roughly 500,000 images are generated using various data augmentation schemes, i.e., varying the text, position-
ing, orientation, background, stroke color, and the amount of blur.

We compare our LAMDA with renown baselines especially OT-based ones (e.g., SWD [18], DeepJDOT [7], DASPOT [34], ETD
[19] and RWOT [35]). As shown in Table 2, LAMDA outperforms other baselines on most of digit datasets. It is noticeable that
although the transfer task MNIST→SVHN is extremely challenging in which the source dataset includes grayscale handwritten digits
whereas the target dataset is created by real-world digits, our LAMDA is still capable of matching the gap between source and target
domains and outperforms the second-best method by a sizeable margin (10.7%).

Traffic sign datasets

SIGNS. A synthetic dataset for traffic sign recognition. Images are collected from Wikipedia and then applied various types of
transformations to generate 100,000 images for training and test.
GTSRB. Road sign images are extracted from videos recorded on different road types in Germany. We preprocess the data by croping
out the region of interest of each image, and then scale them to a resolution of 32× 32.

Natural scene datasets

CIFAR. The CIFAR-10 [17] dataset includes 50,000 training images and 10,000 test images. However, to adapt with STL dataset,
we base on [9] to remove one non-overlapping class (“frog”). The numbers of training examples and test examples therefore are
reduced to 45,000 and 9,000 respectively.
STL. Similar to CIFAR-10, we remove class named “monkey” to obtain a 9-class classification problem. Also, STL-10 images are
down-scaled to a resolution of 96× 96 to 32× 32.

Object recognition datasets

Office-Home consists of roughly 15,500 images in a total of 65 object classes and belonging to 4 different domains: Artistic (Ar),
Clip Art (Cl), Product (Pr) and Real-world (Rw).
Office-31 is a popular dataset for domain adaptation that contains 3 domains Amazon (A), Webcam (W), and DSLR (D). There are
31 common classes for all domains and the total number of images is 4,110.
ImageCLEF-DA contains three domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). There are total
600 images in each domain and 12 common classes. We follow the work in [19] to evaluate 6 adaptation tasks.

We resize the resolution of each sample in digits, traffic sign, and natural image datasets to 32 × 32, and normalize the value of
each pixel to the range of [−1, 1]. For object recognition datasets, we use features have 2048 dimensions extracted from ResNet-50
[14] pretrained on ImageNet.
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Table 3: Small, medium and large network architecture of LAMDA. We use the small network for object recognition datasets,
medium network for digits and traffic sign, and the large one for natural scene datasets. The parameter a for Leaky ReLU (lReLU)
activation function is set to 0.1.

Architecture Small Network Medium Network Large Network
Input size 2048 32× 32× 3 32× 32× 3

Generator
G

instance normalization instance normalization
256 dense, ReLU 3× 3 conv. 64 lReLU 3× 3 conv. 96 lReLU
dropout, p = 0.5 3× 3 conv. 64 lReLU 3× 3 conv. 96 lReLU

Gaussian noise, σ = 1 3× 3 conv. 64 lReLU 3× 3 conv. 96 lReLU
2× 2 max-pool, stride 2 2× 2 max-pool, stride 2

dropout, p = 0.5 dropout, p = 0.5
Gaussian noise, σ = 1 Gaussian noise, σ = 1
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU

2× 2 max-pool, stride 2 3× 3 max-pool, stride 2
dropout, p = 0.5 dropout, p = 0.5

Gaussian noise, σ = 1 Gaussian noise, σ = 1

Classifier
A

C dense, softmax 3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
3× 3 conv. 64 lReLU 3× 3 conv. 192 lReLU
global average pool global average pool
C dense, softmax C dense, softmax

3.2.3 Network Architectures

We use small and large network architecture for specific datasets, which are described in Table 3 and 4. Noticeably, batch normal-
ization layers are applied on the top of convolutional layers (6 for the generator and 3 for the classifier) to prevent the overfitting.
For Office-31, Office-Home, and ImageCLEF-DA, we removed the dense layers of the pretrained models and replaced by two dense
layers (i.e., the first layer has 256 neurons and the second one has C neurons where C is the number of classes).

Table 4: The architecture of discriminator d.
Digits, traffic sign and natural scene datasets Object recognition datasets

3× 3 conv. 64 lReLU C + 1 dense, softmax
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
global average pool
C + 1 dense, softmax

3.2.4 Hyperparameter setting

We apply Adam Optimizer (β1 = 0.5,β2 = 0.999) with the learning rate 0.001 digits, traffic sign and natural scene datasets, whereas
0.0001 is the learning rate for object recognition datasets. All experiements was trained for 20000 iterations on Office-31, Office-
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Home, and ImageCLEF-DA and 80000 for the other datasets. The batch size for each dataset is set to 128. We set β = 0, α = 0.5 as
described in the ablation study, and γ is searched in {0.1, 0.5}. We implement our LAMDA in Python (version 3.5) using Tensorflow
(version 1.9.0) [1] and run our experiments on a computer with a CPU named Intel Xeon Processor E5-1660 which has 8 cores at 3.0
GHz and 128 GB of RAM, and a GPU called NVIDIA GeForce GTX Titan X with 12 GB memory.
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