
Supplementary Material: Gaussian Process-Based Real-Time Learning for
Safety Critical Applications

Armin Lederer 1 Alejandro José Ordóñez Conejo 2 Korbinian Maier 1 Wenxin Xiao 3 Jonas Umlauft 1

Sandra Hirche 1

A. Related Work
Although scalability is a major issue of exact Gaussian
process regression, a wide variety of methods has been
developed in recent years to overcome this problem. An
extensive overview of these methods can be found in (Liu
et al., 2020). Following the classification of methods intro-
duced in this survey article, we distinguish between global
and local approximations of GPs for online learning.

A.1. Global Gaussian Process Approximations

Global GP approximations comprise by far the largest group
of online learning methods. Among the most common ap-
proaches are sparse approximations (Snelson & Ghahra-
mani, 2007), which aim to reduce the computational com-
plexity of the inverse of the kernel matrix. This can be
achieved using prior approximations, posterior approxima-
tions and structured sparse approximations. The determin-
istic training conditional (DTC) approximation is a partic-
ularly widespread prior approximation for online learning,
since it achieves a constant complexity of predictions by
heuristically choosing an active subset from the training
data set. For determining the active subset, various methods
have been proposed with different complexities (Csató &
Opper, 2002; Nguyen-Tuong & Peters, 2010; Schreiter et al.,
2016; Koppel, 2019). The constant complexity of predic-
tions comes at the price of a linear complexity of updates.
Moreover, the selection heuristics often work best when the
data is passed through them several times. Therefore, these
approaches are well-suited for real-time predictions, but
typically become too slow for online updates, preventing
applications such as event-triggered learning.

Fully independent training conditional (FITC) and partially
independent training conditional (PITC) approximations
follow a similar idea for approximating the prior, but use

1Department of Electrical and Computer Engineering, Tech-
nical University of Munich, Munich, Germany 2Tecnológico de
Costa Rica, Cartago, Costa Rica 3Department of Computer Science
and Technology, Peking University, Beijing, China. Correspon-
dence to: Armin Lederer <armin.lederer@tum.de>.

arbitrary inducing points to compress the information of the
original training data. The flexibility of choosing arbitrary
inducing points can be used to construct a suitable covering
of the input domain online, e.g., through a prior design (Hu-
ber, 2014), online clustering techniques (Bijl et al., 2015;
2017), or by selecting training inputs as inducing points
(Le et al., 2017). While this can be advantageous regarding
regression performance, it generally does not have a positive
effect on the computational complexity. Therefore, these
approximations are best suited for off-line training and on-
line predictions, but cannot be applied when fast updates
are necessary as in, e.g., event-triggered learning.

Subset of regressor approaches are a form of prior approx-
imation, which is rather depreciated in big data problems,
but has demonstrated to be very successful in online learn-
ing problems. The idea of these approaches lies in the
approximation of the kernel, such that the complexity of the
kernel inverse is reduced. This can be achieved directly via
a compactification of covariance functions (Ranganathan &
Yang, 2008; Ranganathan et al., 2011), such that sparsity
in the cholesky factors is ensured. More popularly, finite
feature maps are constructed, which allow to approximately
express the kernel as a scalar product. This procedure re-
sults in constant update and prediction complexities, which
only depend on the number of features. For determining
the features different approaches exist. When prior data is
available, meta-training can be used to fit features to the
training data using neural networks (Harrison et al., 2018)
or least squares (Camoriano et al., 2016). Conversely, with-
out any offline data, random trigonometric features with
strong theoretical guarantees can be easily determined using
Bochner’s theorem (Rahimi & Recht, 2008), such that the
method is often referred to as sparse spectrum GP (Lázaro-
Gredilla et al., 2010; Gijsberts & Metta, 2013). In contrast
to most other methods, sparse spectrum GPs directly inherit
many theoretical properties from exact Gaussian process
regression due to Bochner’s theorem (Lu et al., 2020). More-
over, when numerical integration is used for obtaining the
feature maps instead of random sampling, uniform error
bounds can be extended from exact GP inference (Mutný &
Krause, 2018; Angelis et al., 2020). However, these bounds
often require a practically intractable number of features,

Supplementary Material

as discussed in Appendix B.4. Moreover, these methods
are known to suffer from overfitting (Gal & Turner, 2015)
and their posterior variances are overconfident (Liu et al.,
2020). Furthermore, the posterior mean and variance will
be periodic functions, such that the variance might collapse
far from any training samples (van der Wilk, 2018) leading
to overconfident predictions.

Posterior approximations of GPs do not approximate the
prior distribution, but instead aim at minimizing the dif-
ference between the approximate and exact posterior GP
distributions. The most common posterior approximation
is the variational free energy (Titsias, 2009), which can be
efficiently optimized using stochastic optimization methods
(Hensman et al., 2013; Cheng & Boots, 2016). Although
these approaches can be applied in online learning problems
with streaming data in principle, they are usually unsuited
for this task as discussed in (Bui et al., 2017). The reasons
for this are manifold. First, the optimization methods have
the underlying assumption that data is uniformly randomly
subsampled into mini-batches. While streaming data can
often be aggregated into mini-batches, the data is rarely
drawn i.i.d. from the input distribution. Moreover, the data
should typically be passed to the optimizer multiple times,
which typically cannot be satisfied with streaming data due
to computational constraints. Finally, typically only a single
gradient step is performed for every mini-batch. Since data
cannot be revisited, this causes a risk of forgetting old data.
In order to overcome these issues, Bui et al. (2017) proposed
a posterior approximation for streaming data, which allows
online predictions and online updates in minibatches. While
this algorithm achieves a good regression performance, the
limitation to minibatches can be prohibitive in applications
such as event-triggered learning, where the update must be
performed after every new sample.

In contrast to prior and posterior approximations, structured
sparse approximations do not change the involved distribu-
tions directly, but instead aim at exploiting fast matrix-vector
multiplication methods for computing an approximate of
the inverse kernel matrix. In (Wilson & Nickisch, 2015),
inducing points on a grid together with linear interpolation
are used for this purpose, such that a constant complexity of
mean predictions can be achieved. Using Lanczos approxi-
mation, these ideas are extended to reduce the complexity of
posterior variance computations toO(1) (Pleiss et al., 2018).
Although these methods achieve impressive prediction rates,
online updates have not been investigated. Therefore, these
methods cannot be applied to problems with streaming data.

A.2. Local Gaussian Process Approximations

The number of local GP approximations for online learning
is significantly lower than for global approximations, but
they are frequently used in practical applications. Among

the most straightforward approaches are naive local mod-
els, which adapt the used data set to the input. This can
be achieved, e.g., through a windowing approach (Meier
& Schaal, 2016) or by choosing the data subset based on
task-specific information theoretic metrics (Umlauft et al.,
2020). Although these approaches achieve a constant up-
date and prediction complexity and typically work well in
applications where a local model is sufficient, they suffer
from several issues. For example, the predictive mean func-
tion of these methods is usually discontinuous, which is in
contrast to the smoothness assumptions posed by many com-
monly used kernel functions. Moreover, predictions are only
valid locally, which prevents the usage in applications such
as model predictive control or model-based reinforcement
learning.

Mixture of experts approaches overcome this issue by com-
posing a global model of multiple locally active Gaussian
process experts. While mixture of experts have originally
been proposed to address the challenge of multi-modal data
(Tresp, 2001), explicitly localized models have led to great
success in online learning (Nguyen-Tuong et al., 2009b;a;
Liu et al., 2016). Since the number of local models and their
respective region in the input domain are not known a pri-
ori, they are typically adapted to the streaming data online.
The resulting prediction performance crucially depends on
parameters controlling this domain clustering behavior. In
order to avoid an excessive number of data points per local
model, data points are typically added and removed accord-
ing to an information criterion. When this happens too often,
the regression performance can suffer. However, if too many
local models are generated, the computation time increases
due to a linear dependency of the update and prediction com-
plexity on the number of models. The trade-off between
computation time and prediction performance depends on
the a few crucial parameters, which are hard to tune, par-
ticularly in online learning problems with streaming data.
Therefore, the application of mixtures of explicitly localized
experts in real-time learning problems is often challenging.

A.3. Tree-Structure in Gaussian Process
Approximations

In order to overcome the issues of mixtures of explicitly lo-
calized GP experts, our approach employs trees for defining
the computing architecture. This idea goes back to Cao &
Fleet (2014), who used a generalized product of experts ap-
proach for aggregating individual GP models. In the original
approach, the data is split into multiple subsets by construct-
ing a ball-tree (Omohundro, 1989), which is an efficient
method for representing models and allows fast queries of
individual leaves of the tree. Although each node of the
ball-tree contains a separate GP model and all models are
generally evaluated for the prediction of a test point, only
evaluating models along the branch assigned to a test point

Supplementary Material

has been investigated, too. Similar ideas have been used in
(Ng & Deisenroth, 2014), where the tree is employed pri-
marily as computation graph. In contrast to the ball-tree, a
k-d tree is recursively constructed from a batch of data until
a prescribed number of leaves containing all the individ-
ual GP models is reached. While these approaches exploit
methods for the explicit localization of models, this idea is
dropped in (Deisenroth & Ng, 2015). Instead, the Bayesian
Committee Machine proposed in (Tresp, 2000) is adapted
for aggregating the predictions of Gaussian process models,
such that a higher importance is put on models with low
posterior variance. The tree structure of the individual mod-
els serves in this method as an efficient way for distributing
the data to several computing nodes. Since the previously
mentioned data clustering and aggregation methods can be
shown to be inconsistent, i.e., they do not converge to the
true distribution asymptotically, Rullière et al. (2018) pro-
pose to consider covariances between the individual models.
While the resulting model is consistent, the computational
complexity of the aggregation increases significantly. There-
fore, (Liu et al., 2018) introduce the generalized robust
Bayesian committee machine, which augments existing tree
architectures by maintaining an additional global data set,
which contains data uniformly spread over the input domain.
By communicating this data to all leaves of the computing
tree, consistency is recovered. Although these approaches
can scale GPs to millions of training samples, this is mostly
achieved through parallelization, but the asymptotic com-
plexity of predictions typically remains linear in the number
of individual GP models. In online learning problems, this
can become problematic, since the overhead of paralleliza-
tion becomes significant when only a single prediction is
computed. Moreover, an efficient online construction of
the tree computing structure as well as error bounds for the
predictions as required for safety-critical application has not
been investigated.

In contrast to the existing GP approximations using trees
as computation graph, LoG-GPs employ locally growing
random trees, which provide multiple advantages for online
learning. Using probability functions for the assignment
of data to nodes allows the efficient construction of the
computing tree with streaming data. In fact, the proposed
method is very general and includes many existing methods
as special cases, e.g., the k-d (Ng & Deisenroth, 2014) and
ball-tree constructions (Cao & Fleet, 2014) can be seen as
deterministic special cases for batch data. Although the idea
of adapting the density and extension of local models to
the data density has been inherent in aggregation schemes
with localized models, most of the proposed approaches
require the data in advance for clustering the data points
into the leaves, such that they cannot handle streaming data.
Moreover, the main motivation behind localized models in
existing methods lies in an improvement of the regression

performance. All models, even those far from a test in-
put, are typically evaluated for the overall prediction, which
leads to a linear computational complexity in the number
of models. LoG-GPs overcome this issue in a principled
way by exploiting the tree structure and locality in each
layer of the tree to limit the number of individual models
which need to be evaluated at a test point. Each model can
only be active for prediction in regions, in which it has also
a positive probability of receiving training samples. This
ensures a good prediction performance, while at the same
time active models can be determined very efficiently using
recursive tree search algorithms. Since the graph generated
by LoG-GPs can be interpreted as random splitting tree, log-
arithmic complexity guarantees for predictions and updates
can be straightforwardly obtained under weak assumptions.
Moreover, the definition of the aggregation weights as prob-
abilities directly guarantees that uniform error bounds from
exact GP inference are inherited. Thereby, LoG-GPs are
well-suited for online learning of streaming data in safety-
critical applications.

It should be noted that in addition to the usage as compu-
tation graph, trees have found various other applications
in GP approximations. Using a k-d tree to query the clos-
est data to a test point and only use this data for inference,
Vasudevan et al. (2009) can achieve a constant prediction
complexity. However, this comes at the cost of a discon-
tinuous model. In structured sparse approximations, k-d
trees can be used to quickly cluster training samples, such
that linear interpolation can be used between cluster centers
(Shen et al., 2006). Thereby, a linear prediction complexity
can be achieved, too. In (Gramacy & Lee, 2008), partition
trees are employed with GPs at the leaf nodes, in order to
regress multi-modal data with stationary kernels. A prior is
used to specify the probability of splitting a leaf and generat-
ing children, such that Markov chain Monte Carlo methods
can be used to determine the posterior. Finally, a linear
complexity in the number of inducing points is achieved by
clustering them into blocks and imposing a tree structure on
the blocks (Bui & Turner, 2014). While these approaches
demonstrate the capability of trees for scaling GPs to large
non-stationary data sets, they play no role in online learning
problems.

B. Proofs and Other Theoretical Results
This section presents proofs of the main results and auxiliary
theory, which is helpful in their practical application. In
order to ease the comprehension, theoretical results from
Section 3 are repeated before the proof.

B.1. Computational Complexity

For proofing the complexity guarantees of predictions and
updates with LoG-GPs, we rely on the theory of random

Supplementary Material

split trees as introduced in (Devroye, 1998). A random
split tree T is defined through the parameters K, N̄ , s0,
s1, p and N . The parameter N describes the number of
balls in the tree, while N̄ denotes the maximum number of
balls in a node of the tree. The number of children of each
node is given by K. Each internal (non-leaf) node has s0

balls, while each leaf node has at least s1 balls. The split
probability is described by p.

The distribution of balls is done iteratively. Starting at
the tree, a ball is assigned to a child by drawing from the
random distribution p until a leaf node is reached. If this leaf
has already reached its capacity, then the tree is extended
and s1 are assigned to each child. The remaining N̄ + 1−
Ks1−s0 nodes are finally assigned according to the random
distribution p.

It can be clearly seen that the tree construction of LoG-GPs
is identical to that of a random split tree with s0 = 0, s1 = 0
and input dependent pn(x). Due to Assumption 3.1, this
allows us to bound the height of the tree in LoG-GPs by the
height of random split tree with c1 ≤ pi ≤ 1−Kc1 for all
i = 1, . . . ,K. This is exploited to bound the complexity of
updates in LoG-GPs.

Theorem 3.1. The update of a LoG-GP with conditional
assignment probabilities pn(·) satisfying Assumption 3.1
requires Op(log(N)) computations1.

Proof. The tree of LoG-GPs is a random split tree in the
sense of (Devroye, 1998). Assumption 3.3 ensures that
in any split of the tree, data is distributed approximately
equally to both sides in the sense that no child gets all
the data almost surely. Hence, it follows from (Devroye,
1998, Theorem 1) that the height of the tree, i.e., the maxi-
mum depth of any leaf, grows logarithmically in probability.
Moreover, it is trivial to see that the updating complexity of
LoG-GPs depends linearly on the height of the tree, which
proves the result.

While the height of the tree is crucial for the update com-
plexity of LoG-GPs, the number of active leaf nodes is
important for the prediction complexity, too. If the active
number of leaves grows logarithmic with the number of
training samples as guaranteed by Assumption 3.2, we ob-
tain the following result.

Theorem 3.2. Mean and variance predictions of LoG-
GPs with conditional assignment probabilities pn(·)
satisfying Assumptions 3.1 and 3.2 require Op(log2(N))
computations.

1Due to the stochasticity of random split trees, determinis-
tic statements about the asymptotic complexity are not possible.
Therefore we describe the asymptotic behavior in probability
using Op(·), e.g., hm ∈ Op(log(N)) ⇔ limN→∞ P (hm >
c log(N)) = 0 for some finite c ∈ R.

Proof. It is trivial to see that the prediction of a single
branch requires O(hm) operations, such that Theorem 3.1
guarantees a complexity of Op(log(N)) for a single branch.
Moreover, the number of leaves m in the tree of a LoG-GP
depends linearly on the number of training samples N ,
i.e., |M| ∈ O(N). Therefore, we have to show that only
Op(log(N)) leaves m have a positive marginal probability
ωm and must be evaluated. It immediately follows
from Assumption 3.2 that no more than K log(c2h

m+c3)

leaves can be active, which implies that the number of
active leaves behaves as O(hm). Therefore, a prediction
requires O((hm)2), which concludes the proof using
Theorem 3.1.

B.2. Uniform Error Bound using Bayesian Principles

Based on Assumptions 3.3 and 3.4, it is straightforward to
extend the error bound in (Lederer et al., 2019a, Theorem
3.1) to LoG-GPs as shown in the following.

Theorem 3.3. Consider a distributed GP approach satis-
fying Assumption 3.4 and defined through the continuous
covariance function k : Rd × Rd → R+ with Lipschitz
constant Lk on the compact set X ⊂ Rd. Furthermore,
consider a continuous unknown function f : X → R with
Lipschitz constant Lf and N ∈ N observations y(i) satisfy-
ing Assumption 3.3. Pick δ ∈ (0, 1), τ ∈ R+ and set

β(τ)= 2 log

(
d

d
2 max
x,x′∈X

‖x−x′‖d∞|M|
)
−log

(
δ2dτd

)
(29)

γ(τ)=
∑
m∈M

wm(x)
(
Lµmτ+

√
β(τ)Lσm

τ
)

+Lfτ , (30)

where Lµm and Lσm denote the Lipschitz constants of the
GP mean and standard deviation, respectively. Then, it
holds that

P (|f(x)− µ̃(x)| ≤ η(τ ,x), ∀x ∈ X) ≥ 1− δ, (31)

where

η(τ ,x) =
√
β(τ)

∑
m∈M

wm(x)σm(x) +γ(τ). (32)

Proof. Due to Assumption 3.3 and (Lederer et al., 2019a,
Theorem 3.1), for each individual model it holds with prob-
ability of at least 1− δ̃ that

|f(x)−µm(x)|≤√
β̃(τ)σm(x)+(Lµm+Lf)τ+

√
β(τ)Lσmτ, (33)

where

β̃(τ) = 2 log

d
d
2 max
x,x′∈X

‖x− x′‖d∞

δ̃2dτd

 (34)

Supplementary Material

and τ ∈ R+ can be an arbitrary constant. Moreover, we
have

|f(x)− µ̃(x)| =

∣∣∣∣∣f(x)−
∑
m∈M

wm(x)µm(x)

∣∣∣∣∣ (35)

=

∣∣∣∣∣∑
m∈M

µm(x)(f(x)− µm(x))

∣∣∣∣∣ (36)

≤
∑
m∈M

wm(x)|f(x)− µm(x)|, (37)

where the second line follows from Assumption 3.4 and the
third line follows from the triangle inequality. Applying the
union bound and setting δ̃ = δ/|M|, (33) holds jointly for
all m ∈M, which concludes the proof.

A major advantage of Theorem 3.3 is that all involved pa-
rameters can directly be computed. In order to bound the
Lipschitz constant of the posterior mean of GP models, we
need to define the Lipschitz constant Lk of the kernel k(·, ·).
Following standard definitions of Lipschitz constants, we
consider every value Lk satisfying

|k(x,x′)− k(x̃,x′)| ≤ Lk‖x− x̃‖ (38)

for all x,x′, x̃ to be a valid Lipschitz constant of k(·, ·).
Since most kernels are differentiable, this value can typically
be obtained through the first derivative of the kernel. This
allows to directly compute the Lipschitz constant Lµ of the
GP mean using the following lemma.

Lemma B.1. The Lipschitz constant Lµ of a GP posterior
mean with N training samples is bounded by

Lµ ≤ Lk
√
N‖α‖ (39)

where Lk denotes the Lipschitz constant of the kernel k(·, ·).

Proof. The proof can be found in (Lederer et al., 2019a).

Although the Lipschitz constant of the posterior variance
can also be computed as outlined in (Lederer et al., 2019a),
this approach suffers from an increasing Lipschitz constant
with growing data set size. Therefore, we exploit the kernel
pseudo-metric for deriving a Lipschitz constant, as sug-
gested in (Curi et al., 2020).

Lemma B.2. The posterior standard deviation σ(·) of a
Gaussian process with stationary kernel k(x,x′)=k(x−x′)
admits a Lipschitz constant

Lσ = sup
x,x′∈X

∥∥∥∥∥
√

1

s2
f−k(x− x′)

∂k(r)

∂r

∣∣∣
r=x−x′

∥∥∥∥∥, (40)

where s2
f = k(x,x).

Proof. Due to (Curi et al., 2020, Lemma 12), we can bound
the difference between two GP standard deviations by

|σ(x)− σ(x′)| ≤ dk(x,x′), (41)

where the kernel pseudo-metric is defined as

dk(x,x′) =
√
k(x,x) + k(x′,x′)− 2k(x,x′). (42)

Due to stationarity of the kernel k(·, ·), we can simplify the
kernel pseudo-metric to

dk(x,x′) =
√

2s2
f − 2k(r), (43)

where s2
f = k(x,x) and r = x− x′. Hence, the Lipschitz

constant of σ(·) is given by

Lσ = sup
x,x′∈X

∥∥∥∥∥
√

1

s2
f−k(x−x′)

∂k(r)

∂r

∣∣∣
r=x−x′

∥∥∥∥∥. (44)

The Lipschitz constant in (40) often reduces to a simple
expression. For example, for the ARD squared exponential
kernel

k(r) = s2
f exp

(
−

d∑
i=1

r2
i

2l2i

)
(45)

we have

∂k(r)

∂r
= k(r)

− r1
l21
...
− rd
l2d

 . (46)

Therefore, we obtain

Lσ = sup
x,x′∈X

∥∥∥∥∥∥∥∥
√

k2(x− x′)
s2
f − k(x− x′)

x1−x′1
l21
...

xd−x′d
l2d

∥∥∥∥∥∥∥∥ . (47)

It can be shown that this expression reaches its maximum
for x→ x′, such that L’Hôpital’s rule can be used to derive

Lσ = σf

∥∥∥∥∥∥∥

1
l1
...
1
ld

∥∥∥∥∥∥∥ . (48)

B.3. Uniform Error Bound based on RKHS Theory

While we focus on uniform error bounds derived from
Bayesian principles in the main article, these bounds can be
analogously derived using the theory of reproducing kernel

Supplementary Material

Hilbert spaces (RKHS) (Srinivas et al., 2012; Chowdhury &
Gopalan, 2017; Fiedler et al., 2021). We demonstrate this
by extending the uniform error bound presented in (Fiedler
et al., 2021) to LoG-GP predictions.

Every kernel k(·, ·) uniquely defines a RKHS Hk(X) on
a compact set X with an inner product 〈·, ·〉k obeying the
reproducing property f(x) = 〈f , k(x, ·)〉k for all f(·) ∈
Hk(X) (Schölkopf & Smola, 2002). The RKHS norm of
a function ‖f‖k =

√
〈f , f〉k is a measure of the functions

complexity, which motivates the following commonly used
assumption.

Assumption B.1. The RKHS norm of the unknown function
f(·) is upper bounded by B, i.e. ‖f‖k ≤ B.

While the Bayesian approach is restricted to Gaussian noise
with known variance, RKHS based approaches are more
flexible and admit the following assumption on the observa-
tion noise.

Assumption B.2. The noise sequence εn is conditionally
R-sub-Gaussian for a fixed constant R ≥ 0, i.e.,

∀n ≥ 0, s ∈ R : E
[
esεn|Fn−1

]
≤ exp

(
s2R2

2

)
, (49)

where Fn−1 is the σ-algebra generated by the random vari-
ables {x(t), εt}n−1

t=1 and x(n).

This assumption is not restrictive as it is satisfied by, e.g.,
bounded or Gaussian noise (Chowdhury & Gopalan, 2017).

Based on these assumptions, we can extend Theorem 1 in
(Fiedler et al., 2021) to LoG-GPs as shown in the following.

Theorem B.1. Consider a distributed GP approach satis-
fying Assumption 3.4 and defined through the covariance
function k : Rd × Rd → R+. Furthermore, consider an
unknown function f : X→ R and N ∈ N observations y(i)

satisfying Assumptions B.1 and B.2. Pick δ ∈ (0, 1), define
σ̄n = max{σn, 1}, and set

βRKHS
m (δ) =

B+R
√

log(det(Km+σ̄2
nINm

))−2 log(δ) (50)

Then, it holds that

P (|f(x)− µ̃(x)| ≤ ηRKHS(x), ∀x ∈ X) ≥ 1− δ, (51)

where

ηRKHS(x) =
∑
m∈M

wm(x)

√
βRKHS
m

(
δ

M

)
σm(x). (52)

Proof. Due to (Fiedler et al., 2021), we have for each local
GP model that

|f(x)− µm(x)| ≤
√
βRKHS
m (δ̃)σm(x) (53)

with probability of at least 1− δ̃. Moreover, we have

|f(x)− µ̃(x)| =

∣∣∣∣∣f(x)−
∑
m∈M

wm(x)µm(x)

∣∣∣∣∣ (54)

=

∣∣∣∣∣∑
m∈M

µm(x)(f(x)− µm(x))

∣∣∣∣∣ (55)

≤
∑
m∈M

wm(x)|f(x)− µm(x)|, (56)

where the second line follows from Assumption 3.4 and the
third line follows from the triangle inequality. Applying the
union bound and setting δ̃ = δ/|M|, (53) holds jointly for
all m ∈M, which concludes the proof.

B.4. Comparison to Theoretical Guarantees for
Spectral Approximations

Although finite feature approximations of stationary kernels
also allow to extend uniform error bounds from exact GP
inference (Mutný & Krause, 2018; Angelis et al., 2020),
they often require an impractically high number of fea-
tures to be useful. We demonstrate this in the following
for the commonly used random Fourier features (Rahimi
& Recht, 2008) and the more frequently introduced quadra-
ture Fourier features (Mutný & Krause, 2018; Angelis et al.,
2020).

Given a trigonometric feature map z : Rd → R2D,
D ∈ R+, the covariance function can be approximated
by k(x,x′) = zT (x)z(x′), such that Gaussian process
regression reduces to Bayesian linear regression, see, e.g.,
(Bishop, 2006). Error bounds from exact inference can
straightforwardly be extended by uniformly bounding the
approximation error caused in the posterior mean and poste-
rior variance. For example, the difference of the posterior
mean µ(·) of the Gaussian process with kernel k(·, ·) and
the posterior mean µ̃(·) resulting from the Fourier features
can be bounded by

|µ(x)− µ̃(x)| ≤ ε (N + 1)2

σ2
n

(
B +

√
2 log

(
1

δ

))
(57)

for all x,x′ ∈ X with probability of at least 1 − δ due to
(Mutný & Krause, 2018, Theorem 5), where B ∈ R+ is
an upper bound on the characteristic spectral function of
f(·) and ρ denotes the uniform approximation bound for
the feature map, i.e., |k(x,x′) − zT (x)z(x′)| ≤ ρ for all
x,x′ ∈ X. Due to the linear dependence on ρ, small values
must be guaranteed for the uniform approximation bound.
For random Fourier features, small values can be guaranteed
with probability of at least 1− δ̃ (Rahimi & Recht, 2008),

Supplementary Material

10−7

10−1

105
δ̃

d = 1 d = 5

d = 10 d = 20

100 101 102 103 104 105
10−7

10−1

105

D

ρ

Figure 5. A high number of random Fourier features is generally
required to guarantee at least a decent uniform approximation
bound for the squared exponential kernel. While fewer quadra-
ture Fourier features are sufficient for very low dimensional input
spaces, medium values of d ≥ 5 require an impractical high num-
ber D.

which depends on the number of features D through

δ̃ = 28

σp max
x,x′∈X

‖x−x′‖d

ρ

2

exp

(
− Dρ2

4d+ 8

)
, (58)

where σ2
p is the trace of the Hessian at 0, e.g., for the ARD

squared exponential we have σ2
p = 2

∑d
i=1

1
l2i

. For quadra-
ture Fourier features, the deterministic kernel approximation
bound

ρ = d2d−1

√
π

2

1

D̄D̄

 e

4 min
i=1,...,d

l2i

D̄ (59)

can be derived with D = (2D̄)d

2 as shown in (Mutný &
Krause, 2018). It can be seen that both expressions strongly
grow with the input dimensionality d, such that the bounds
can only be exploited for low-dimensional inputs, but be-
come impractical for large d. This is illustrated in Fig. 5,
which shows the dependency of δ̃ and ρ on D for different
values of d. The value of ρ is set to 0.1, all other parame-
ters are set to 1 for simplicity. It clearly demonstrates that
bounds such as (57) are limited to small input dimensions
and hence, these approaches for extending uniform error
bounds from exact GP regression are not suited to many
problems in practice.

B.5. Designing Probability Functions for Kernels with
Structure

While the application of LoG-GPs is rather simple for sta-
tionary kernels, the definition of the localizing distributions
pn(x) is a challenging problem in general. Therefore, we

provide some examples how these functions can defined
for kernels reflecting a priori known function structures in
order to give some insights on the design of pn(x) for more
general kernels.

Symmetric Kernels: If we know that an unknown func-
tion satisfies f(x) = f(−x), we can easily reflect this
symmetry in the kernel by considering covariance functions
of the form

k̃(x,x′) = k(x,x′) + k(−x,x′), (60)

where k(·, ·) is an arbitrary kernel (Duvenaud, 2014). In
order to keep the advantages of the kernel k̃(·, ·), the sym-
metric structure should also be considered in the localizing
probability functions pn(·). This can be straightforwardly
achieved by defining them based on (12), but employing
embodying symmetry in the saturating linear functions, e.g.,

ξnk (x)=

0 if |xjnk | < snk −

onk
2

|xjn
k
|−snk
onk

+ 1
2 if snk−

onk
2 ≤|xjnk |≤s

n
k+

onk
2

1 if snk +
onk
2 < |xjnk |.

(61)

Periodic Kernels: Similarly to symmetry, periodicity of
unknown functions can be straightforwardly encoded in
kernels. Given an isotropic covariance function k(x,x′) =
k(‖x− x′‖), the periodic analog is defined as

k̃(x,x′) = k

(
sin2

(
‖x− x′‖π

p

))
, (62)

where p is the period. By considering the periodicity in
the saturating linear functions, this information can be also
exploited in LoG-GPs. This is achieved by defining

ξnk (x)=

0 if xjnk %p < snk −

onk
2

xjn
k

%p−snk
onk

+ 1
2 if snk−

onk
2 ≤xjnk %p≤snk+

onk
2

1 if snk +
onk
2 < xjnk %p,

(63)

where % denotes the modulo division.

Multi-Dimensional Products of Stationary and Non-
Stationary Kernels: In particular in control applications,
prior knowledge of state dependencies is often available,
e.g., if systems are control-affine. This can be exploited by
multi-dimensional product kernels of the form

k̃([xT1 x
T
2]T , [x′T1 x′T2]T) = k1(x1,x′1)k2(x2,x′2), (64)

where k1(·, ·) and k2(·, ·) are covariance functions. As long
as either k1(·, ·) or k2(·, ·) is stationary, we can employ
the proposed standard approach for defining the probability
functions pn(·), merely restricting the indexes jk of the
saturating linear functions to the inputs of the stationary
kernel.

Supplementary Material

B.6. Safe Event-Triggered Learning Control

Due to the event-triggered learning, the continuous-time
control becomes affected by discrete time events. This leads
to the fact that the closed-loop system becomes a switching
system (Liberzon, 2003). Therefore, we use the concept of
a common Lyapunov function to derive an ultimate bound
in the following theorem.
Theorem 3.4. Consider a control affine system (19),
where f(·) satisfies Assumption 3.3 and admits a Lipschitz
constant Lf on X⊂Rd, and measurements are available
according to Assumption 4.1. Let P ∈ Rd×d the unique,
positive definite solution to the algebraic Riccati equation
ATP+PA=−Id withA defined in (21). Then, the feedback
linearizing controller (20) with µ̃(·) based on a stationary
kernel and event-triggering mechanism given in Algorithm 3
with η(τ)=

√
β(τ)σ+γ(τ) and σ2>σ2

nk(0, 0)/(k(0, 0)+

σ2
n) guarantees with probability 1−δ that the tracking er-

ror e converges to T=
{
x∈X

∣∣‖e‖≤2η(τ)‖pd‖
}

.

Proof. Since the filter vector λ is assumed to be Hurwitz,
there exists a unique and positive definite solution P ∈
Rd×d to the algebraic matrix Riccati equation

ATP + PA = −Id.

Based on this matrix, consider the common Lyapunov func-
tion V (x) = eTPe and the models µ̃k(·), where k ∈ N0

denotes the number of added data points, then

V̇ (e) =
∂V

∂e
ė

= eTATPe+ eTPAe+ 2eTpd(f(x)− νN (x))

≤ −‖e‖2 + 2‖e‖‖pd‖(f(x)− νN (x))

≤ 0 ∀ ‖e‖
2‖pd‖

> |f(x)− µ̃k(x)|.

To guarantee convergence for arbitrary switching times, the
Lyapunov function must be decreasing ∀k, i.e. the controller
must ensure that the model error |f(x)− µ̃k(x)| does not
exceed ‖e‖/(2‖pd‖) for all k. With the model error bound
in Theorem 3.3, one can conclude

P
(
V̇ (x)<0

)
≥ 1−δ ∀x if ηk(x, τ) <

‖e‖
2‖pd‖

, (65)

where the latter condition is ensured by the triggering mech-
anism (first part line 3, Algorithm 3) for all x ∈ X \ T
(second part line 3, Algorithm 3). In order to see this, we
consider three cases.

First, we consider the case of the first measurement y(1) at
state x(1). It directly follows from (Williams & Vivarelli,
2000; Lederer et al., 2019b) that the variance satisfies

σ̃2(x(k)) ≤ σ2
n

1 +
σ2
n

k(0,0)

. (66)

Hence, regardless of the error e, either (65) or the desired
error bound described by η(τ) is satisfied, such that the
while loop in line 6 in Algorithm 3 terminates after a single
iteration.

Next, we consider the case that no node is divided during the
assignment of the measurement y(k) with state x(k). Then,
it follows from a slight adaptation of (Vivarelli, 1998) that
for positive noise variance σ2

n, the posterior variance of an
individual Gaussian process is strictly decreasing at the state
x(k) which is added to the training data, i.e.,

σ2
i,k(x(k)) < σ2

i,k−1(x(k)). (67)

Hence, (65) is satisfied for all x ∈ T \ B, and the while
loop in line 6 in Algorithm 3 terminates again after a single
iteration.

Finally, we consider the case that for the state x(k), at which
the measurement y(k) is recorded, several individual mod-
els have a positive probability ωi(x) and a model division
occurs. Due to the reduction of the training set size, a slight
increase in the posterior variance of both new leaves cannot
be excluded. However, the while loop in line 6 in Algo-
rithm 3 ensures that additional data is added at the same
position. Since all individual models contributing the ag-
gregated prediction have a positive assignment probability,
each of them will eventually be assigned a training sample
with probability one. Due to the former two cases, this
implies that (65) is satisfied for all x ∈ X \ T.

Since (65) has been shown to hold for all x ∈ X \ T, it
follows that error converges to the ultimately bounded set T,
where Algorithm 3 does not trigger events. This concludes
the proof.

Note that case 3 is a worst case consideration that does
not occur in every node division. A slight increase of the
posterior variance after a node division can only happen if
the added point is in a region, where both new child nodes
have a positive probability (since one of them does not get
the new training sample), or if many training samples close
to the newly added point get assigned to the other child
during the division. Both cases can be easily addressed in
practice by choosing conditional assignment probabilities
that divide the state space sufficiently far away from the
newly added training sample. Therefore, this case is not an
issue in practice.

In fact, even without considering this in the design of the
conditional assignment probabilities, an increase in the pos-
terior variance is very unlikely to occur, since most of the
time a single model is used for prediction anyways, as we
want to employ as few as possible local models for compu-
tational efficiency.

Supplementary Material

C. Numerical Evaluation
In this section, we provide details on the numerical evalua-
tion in Section 5, a discussion of the results and additional
simulation results.

C.1. Detailed Information on Simulation Setup

All simulations are executed on a cluster computer with
Intel(R) Core(TM) i9-9900X CPU and 128GB DDR4 RAM.
The code is run using MATLAB R2019a when not stated
differently.

Since the SARCOS data set2 contains 7-dimensional targets,
we only take the first column of the targets. The order of
the rows in the data matrix is randomized in each of the
20 repetitions and inputs and targets are centralized. The
training inputs of the buzz in social media and the house-
hold electric data sets3 are centralized. For determining the
training targets, we take the last and sixth column of the
data sets, respectively. Moreover, we take the logarithm of
these values, but additionally add 1 for the buzz in social
media data. Finally, these values are centralized.

For evaluating the performance of the LoG-GPs, ISSGP, lo-
cal GPs, SSGP and rBCM, we use the following parameters:

• LoG-GP: each node n has K = 2 children. The proba-
bilities pn(·) are defined through (11), (12), where jnk
is the dimension of the maximum spread of the local
data set, snk is the mean of the data in this dimension
and

ok =
maxx,x′∈Dk

‖x− x′‖
100(h

n

10 + 1)
(68)

with hn being the height of node n. Moreover, each lo-
cal model can contain a maximum of N̄ = 100 training
samples. For the MoE and gPoE aggregation schemes,
we use (10), while we define

ωm =
log(k(x,x))−log(σ2

m(x))

2

hm∏
i=1

p
bmi
smi

(x). (69)

for the rBCM aggregation, where the first factor is the
differential entropy between the prior and the posterior
distribution as proposed in (Deisenroth & Ng, 2015).

• ISSGP: as suggested in (Gijsberts & Metta, 2013), we
use D = 200 random Fourier features. Hence, the
kernel matrix has size 400× 400.

2The data set is available at http://www.
gaussianprocess.org/gpml/data/.

3The data and pre-processing are available at
https://drive.google.com/file/d/0BxWe_
IuTnMFcYXhxdUNwRHBKTlU/view.

• local GPs4: the maximum number of training samples
of a local model is set to N̄ = 100. Moreover, a
threshold of 0.9 is used to determine if a new model is
generated.

• SSGP5: the method is used with 100 inducing points,
but no online optimization of hyperparameters and
inducing points to reduce computational complexity.
Since the method does not allow iterative updates, we
update it using mini-batches of size 300 as proposed in
the original publication (Bui et al., 2017). This means
that we determine the prediction error on 300 training
samples before we update the model using these data
samples. This method is implemented in Python.

• rBCM6: the maximum number of samples in a local
model is set to N̄ = 100. The data is randomly dis-
tributed to the local models. Since the method does not
allow iterative updates, we recompute the model each
time after observing 1000 new samples using the data
observed up to this time.

The hyperparameters for all methods are obtained through
log-likelihood maximization based on 1000 training sam-
ples. This is done using the well-documented MATLAB
internal routine whenever possible. For the Python imple-
mentation of SSGPs, hyperparameter optimization is based
on the GPflow toolbox7 (Matthews et al., 2017). The com-
putations for all methods are performed on a single com-
putation unit. Note that the evaluation of the local models
of LoG-GPs can be parallelized similarly as proposed by
Deisenroth & Ng (2015) by distributing the active models
to multiple computation units.

C.2. Additional Simulation Results and Discussion

C.2.1. REGRESSION PERFORMANCE

Tables 2 and 3 display the standardized mean square error
and mean standardized log loss averaged over 20 simula-
tion runs together with the corresponding standard devia-
tions, whose evolution over the number of training samples
is illustrated in Fig. 2. Table 2 clearly shows that LoG-
GP approaches outperforms state-of-the-art online learning
methods regarding the overall prediction error for data sets
with medium and high dimensional input domains such as
the SARCOS and buzz in social media data. For low di-

4The code is available at https://www.ias.
informatik.tu-darmstadt.de/Miscellaneous/
Miscellaneous.

5The code is available at https://github.com/
thangbui/streaming_sparse_gp.

6The code is available at https://github.com/
LiuHaiTao01/GRBCM.

7The code is available at https://github.com/
GPflow/GPflow.

http://www.gaussianprocess.org/gpml/data/
http://www.gaussianprocess.org/gpml/data/
https://drive.google.com/file/d/0BxWe_IuTnMFcYXhxdUNwRHBKTlU/view
https://drive.google.com/file/d/0BxWe_IuTnMFcYXhxdUNwRHBKTlU/view
https://www.ias.informatik.tu-darmstadt.de/Miscellaneous/Miscellaneous
https://www.ias.informatik.tu-darmstadt.de/Miscellaneous/Miscellaneous
https://www.ias.informatik.tu-darmstadt.de/Miscellaneous/Miscellaneous
https://github.com/thangbui/streaming_sparse_gp
https://github.com/thangbui/streaming_sparse_gp
https://github.com/LiuHaiTao01/GRBCM
https://github.com/LiuHaiTao01/GRBCM
https://github.com/GPflow/GPflow
https://github.com/GPflow/GPflow

Supplementary Material

·104

10−4

10−3

10−2

10−1

t u
p

a) SARCOS

MoE-LoG-GP gPoE-LoG-GP rBCM-LoG-GP Local GPs ISSGP SSGP rBCM

·105

10−4

10−3

10−2

10−1
b) buzz in social media

·106

10−4

10−3

10−2

10−1
c) electric

0 1 2 3 4

·104

10−4

10−3

10−2

10−1

Iteration

t p
re

d

0 2 4

·105

10−4

10−3

10−2

10−1

Iteration
0 0.5 1 1.5 2

·106

10−4

10−3

10−2

10−1

Iteration

Figure 6. Plots of average update time tup (top) and the average prediction time tpred (bottom) on a) SARCOS b) buzz in social media
and c) electric data sets. Due the high computation times, the SSGP could only be applied to the SARCOS, while the rBCM could not be
evaluated on the electric data set. Computation times of LoG-GP approaches are more noisy than those of existing methods due to the
strongly varying size of local models. However, they are generally smaller, in particular for computing model updates.

Table 2. Average standardized mean squared error with the corre-
sponding deviation in brackets for the SARCOS, buzz in social
media and electric data sets. LoG-GP approaches show advantages
in problems with medium and high dimensional input domains,
while ISSGPs exhibit advantageous performance on low dimen-
sional problems.

SMSE (·10−3) SARCOS BUZZ ELECTRIC

MOE-LOG-GP 31.3 (0.85) 88.0 (12.9) 5.0 (0.56)
GPOE-LOG-GP 30.3 (0.75) 89.2 (10.4) 4.8 (0.60)
RBCM-LOG-GP 30.7 (0.85) 101.4 (27.0) 5.2 (0.44)
ISSGP 30.9 (1.4) 100.1 (16.0) 3.4 (0.24)
LOCAL GPS 276.0 (64.5) 744.0 (35.9) 450.9 (87.9)
SSGP 35.9 (2.4) — —
RBCM 29.0 (1.3) 124.9 (42.4) —

Table 3. Average mean standardized log loss with the correspond-
ing standard deviation in brackets for the SARCOS, buzz in social
media and electric data sets. LoG-GP approaches outperform
existing approaches for online learning on all data sets.

MSLL SARCOS BUZZ ELECTRIC

MOE-LOG-GP −1.87 (0.02) −1.34 (0.02) −2.86 (0.02)
GPOE-LOG-GP −1.88 (0.02) −1.34 (0.02) −2.86 (0.03)
RBCM-LOG-GP −1.89 (0.02) −1.33 (0.04) −2.86 (0.03)
ISSGP −1.68 (0.05) −1.14 (0.11) −2.84 (0.03)
LOCAL GPS −0.18 (0.07) −0.15 (0.05) −0.03 (0.15)
SSGP 7.17 (2.61) — —
RBCM 78.2 (10.8) 375 (11.7) —

mensional input domains as in the house electric data set,
ISSGPs provide a slightly better performance. The weaker
performance of ISSGPs for high dimensional input domains
is a direct consequence of the strong dependence of the ker-
nel approximation error on the input dimension as discussed
in Appendix B.4.

The poor performance of local GPs, which is significantly

worse than originally presented by Nguyen-Tuong et al.
(2009b), is a result of not tuning the threshold for generating
new models for each data set. While tuning this parameter
could improve the performance, this would conflict with
the principle of online learning: for tuning the parameter, a
significant amount of training data is necessary, while the
online learning paradigm assumes little or even no data in
advance. Moreover, tuning must be done by hand, which
is time-consuming. Therefore, we chose the value 0.9 for
the threshold empirically such that many local models are
generated, yet not too many to keep the computation time
tractable.

Table 3 shows that LoG-GPs provide better predictive dis-
tributions than state-of-the-art methods. Even though the
difference to some other methods is small, it should be
noted that the quality of the predictive distributions is cru-
cial in safety-critical applications due to the dependence of
uniform error bounds on the posterior standard deviations.
Therefore, even a small improvement over existing methods
is highly beneficial in practice.

While it might be surprising that rBCMs provide poor pre-
dictive distributions as indicated by the high MSLL values,
this effect has already been observed in (Liu et al., 2018),
where it is shown that the rBCM asymptotically becomes
overconfident. Similarly, the rather weak performance of
the SSGP can be explained by the slight differences in the
simulation setup we used. While the inducing points and
hyperparameters are updated in every mini-batch in the orig-
inal publication (Bui et al., 2017), we refrain from doing so
in order to keep the computation time tractable.

Supplementary Material

0 1 2 3 4

·104

0

1

2

3

Iteration

#
ac

tiv
e

m
od

el
s

Figure 7. The small computation times for predictions are achieved
by a low number of active models, which is on average less than 2
for the MoE-LoG-GP on the SARCOS data set. The comparatively
high standard deviation of the number of active models illustrated
by the error bars contributes to noisy prediction times of LoG-GPs.
The observed maximum number of active models is 12 on the
SARCOS data set.

Table 4. Standard deviation of update and prediction times in µs
for the SARCOS, buzz in social media and electric data sets.

STD. DEVIATION SARCOS BUZZ ELECTRIC
(µs) tpred tup tpred tup tpred tup

MOE-LOG-GP 87 214 93 202 49 150
GPOE-LOG-GP 83 207 95 202 53 157
RBCM-LOG-GP 82 196 78 147 46 148
ISSGP 34 266 30 275 15 65
LOCAL GPS 113 182 657 672 30 34
SSGP 7481 9688 — — — —
RBCM 1380 2550 9126 6619 — —

In addition to the slight advantages in the regression per-
formance, LoG-GP approaches exhibit significantly lower
computation times as shown in Fig. 6. The total standard
deviations of the update and prediction times are depicted
in Table 4. These simulation results show that computation
times of LoG-GPs are more strongly varying compared to
existing methods, which is a consequence of the contin-
uously changing size of the local models. Moreover, the
logarithmic growth of the computation time is not visible,
since the overlapping ratio ok was chosen small, such that
the average number of active models is almost constant as
illustrated in Fig. 7 for the MoE-LoG-GP trained on the
SARCOS data set. Since the depth of the tree is practi-
cally not relevant, almost constant computation times can
be achieved with LoG-GPs, which is a strong advantage
over the rBCM and the SSGP. Note that the difference in
the used programming languages has an effect on the abso-
lute computation time, but not on the behavior. While the
computation time for updates of LoG-GPs in a Python im-
plementation increased to approximately 5 ms on the SAR-
COS data set, it did practically not change with a growing
number of training samples. Therefore, LoG-GPs remain ad-
vantageous compared to SSGP regardless of the employed
programming language.

While other methods such as the ISSGP and the SSGP
compress the information obtained from training data, the
full data set is used for predictions with LoG-GP methods.
Therefore, they exhibit a significantly higher memory com-

Table 5. Parameters for the learning control illustration
kc λ x0 σ2

n σf l τ δ

10 1

[
7
−5

]
10−6 5

[
0.5
0.5

]
10−10 0.05

plexity, which grows linearly with the number of training
samples. However, in practice this does not cause signifi-
cant problems with modern computers. For example, for a
LoG-GP with 216 nodes, which is sufficient for the buzz in
social media data set, merely 1.05 GB RAM are necessary.

C.2.2. EVENT-TRIGGERED ONLINE LEARNING
CONTROL

Since real-world continuous-time control systems are run
on computers with finite processing power, controllers must
be applied in a sampled-data sense in practice. We reflect
this in our simulation by running the control loop with
1kHz rate and use zero order hold digital to analog con-
version. The condition for triggering an updating event is
sampled with the same rate. The control parameters and
hyperparameters for the MoE-LoG-GP are depicted in Ta-
ble 5. The desired upper bound on the tracking error is set
to η(τ) = 5

√
β(τ)σn + γ(τ). However, due to the imple-

mentation as sampled-data system, the learning event might
be triggered delayed, such that adding a single data point
might not sufficiently reduce the posterior variance, even
for the exact GP. Therefore, we trigger the event early using
the value η̃(τ) = 2

√
β(τ)σn + γ(τ), such that the original

bound η(τ) is met after adding a training sample.

The resulting tracking error together with the time instances
of the triggered learning events is displayed in Fig. 8. It
can be seen that the learning event is triggered frequently
at the beginning until ≈ 20s, when the system state has
converged to the reference trajectory and sufficient data of
the inner circular motion has been collected. After this
time, barely any new data is sampled until the radius of
the reference starts to increase at ≈ 60s. Then, the model
is again frequently updated until the learning has finished
after 160s. Most importantly, it becomes clear that the
stationary tracking error is clearly upper bounded, where
most of time the early triggering condition η̃(τ) defines the
bound. Only in a few instances, this bound is significantly
exceeded. However, the error bound defined through η(τ)
permanently holds after the initial transition period.

C.3. Influence of Hyperparameters on Performance

When aiming for the highest possible prediction and update
rates, any omissible computations must be spared. There-
fore, we do not consider an online hyperparameter opti-
mization in LoG-GPs and other methods. Nevertheless,
hyperparameters can have a strong impact on the prediction

Supplementary Material

0s 20s 40s 60s 80s 100s 120s 140s 160s 180s 200s

10−4

10−3

10−2

10−1

100

101

t

‖e
‖

triggered events tracking error

Figure 8. An event for learning can be triggered when the error exceeds the threshold prescribed by η(τ), which happens frequently in the
transition period at the beginning and when changing the radius of the reference trajectory. Once a stationary behavior has been reached,
very few events are triggered.

10−1

100

S
M

S
E

MoE-LoG-GP
SMSE MSLL

−20

0

20

40

M
S

LL

10−1

100

S
M

S
E

ISSGP

−20

0

20

40

M
S

LL

10−1

100

S
M

S
E

local GPs

−20

0

20

40

M
S

LL

10−1

100

S
M

S
E

SSGP

−20

0

20

40

M
S

LL

101 102 103

10−1

100

Npretrain

S
M

S
E

rBCM

−20

0

20

40

M
S

LL

Figure 9. Comparison of the methods regarding their dependency
on the quality of hyperparameters resulting from hyperarameter
optimization with Npretrain samples. The standard deviations are
depicted via the error bars. The SMSE of all methods suffers
from poor hyperparameters similarly. The MSLL exhibits strongly
different behavior for the methods: local GPs show almost constant
MSLL values, while the curves are decreasing for ISSGPs and
LoG-GPs with slight advantages for the latter. The values for
SSGPs and rBCMs are generally large, but keep decreasing for
large values of Npretrain.

·104

10−2

10−1

100

S
M

S
E

MoE-LoG-GP w opt (1000) MoE-LoG-GP w/o opt (1000)

MoE-LoG-GP w opt (100) SSGP w opt (1000)

SSGP w/o opt (1000) SSGP w opt (100)

·104

0

5

M
S

LL

·104

10−4

10−2

100

t u
p

0 1 2 3 4 ·104
10−4

10−2

100

Iteration

t p
re

d

Figure 10. Online hyperparameter optimization has a weak impact
on the SMSE. The MSLL of the SSGP improves through the
hyperparameter optimization, but it remains significantly worse
than the MSLL of LoG-GP approaches. When the number of
pretraining samples is reduced to 100, both approaches suffer
from a deteriorated prediction performance. While the prediction
time barely changes for both methods, the update time increases
approximately by a factor of 10. The computation time of LoG-
GPs remains similar to state of the art methods, while SSGPs
become more than 50 times slower than existing methods.

Supplementary Material

performance, particularly in low data regimes. Therefore,
we compare the impact of hyperparameters on the different
methods in this section. For this comparison, we deter-
mine the average SMSE and MSLL values using a varying
number of samples Npretrain for hyperparameter optimiza-
tion. The results of this procedure are depicted in Fig. 9.
A clear correlation between the quality of hyperparameters
indicated by Npretrain and the SMSE as well as MSLL val-
ues can be observed for most methods, even though some
approaches such as LoG-GPs are more robust to poor hyper-
parameters.

This is a consequence of the local activity of GP models.
The division of the input domain has a similar effect as re-
ducing the length scales when more data becomes available.
This approach has been proposed in (Berkenkamp et al.,
2019) in order to achieve no regret in Bayesian optimization
with unknown hyperparameters. While an improved robust-
ness against poor hyperparameters can also be ensured for
other methods such as ISSGPs (Lu et al., 2020), this comes
at the price of additional computational complexity.

When slower prediction and update rates are sufficient in
an application, an online hyperparameter optimization can
be straightforwardly be added to any LoG-GP approach.
For example, we can perform a single gradient step for
log-likelihood maximization of an individual model after
a data point is added. The performance resulting from
this online hyperparameter optimization for MoE-LoG-GPs
on the SARCOS training set with Npretrain = 1000 and
Npretrain = 100 is illustrated and compared to SSGPs with
the online hyperparameter optimization proposed by Bui
et al. (2017) in Fig. 10. It can be clearly seen that for
Npretrain = 1000 the MSLL of SSGPs benefits strongly
from the online hyperparameter optimization, while the
SMSE is barely affected. The regression accuracy and the
quality of the predictive distributions of LoG-GPs remains
almost unchanged. Moreover, both methods exhibit an infe-
rior regression performance when the number of pre-training
samples is reduced to Npretrain = 100 despite the online
hyperparameter training. Overall, LoG-GPs still yield lower
SMSE and MSLL values with online hyperparameter op-
timization, but the gap between SSGPs and LoG-GPs be-
comes smaller.

While the hyperparameter optimization has a beneficial ef-
fect on the quality of the predictive distributions of SSGPs,
it causes a significant increase in average update times for
both methods (103.7 ms for SSGP, 1.2 ms for LoG-GP).
While the overall computation time for the LoG-GP remains
comparable to other methods without online hyperparame-
ter optimization such as ISSGPs, SSGPs are more than 50
times slower. This underlines that disabling the hyperparam-
eter learning can be crucial to realize model updates at high
rates.

10−2

10−1

100

101

S
M

S
E

MoE-LoG-GP(N̄) ISSGP(D) LGP(N̄)

MoE-LoG-GP(K) SSGP(Nind) rBCM(N̄)

10−5 10−4 10−3 10−2 10−1

0

10

20

30

tup

M
S

LL

Figure 11. Given a desired update time, LoG-GPs exhibit the low-
est SMSE and MSLL values on the SARCOS data set, indicating
a beneficial performance-computation time trade-off. The perfor-
mance and update time dependency of LoG-GPs on the number of
children per node K is rather small.

Remark C.1. Since LoG-GPs have the same principled
structure as distributed GPs proposed by Deisenroth & Ng
(2015), the hyperparameter optimization approach can be
employed to optimize the hyperparameters of LoG-GPs.
If a separate process is spawned to perform the required
optimization after batches of data while data is continuously
added to the LoG-GP, existing hyperparameter optimization
approaches can be executed online without crucial impact
on the computational complexity. This approach allows a
batch adaptation of hyperparameters similar to SSGPs.

C.4. Complexity-Performance Trade-Off

LoG-GP approaches do not only provide a beneficial perfor-
mance with a certain parameterization, they seem to provide
a generally advantageous complexity-performance trade-off.
In order to demonstrate this, we compare gPoE-LoG-GPs,
local GPs and rBCMs with N̄ ∈ [10, 1000], ISSGPs with
D ∈ [10, 1000], SSGPs8 with Nind ∈ [10, 1000]. Addi-
tionally, we investigate the impact of the number of child
nodes K on gPoE-LoG-GPs. Since N̄ , Nind, K and D are
crucial for the computation time of the learning algorithms,
this allows us to plot the regression performance against the
computation time, as illustrated in Figs. 11 and 12. When
comparing the SMSE and MSLL values for similar update
times, it becomes clear that LoG-GPs exhibit a superior
performance over the whole displayed range of computa-
tion times. This holds similarly for the prediction times,
even though ISSGPs yield a slightly better SMSE for com-
putation times smaller than 10−4s. Therefore, LoG-GP
approaches offer a beneficial performance-complexity trade-

8While 20 random data permutations are generally used for
computing the curves for comparison, this takes too much com-
putation time with SSGPs. Hence, the SSGP curves have been
determined using 5 random permutations.

Supplementary Material

10−2

10−1

100

101

S
M

S
E

MoE-LoG-GP(N̄) ISSGP(D) LGP(N̄)

MoE-LoG-GP(K) SSGP(Nind) rBCM(N̄)

10−5 10−4 10−3 10−2 10−1

0

10

20

30

tpred

M
S

LL

Figure 12. Given a desired prediction time, the LoG-GPs yield
better MSLL values on the SARCOS data set than the other meth-
ods. This also holds for the SMSE for prediction times larger
than 10−4s. The prediction time dependency of LoG-GPs on K is
small.

10−2

10−1

S
M

S
E

MoE-LoG-GP(N̄) ISSGP(D) LGP(N̄)

MoE-LoG-GP(K) SSGP(Nind) rBCM(N̄)

0

20

40

60

80

M
S

LL

10−4

10−2

100

t u
p

100 101 102 103

10−4

10−2

100

N̄ /D/Nind/K

t p
re

d

Figure 13. Comparison of the parameter dependency of the differ-
ent learning methods. The SMSE values of LoG-GPs improve
when more data points N̄ are allowed in each model, but the com-
putation times grow. Other methods exhibit a similar behavior.

off compared to the other methods on the SARCOS data
set.

In addition to the comparison of the performance complexity
trade-off, we analyze the impact of the previously described
parameters on performance and computation times individu-
ally. This comparison is illustrated in Fig. 13, demonstrating
that all methods depend on the considered parameters in
a similar way. Larger values lead to lower prediction er-
rors and better predictive distributions, but come along with
higher computation times. The number of children K is an
exception to this observation. The prediction error slightly
increases with growingK, while the other criteria are barely
affected.

References
Angelis, E., Wenk, P., Schölkopf, B., Bauer, S., and Krause,

A. SLEIPNIR: Deterministic and Provably Accurate Fea-
ture Expansion for Gaussian Process Regression with
Derivatives. 2020. URL https://arxiv.org/
pdf/2003.02658.pdf.

Berkenkamp, F., Schoellig, A. P., and Krause, A. No-Regret
Bayesian Optimization with Unknown Hyperparameters.
Journal of Machine Learning Research, 20:1–24, 2019.

Bijl, H., van Wingerden, J. W., B. Schön, T., and Verhaegen,
M. Online Sparse Gaussian Process Regression using
FITC and PITC Approximations. IFAC-PapersOnLine,
48(28):703–708, 2015.

Bijl, H., Schön, T. B., van Wingerden, J.-W., and Verhaegen,
M. System Identification through Online Sparse Gaussian
Process Regression with Input Noise. IFAC Journal of
Systems and Control, 2:1–11, 2017.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer Science+Business Media, New York, NY, 2006.

Bui, T. and Turner, R. Tree-Structured Gaussian Process
Approximations. In Advances in Neural Information
Processing Systems, pp. 2213–2221, 2014.

Bui, T. D., Nguyen, C. V., and Turner, R. E. Streaming
Sparse Gaussian Process Approximations. In Advances in
Neural Information Processing Systems, pp. 3300–3308,
2017.

Camoriano, R., Traversaro, S., Rosasco, L., Metta, G., and
Nori, F. Incremental Semiparametric Inverse Dynam-
ics Learning. In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 544–550,
2016.

Cao, Y. and Fleet, D. J. Generalized Product of Experts
for Automatic and Principled Fusion of Gaussian Process

https://arxiv.org/pdf/2003.02658.pdf
https://arxiv.org/pdf/2003.02658.pdf

Supplementary Material

Predictions, 2014. URL http://arxiv.org/abs/
1410.7827.

Cheng, C. A. and Boots, B. Incremental Variational Sparse
Gaussian Process Regression. In Advances in Neural
Information Processing Systems, pp. 4410–4418, 2016.

Chowdhury, S. R. and Gopalan, A. On Kernelized Multi-
armed Bandits. In Proceedings of the International Con-
ference on Machine Learning, pp. 844–853, 2017.

Csató, L. and Opper, M. Sparse On-line Gaussian Processes.
Neural Computation, 14(3):641–668, 2002.

Curi, S., Berkenkamp, F., and Krause, A. Efficient Model-
Based Reinforcement Learning through Optimistic Policy
Search and Planning. In Advances in Neural Information
Processing Systems, 2020.

Deisenroth, M. P. and Ng, J. W. Distributed Gaussian Pro-
cesses. In Proceedings of the International Conference
on Machine Learning, pp. 1481–1490, 2015.

Devroye, L. Universal Limit Laws for Depths in Random
Trees. SIAM Journal on Computing, 28(2):409–432,
1998.

Duvenaud, D. K. Automatic Model Construction with Gaus-
sian Processes. PhD thesis, University of Cambridge,
2014.

Fiedler, C., Scherer, C. W., and Trimpe, S. Practical and
Rigorous Uncertainty Bounds for Gaussian Process Re-
gression. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021.

Gal, Y. and Turner, R. Improving the Gaussian Process
Sparse Spectrum Approximation by Representing Uncer-
tainty in Frequency Inputs. In Proceedings of the Inter-
national Conference on Machine Learning, pp. 655–664,
2015.

Gijsberts, A. and Metta, G. Real-Time Model Learning
using Incremental Sparse Spectrum Gaussian Process
Regression. Neural Networks, 41:59–69, 2013.

Gramacy, R. B. and Lee, H. K. H. Bayesian Treed Gaussian
Process Models with an Application to Computer Model-
ing. Journal of the American Statistical Association, 103
(483):1119–1130, 2008.

Harrison, J., Sharma, A., and Pavone, M. Meta-Learning
Priors for Efficient Online Bayesian Regression. In Pro-
ceedings of the Workshop on the Algorithmic Foundations
of Robotics, 2018.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
Processes for Big Data. In Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence, 2013.

Huber, M. F. Recursive Gaussian Process: On-line Regres-
sion and Learning. Pattern Recognition Letters, 45(1):
85–91, 2014.

Koppel, A. Consistent Online Gaussian Process Regression
Without the Sample Complexity Bottleneck. In Proceed-
ings of the American Control Conference, pp. 3512–3518,
2019.

Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen,
C. E., and Figueiras-Vidal, A. R. Sparse Spectrum Gaus-
sian Process Regression. Journal of Machine Learning
Research, 11:1865–1881, 2010.

Le, T., Nguyen, K., Nguyen, V., Nguyen, T. D., and Phung,
D. GoGP: Fast Online Regression with Gaussian Pro-
cesses. In Proceedings of the IEEE International Confer-
ence on Data Mining, pp. 257–266, 2017.

Lederer, A., Umlauft, J., and Hirche, S. Uniform Error
Bounds for Gaussian Process Regression with Applica-
tion to Safe Control. In Advances in Neural Information
Processing Systems, pp. 659–669, 2019a.

Lederer, A., Umlauft, J., and Hirche, S. Posterior Vari-
ance Analysis of Gaussian Processes with Application
to Average Learning Curves. 2019b. URL http:
//arxiv.org/abs/1906.01404.

Liberzon, D. Switching in Systems and Control. Springer
Science Business Media, 2003.

Liu, H., Cai, J., Wang, Y., and Ong, Y. S. Generalized
Robust Bayesian Committee Machine for Large-Scale
Gaussian Process Regression. In Proceedings of the In-
ternational Conference on Machine Learning, 2018.

Liu, H., Ong, Y. S., Shen, X., and Cai, J. When Gaussian
Process Meets Big Data: A Review of Scalable GPs.
IEEE Transactions on Neural Networks and Learning
Systems, 31(11):4405–4423, 2020.

Liu, Z., Zhou, L., Leung, H., and Shum, H. P. Kinect Posture
Reconstruction Based on a Local Mixture of Gaussian
Process Models. IEEE Transactions on Visualization and
Computer Graphics, 22(11):2437–2450, 2016.

Lu, Q., Karanikolas, G., Shen, Y., and Giannakis, G. B. En-
semble Gaussian Processes with Spectral Features for On-
line Interactive Learning with Scalability. In Proceedings
of the International Conference on Artificial Intelligence
and Statistics, pp. 1910–1920, 2020.

Matthews, A. G. d. G., van der Wilk, M., Nickson, T., Fujii,
K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z.,
and Hensman, J. GPflow: A Gaussian Process Library us-
ing TensorFlow. Journal of Machine Learning Research,
18(40):1–6, 2017.

http://arxiv.org/abs/1410.7827
http://arxiv.org/abs/1410.7827
http://arxiv.org/abs/1906.01404
http://arxiv.org/abs/1906.01404

Supplementary Material

Meier, F. and Schaal, S. Drifting Gaussian Processes with
Varying Neighborhood Sizes for Online Model Learning.
In Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 264–269. IEEE, 2016.

Mutný, M. and Krause, A. Efficient High Dimensional
Bayesian Optimization with Additivity and Quadrature
Fourier Features. In Advances in Neural Information
Processing Systems, pp. 9005–9016, 2018.

Ng, J. W. and Deisenroth, M. P. Hierarchical Mixture-of-
Experts Model for Large-Scale Gaussian Process Regres-
sion. 2014. URL http://arxiv.org/abs/1412.
3078.

Nguyen-Tuong, D. and Peters, J. Incremental Sparsifica-
tion for Real-Time Online Model Learning. Journal of
Machine Learning Research, 9:557–564, 2010.

Nguyen-Tuong, D., Seeger, M., and Peters, J. Model Learn-
ing with Local Gaussian Process Regression. Advanced
Robotics, 23(15):2015–2034, 2009a.

Nguyen-Tuong, D., Seeger, M., and Peters, J. Local Gaus-
sian Process Regression for Real Time Online Model
Learning and Control. In Advances in Neural Informa-
tion Processing Systems, pp. 1193–1200, 2009b.

Omohundro, S. M. Five Balltree Construction Algorithms.
Science, 51(1):1–22, 1989.

Pleiss, G., Gardner, J. R., Weinberger, K. Q., and Wilson,
A. G. Constant-Time Predictive Distributions for Gaus-
sian Processes. In Proceedings of the International Con-
ference on Machine Learning, pp. 6575–6584, 2018.

Rahimi, A. and Recht, B. Random Features for Large-Scale
Kernel Machines. In Advances in Neural Information
Processing Systems, pp. 1–8, 2008.

Ranganathan, A. and Yang, M.-h. Online Sparse Matrix
Gaussian Process Regression and Vision Applications. In
Proceedings of the European Conference on Computer
Vision, pp. 468–482, 2008.

Ranganathan, A., Yang, M. H., and Ho, J. Online Sparse
Gaussian Process Regression and its Applications. IEEE
Transactions on Image Processing, 20(2):391–404, 2011.

Rullière, D., Durrande, N., Bachoc, F., and Chevalier, C.
Nested Kriging Predictions for Datasets with a Large
Number of Observations. Statistics and Computing, 28
(4):849–867, 2018.

Schölkopf, B. and Smola, A. J. Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. The MIT Press, Cambridge, Massachusetts,
2002.

Schreiter, J., Nguyen-Tuong, D., and Toussaint, M. Ef-
ficient Sparsification for Gaussian Process Regression.
Neurocomputing, 192:29–37, 2016.

Shen, Y., Ng, A. Y., and Seeger, M. Fast Gaussian Pro-
cess Regression using KD-Trees. In Advances in Neural
Information Processing Systems, 2006.

Snelson, E. and Ghahramani, Z. Local and Global Sparse
Gaussian Process Approximations. Journal of Machine
Learning Research, 2:524–531, 2007.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W.
Information-Theoretic Regret Bounds for Gaussian Pro-
cess Optimization in the Bandit Setting. IEEE Transac-
tions on Information Theory, 58(5):3250–3265, 2012.

Titsias, M. K. Variational Learning of Inducing Variables
in Sparse Gaussian Processes. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics, pp. 567–574, 2009.

Tresp, V. A Bayesisan Committee Machine. Neural Com-
putation, 12:2719–2741, 2000.

Tresp, V. Mixtures of Gaussian Processes. In Advances in
Neural Information Processing Systems, 2001.

Umlauft, J., Beckers, T., Capone, A., Lederer, A., and
Hirche, S. Smart Forgetting for Safe Online Learning
with Gaussian Processes. In Learning for Dynamics &
Control, pp. 1–10, 2020.

van der Wilk, M. Sparse Gaussian Process Approxima-
tions and Applications. PhD thesis, University of Cam-
bridge, 2018. URL https://markvdw.github.
io/vanderwilk-thesis.pdf.

Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte,
H., and Blair, A. Gaussian Process Modeling of Large
Scale Terrain. Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1047–1053,
2009.

Vivarelli, F. Studies on the Generalisation of Gaussian
Processes and Bayesian Neural Networks. PhD thesis,
Aston University, 1998.

Williams, C. K. I. and Vivarelli, F. Upper and Lower Bounds
on the Learning Curve for Gaussian Processes. Machine
Learning, 40:77–102, 2000.

Wilson, A. G. and Nickisch, H. Kernel interpolation for
Scalable Structured Gaussian Processes. Proceedings of
the International Conference on Machine Learning, 3:
1775–1784, 2015.

http://arxiv.org/abs/1412.3078
http://arxiv.org/abs/1412.3078
https://markvdw.github.io/vanderwilk-thesis.pdf
https://markvdw.github.io/vanderwilk-thesis.pdf

