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A. Experiment Details
This section provides detail on the experiments from the
main paper. The experiments are based on three image
recognition datasets: CIFAR-100 (Krizhevsky & Hinton,
2009), Office-Home (Venkateswara et al., 2017), and STL-
10 (Coates et al., 2011).

CIFAR-100 consists of images of 100 classes. The lifelong
learning tasks are created following previous work (Lee
et al., 2019) by separating the dataset into ten disjoint sets
of ten classes, and randomly selecting 4% of the original
training data to generate training and validation sets in the
ratio of 5.6:1 (170 training and 30 validation instances per
task). The images are used after normalization. For the
CIFAR-100 experiment with 40 tasks, each image class is
included in four different tasks ensuring that any pair of
tasks does not have the same set of classes.

The Office-Home dataset has images of 65 classes in four
domains. Again following Lee et al. (2019), lifelong learn-
ing tasks are generated by choosing ten disjoint groups of
thirteen classes in two domains: Product and Real-World.
There is no pre-defined training/testing split in Office-Home,
so we randomly split the images in the ratio 6:1:3 for the
training, validation, and test sets. The image sizes are not
uniform, so we resized all images to be 128-by-128 pixels
and re-scaled each pixel value to the range of [0, 1].

We introduce a lifelong learning variant of the STL-10
dataset, which contains ten classes. We constructed 20 three-
way classification tasks by randomly choosing the classes,
applying Gaussian noise to the images (with a mean and vari-
ance randomly sampled from {−10%,−5%, 0%, 5%, 10%}
of the range of pixel values) after re-scaling each pixel value
to the range of [−0.5, 0.5], and randomly swapping chan-
nels. Note that any pair of tasks differs by at least one image
class, the mean and variance of the Gaussian noise, or the
order of channels for the swap. We sampled 25% of the
given training data and split it into training and validation
sets with the ratio 5.7:1 (318 training and 57 validation in-
stances per task). All of the original STL-10 test data are
used for held-out evaluation of performance.

The architectural details of the task models used for each
data set are described in Figure 7. We used the following
values for the hyper-parameters of the algorithms, following
the original papers wherever possible:

• The multi-task CNN with hard parameter sharing
(HPS) has no additional hyper-parameters.

• Tensor factorization has a scale of the weight orthog-
onality constraint, whose value was chosen by grid
search among {0.001, 0.005, 0.01, 0.05, 0.1} follow-
ing the original paper (Bulat et al., 2020).

• DF-CNN requires the size of the shared tensors and the
parameters of the task-specific mappings to be speci-
fied. Following the original paper (Lee et al., 2019),
we chose the spatial size of the shared tensors to be
half the spatial size of the convolutional filters, and the
spatial size of the deconvolutional filters as 3× 3. For
each convolutional layer with input channels cin and
output channels cout, the number of channels in the
shared tensors was one-third of cin+cout and the num-
ber of output channels of the deconvolutional filters
was two-thirds of cin + cout.

• DEN has several regularization terms and the size of
the dynamic expansion. We used the regularization
values in the authors’ published code, and set the size
of the dynamic expansion to be 32 by choosing the
most favorable value among {8, 16, 32, 64}. APD-Net
has two regularization terms for the sparsity of addi-
tive parameters λ1 and catastrophic forgetting λ2. As
described in the original paper (Yoon et al., 2020), we
used 4e−4 and 100 as the value of λ1 and λ2, respec-
tively.

• ProgNN requires the compression ratio of the lateral
connections, which we set to be 2, following the origi-
nal paper (Rusu et al., 2016).

• For DARTS, we used the hyper-parameter settings de-
scribed in the original paper (Liu et al., 2019a).

A lifelong learner has access to the training data of only the
current task, and it optimizes the parameters of the current
task model as well as any shared knowledge, depending on
the algorithm. After the pre-determined number of training
epochs, the task switches to a new one regardless of the con-
vergence of the lifelong learner, which favors learners that
can rapidly adapt to each task. When the learner encounters
a new task, it initializes newly introduced parameters of
the new task model, but re-uses the parameters of shared
components, which initialize only once at the beginning of
the first task. As mentioned earlier, these new task-specific
parameters and shared parameters are optimized according
to the training data of the new task for another batch of
training epochs. We used the RMSProp optimizer with the
hyper-parameter values (such as learning rate and the num-
ber of training epochs per task) described in Table 4. In our
experiments, we conservatively have LASEM take a single
M-step per E-step by setting numMSteps = 1.
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Dataset CIFAR-100 Office-Home STL-10
Number of Tasks T 10 or 40 10 15 or 20

Type of Task Heterogeneous Classification Semi-heterogeneous
Classification

Classes per Task 10 10 5 (T = 15) or 3 (T = 20)
Amount of Training Data 4% - 10% or 25%

Ratio of Training and Validation Set 5.6:1 6:1 1:1 or 5.7:1
Size of Image 32 × 32 128 × 128 96 × 96

Optimizer RMS Prop
Learning Rate 1× 10−4 2× 10−5 1× 10−4

Epoch per Task 2000 or 200 (ResNet-18) 1000 500
Ratio of M-steps to E-step (numMSteps) 1

Table 4: Parameters of the lifelong learning experiments. We used the notion of task type (e.g., heterogeneous) introduced in
previous work (Yang & Hospedales, 2017), which is based on the distribution similarity of the tasks’ data.

B. LASEM-Discovered Transfer
Configurations

LASEM dynamically searches through the space of transfer
configurations during the learning process, as illustrated in
Figure 3. At initialization, the probability of all transfer con-
figurations is uniform, which dynamically changes during
training alongside the layers for each task model, until the
transfer configuration finalizes at convergence.

Figure 8 shows the most frequently learned transfer config-
urations as well as the proportion of the time each layer was
chosen to be transfer-based or task-specific. For CIFAR-
100 and Office-Home, there is tendency of transferring top
layers more than bottom layers. However, an interesting
observation is that non-tree structures, such as Alternating
{2, 4} and sharing middle layers [0,1,1,0], are often chosen.
This contradicts the assumption of a tree structure made
often by related research, and supports the consideration of
more complex transfer configurations for diverse tasks.

The top eight most-chosen configurations of STL-10, unlike
the other datasets which employed deep nets with fewer
CNN layers, plateau with a peak less than 10%. This is
likely due to the smaller number of STL-10 tasks, more flex-
ible (deeper) network, and a much larger number of possible
transfer configurations than in the other two experiments.
The tensor factorization model for STL-10 seems to prefer
transfer at higher layers over transfer at lower layers, while
the preference for DF-CNN is more varied.

C. Avoiding Catastrophic Forgetting
We investigated the ability of LASEM to avoid catastrophic
forgetting in addition to the mean peak per-task accuracy.
The catastrophic forgetting ratio is shown in Figure 9. The
catastrophic forgetting ratio (Lee et al., 2019) measures the
ability of the lifelong learning algorithm to maintain its

performance on previous tasks during subsequent learning.
A low ratio indicates that there is negative reverse trans-
fer from new tasks to previously learned tasks, and so the
learner experiences catastrophic forgetting. A ratio greater
than 1 can be interpreted as positive backward transfer. As
depicted in Figure 9, LASEM is able to retain the perfor-
mance of previous tasks compared to transferring at all CNN
layers and transferring at specific CNN-layers for all tasks
(using a static transfer configuration).

D. LASEM for Transfer Over Groups of
Layers

As discussed in Section 3, it is a well-known problem in
neural architecture search that the search over layer-based
transfer configurations requires time exponential to depth
of the network d. One common technique to compensate
for this problem, as used by other methods (Pham et al.,
2018; Liu et al., 2019a), is to search over groups of layers
instead of individual layers, thereby reducing the size of the
search space. LASEM easily supports this same technique
by redefining the transfer configuration space C = {0, 1}d
to be binary indicators over a partition P of the set of layer
indices {1, . . . , d}, where the cardinality |P| � d. Conse-
quently, this reduces the search space from 2d to 2|P|. Most
naturally, the partition P should ensure that either adjacent
layers (e.g., {{1, 2}, {3, 4}, {5, 6}}) or nearby1 layers (e.g.
{{1, 3}, {2, 4}, {5}, {6}}) are grouped together.

First, we evaluated this variation of LASEM in lifelong
learning scenarios using the STL-10 data set. Different
from the aforementioned experiments using STL-10, this
experiment consisted of 15 five-way classification tasks by

1This pattern of grouping nearby layers together, instead of
only adjacent, may allow more flexible adaptation of transferred
knowledge to individual tasks, similar to the Alternating configu-
ration explored in Section 2.



Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

32X32X3 

Conv 
3X3, 32 
stride 1 
ReLU 

Conv 
3X3, 32 
stride 1 
ReLU 

max pool 
2X2 

32X32X32 16X16X32 

Conv 
3X3, 64 
stride 1 
ReLU 

16X16X64 

Conv 
3X3, 64 
stride 1 
ReLU 

max pool 
2X2 

8X8X64 

Flatten 

4096 

FC 

64 

FC 

10 

(a) Architecture of task models of CIFAR-100 experiment
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(b) Architecture of task models of Office-Home experiment
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(d) Architecture of task models of STL-10 experiment for the group-based LASEM

Figure 7: Details of the task model architectures used in the experiments. Text by each convolutional layer describes the
filter sizes and the number of channels. All convolutional layers are zero-padded.

random selection of the classes. We sampled only 10%
of the given training data and split it into training and
validation sets with the ratio 1:1. For this scenario, we
trained a DF-CNN transferring at all layers and layer-based
LASEM on a DF-CNN with 9 convolutional layers; details
are in Figure 7. The group-based LASEM used the partition
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, splitting nine convolutional
layers into three groups of three adjacent layers.

The DF-CNN achieved a mean task-wise best accuracy of
45.4± 0.4 with a training time of 7.58× 104 seconds. The
original layer-based LASEM DF-CNN exceeded the ca-
pacity of our computing source (an Intel core i7 worksta-
tion with dual 1080 Ti GPUs). However, the group-based

LASEM DF-CNN achieved a mean accuracy of 46.0± 0.7
% in 7.02× 104 seconds. This showcases LASEM’s ability
to support group-based transfer configurations in addition
to layer-based configurations.

Additionally, we evaluated the group-based LASEM using
the ResNet-18 architecture (He et al., 2016) in two lifelong
learning scenarios using the CIFAR-100 data set: one with
10 ten-way classification tasks and a longer scenario with 40
ten-way classification tasks. To generate 40 tasks of ten-way
classification, each image class is used within four classifi-
cation tasks, and each task has a unique set of classes. For
the aforementioned experiments using the CIFAR-100, each
task is trained for 2,000 epochs, but for the ResNet-18 eval-
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(a) HPS on CIFAR-100
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(b) TF on CIFAR-100
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(c) DF-CNN on CIFAR-100
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(d) HPS on Office-Home
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(e) TF on Office-Home
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(f) DF-CNN on Office-Home
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(g) TF on STL-10
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(h) DF-CNN on STL-10

Figure 8: (Top) Histogram of the most-selected configurations (i.e., the binary vectors ct, where 1 denotes that a CNN layer
employs transfer). (Bottom) The fraction of time each layer was selected to be transfer-based (red) or task-specific (blue).
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(a) HPS on CIFAR-100
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(b) TF on CIFAR-100
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(c) DF-CNN on CIFAR-100
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(d) HPS on Office-Home
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(e) TF on Office-Home
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(f) DF-CNN on Office-Home
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(g) TF on STL-10
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(h) DF-CNN on STL-10

Figure 9: Catastrophic forgetting ratio of transfer at all CNN layers (blue), best static transfer configuration (black) and
LASEM (red), exhibiting the benefit of LASEM. Note that the y-axis range differs for each data set.

Number of Groups Partition
4 Groups {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13}, {14, 15, 16, 17}}
5 Groups {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13}, {14, 15}, {16, 17}}
6 Groups {{1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}}
7 Groups {{1, 2, 3, 4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}}

Table 5: Partitions for the experiments on the group-based LASEM on ResNet-18.

uation, each task is trained only for 200 epochs due to the
convergence of performance. All experimental settings, ex-
cept the number of tasks and the number of training epochs,
remain the same as the settings described in Appendix A.
For these experiments, we trained a ResNet-18 HPS transfer-

ring all convolutional layers and the group-based LASEM
HPS using the four partitions shown in Table 5. During
training, the larger ResNet-18 yielded a few inaccurate pre-
dictions with high confidence, which caused the computed
likelihood P (c | Xnew , ynew ) (Equation 2) of the trans-
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fer configuration for the entire minibatch to become 0. To
compensate, we treated the minibatch as a collection of inde-
pendent instances from which to estimate the likelihood of
the transfer configuration, and so took P (c | Xnew , ynew )
as the mean of these individual estimates. This eliminated
the effect of the high-confidence inaccurate predictions driv-
ing the product to 0, yielding reasonable estimates of the
configuration likelihood. The ResNet-18 results we report
use this method for the likelihood computation in LASEM.

As described in Section 4.4 and Table 2, the group-based
LASEM ResNet-18 HPS outperforms ResNet-18 HPS in
both the peak per-task accuracy and catastrophic forgetting
ratio. The lifelong learner loses performance of earlier
tasks as it learns more tasks due to the limitation of HPS,
but LASEM reduces the amount of forgetting because it
determines the layers to share according to the similarity
between tasks as discovered from data. The comparison of
HPS on ResNet-18 with and without LASEM shows that
it is capable of scaling to deeper architectures and larger
numbers of tasks.

E. Memory Usage Comparison
In this section, we analyze LASEM’s memory requirements
to show that it is approximately equivalent to the other
methods considered in the paper. Let the base learner
require O(A) non-transfer-based task-specific storage or
O(B) transfer-based task-specific storage withO(S) shared
knowledge. LASEM shares network parameters across
transfer configurations to minimize memory, so the cur-
rent task model stores two parameter sets at a cost of
O(A+B). Earlier task models require onlyO(max(A,B))
storage, yielding a total memory requirement of O(S +
(T + 1)max(A,B)) for T tasks when the base learner
constructs one network per task. Compared to this, the
model with the best static transfer configuration requires
O(max(A,B)) additional storage per task, resulting in a
total memory requirement of O(S + T max(A,B)). Brute-
force search over transfer configurations requires at least
O(2max(A,B)), one for parameters of the best configu-
ration and the other for parameters of the current training,
yielding O(S + (T + 1)max(A,B)). Hence, LASEM’s
memory requirements are approximately equivalent to the
alternative methods. The memory requirement may differ
from the above analysis according to the base lifelong learn-
ing architecture used (such as HPS or a modular network),
but if that base learner requires O(T ) memory for T tasks,
LASEM needs only O(T + 1) memory.


