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Figure 6. Task similarity in deep vs. shallow networks We plot the accuracy of a two-layer ReLU network with 8 neurons trained on
two tasks. The first task is discriminating T-shirts from high-heels on Fashion MNIST (task 1). The second task is a linear interpolation in
both inputs and labels between task 1 and long-sleeve shirts vs trainers. In the inset, we reproduce Fig. 5b of Ramasesh et al. (2020)
when training various deep networks on two tasks obtained by linearly interpolation of CIFAR10 images. Parameters of our experiment:
learning rate 0.01, D = 784.

A. Reproducing the results of Ramasesh et al. with two-layer neural networks
We report in Fig. 6 a reproduction of an experiment showing that the two-layer networks trained on FashionMNIST (Xiao
et al., 2017) reproduce a key observation of (Ramasesh et al., 2020) made for VGG, ResNet and DenseNet on CIFAR10:
intermediate task similarity leads to worst forgetting. To that end, we trained a two-layer ReLU network with 8 neurons to
discriminate T-shirts from high-heels on Fashion MNIST (task 1). The second task was a linear interpolation in both inputs
and labels between task 1 and long-sleeve shirts vs trainers. We see that at intermediate task similarity, or halfway along the
linear interpolation between the two datasets, forgetting of the first task is the worst. This is the same behaviour Ramasesh
et al. (2020) found consistently for VGG, ResNet and DenseNet when linearly interpolating CIFAR10 images (we reproduce
their Fig. 5b in the inset). Hence the toy model studied here reproduces this behaviour of more realistic setups.

B. Order Parameters
The full set of order parameters for the two-teacher student-teacher networks in the large input limit is given by:

Student-Student Overlap, Q : qkl ≡ 〈λkλl〉 =
1

N
wkwl; (B.1)

Teacher†-Teacher†Overlap, T : tnm ≡ 〈ρmρn〉 =
1

N
w†mw†n; (B.2)

Student-Teacher†Overlap, R : rkm ≡ 〈λkρm〉 =
1

N
wkw

†
m; (B.3)

Teacher‡-Teacher‡Overlap, S : spq ≡ 〈ηpηq〉 =
1

N
w‡pw

‡
q; (B.4)

Student-Teacher‡Overlap, U : ukp ≡ 〈λkηp〉 =
1

N
wkw

‡
p; (B.5)

Teacher†-Teacher‡Overlap, V : vmp ≡ 〈ρmηp〉 =
1

N
w†mw‡p. (B.6)
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C. ODE Derivation
This section presents the derivation of the ODE formulation of the generalisation error for the student-multi-teacher continual
learning framework.

C.1. Generalisation Error in terms of Order Parameters

Our aim is to formulate the generalisation error in terms of the macroscopic order parameters. Let us begin by multiplying
out Eq. 2,

ε†g =
1

2

〈∑
i,k

h†ih
†
kg(λi)g(λk) +

∑
m,n

v†mv
†
ng(ρm)g(ρn)− 2

∑
i,n

h†iv
†
ng(λi)g(ρn)

〉 . (C.1)

and similarly for the second student. These generalisation errors involve averages of local fields, which can be computed as
integrals over a joint multivariate Gaussian probability distribution, all of the form

P(β, γ) =
1√

(2π)F+H |C̃|
exp

{
−1

2
(β, γ)T C̃−1(β, γ)

}
, (C.2)

where β and γ are local fields with number of units F and H respectively, and C̃ is a covariance matrix suitably projected
down from

C =

 Q R U
RT T V
UT VT S

 .

We define
I2(f, h) ≡ 〈g(β)g(γ)〉, (C.3)

where f, h are the indices corresponding to the units of the local fields β and γ. This allows us to write the generalisation
errors as

ε†g =
1

2

∑
i,k

h†ih
†
kI2(i, k) +

1

2

∑
n,m

v†nv
†
mI2(n,m)−

∑
i,n

h†iv
†
nI2(i, n) (C.4)

ε‡g =
1

2

∑
i,k

h‡ih
‡
kI2(i, k) +

1

2

∑
p,q

v‡pv
‡
qI2(p, q)−

∑
i,p

h‡iv
‡
pI2(i, p). (C.5)

C.1.1. SIGMOIDAL ACTIVATION

For the scaled error activation function, g(x) = erf(x/
√

2), there is an analytic expression for the I2 integral purely in terms
of the order parameters (Saad & Solla, 1995a):

I2(i, k) =
1

π
arcsin

qik√
(1 + qii)(1 + qkk)

. (C.6)

In turn, we can similarly write the generalisation errors in terms of the order parameters only:

ε†g =
1

π

∑
i,k

h†ih
†
k arcsin

qik√
(1 + qii)(1 + qkk)

+
1

π

∑
n,m

v†nv
†
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tnm√
(1 + tnn)(1 + tmm)

+
2

π

∑
i,n

h†iv
†
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rin√
(1 + qii)(1 + tnn)

(C.7)

ε‡g =
1

π

∑
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h‡ih
‡
k arcsin

qik√
(1 + qii)(1 + qkk)

+
1

π

∑
p,q

v‡pv
‡
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spq√
(1 + spp)(1 + sqq)

+
2

π

∑
i,p

h‡iv
‡
p arcsin

uip√
(1 + qii)(1 + spp)

. (C.8)
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C.2. Order Parameter Evolution (Training on †)

Having arrived at expressions for the generalisation error of both teachers in terms of the order parameters, we want to
determine equations of motion for these order parameters from the weight update equations (Eq. 5a & Eq. 5b). Trivially,
the order parameters associated with the two teachers, T and S are constant over time, as are the head weights of the
teachers, v†,v‡. When training on †, the student head weights corresponding to ‡ are also stationary; it remains for us to
find equations of motion for R,Q,U and h†, which we derive below. The equivalent derivations when training on teacher ‡
can be made by using the update in Eq. 5b instead.

C.2.1. ODE FOR R

Consider the inner product of Eq. 5a (in the case of * = †) with w†n:

wµ+1
k w†n −wµ

kw
†
n = −αW√

D
h†µk g

′(λµk)∆†µxµw†n (C.9)

= −αWh†µk g
′(λµk)∆†µρµn (C.10)

rµ+1
kn − r

µ
kn = −αW

D
h†µk g

′(λµk)∆†µρµn (C.11)

If we let τ ≡ µ/D and take the thermodynamic limit of D →∞, the time parameter becomes continuous and we can write:

drin
dτ

= −αWh†i 〈g
′(λi)∆

†ρn〉, (C.12)

where we have re-indexed k → i.

C.2.2. ODE FOR Q

Consider squaring Eq. 5a (here we can simply use * to denote training on either teacher).

wµ+1
k wµ+1

i −wµ
kw

µ
i = −αW√

D
h∗µi g

′(λµi )∆∗µxµwµ
k −

αW√
D
h∗µk g

′(λµk)∆∗µxµwµ
i

+
α2
W

D
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2 (C.13)

= −αWh∗µi g
′(λµi )∆∗µλµk − αWh∗µk g

′(λµk)∆∗µλµi

+
α2
W

D
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2 (C.14)

qµ+1
ki − q

µ
ki = −αW

D
h∗µi g

′(λµi )∆∗µλµk −
αW

D
h∗µk g

′(λµk)∆∗µλµi

+
α2
W

D2
h∗µi g

′(λµi )h∗µk g
′(λµk)(∆∗µxµ)2. (C.15)

Performing the same reparameterisation of µ and the same thermodynamic limit, we get:

dqik
dτ

= −αWh∗i 〈g′(λi)∆∗λk〉 − αWh∗k〈g′(λk)∆∗λi〉+ α2
Wh∗i h

∗
k〈g′(λi)g′(λk)∆∗2〉. (C.16)

Note: in the limit, (xµ)2 → D since individual samples are taken from a unit normal. Hence the 1/D limit remains the
same decay rate for each term.

C.2.3. ODE FOR U

Consider the inner product of Eq. 5a (in the case of * = †) with w‡p:

wµ+1
k w‡p −wµ

kw
‡
p = −αW√

D
h†µk g

′(λµk)∆†µxµw‡p (C.17)

= −αWh†µk g
′(λµk)∆†µηµp (C.18)

uµ+1
kp − u

µ
kp = −αW

D
h†µk g

′(λµk)∆†µηµp . (C.19)
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If we let τ ≡ µ/D and take the thermodynamic limit of D →∞:

duip
dτ

= −αWh∗i 〈g′(λi)∆∗ηp〉. (C.20)

C.2.4. ODE FOR h∗

Here, we simply take the thermodynamic limit of Eq. 5b (for * = †):

dh†i
dτ

= −αh〈∆†g(λi)〉 (C.21)

D. Explicit Formulation
We can go one step further and write the right hand sides of the ODEs in terms of more concise integrals. Recall that for no
noise

∆†µ ≡
∑
k

h†µk g(λµk)−
∑
m

v†mg(ρµm). (D.1)

Substituting this term into the ODEs above gives us the expanded versions below:

drin
dτ

= −αWh†i

〈
g′(λi)

[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
ρn

〉
; (D.2)

dqik
dτ

= −αWh†i

〈
g′(λi)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

λk〉

− αWh†k

〈
g′(λk)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

λi〉

+ α2
Wh†ih

†
k

〈
g′(λi)g

′(λk)

∑
j

h†jg(λj)−
∑
m

v†mg(ρm)

2〉
; (D.3)

duip
dτ

= −αWh†i

〈
g′(λi)

[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
ηp

〉
; (D.4)

dh†i
dτ

= −αh

〈[∑
k

h†kg(λk)−
∑
m

v†mg(ρm)

]
g(λi)

〉
. (D.5)

Similarly to the I2 integral defined in Eq. C.3, we further define:

I3(d, f, h) = 〈g′(ζ)βg(γ)〉, (D.6)
I4(d, e, f, h) = 〈g′(ζ)g′(ι)g(β)g(γ)〉; (D.7)
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where ζ, ι are local fields of the student with indices d, e; and β, γ can be local fields of either student or teacher with indices
f, h. Substituting these definitions into the expanded ODE formulations gives:

drin
dτ

= αWh†i

[
M∑
m

v∗mI3(i, n,m)−
K∑
k

h†kI3(i, n, k)

]
; (D.8)

dqik
dτ

= αWh†i

 M∑
m

v†mI3(i, k,m)−
K∑
j

h†jI3(i, k, j)


+ αWh†k

 M∑
m

v†mI3(k, i,m)−
K∑
j

h†jI3(k, i, j)


+ α2

Wh†ih
†
k

 K∑
j,l

h†jh
†
l I4(i, k, j, l) +

M∑
m,n

v†mv
†
nI4(i, k,m, n)

−2

K∑
j

M∑
m

v†mh
†
jI4(i, k, j,m)

 ; (D.9)

duip
dτ

= αWh†i

[
M∑
m

v†mI3(i, p,m)−
K∑
k

h†kI3(i, p, k)

]
; (D.10)

dh†i
dτ

= αh

[
M∑
m

v†mI2(m, i)−
K∑
k

h†kI2(k, i)

]
. (D.11)

This completes the picture for the dynamics of the generalisation error. It can be expressed purely in terms of the head
weights and the I integrals. For the case of the scaled error function we can evaluate the I2, I3, and I4 analytically meaning
we have an exact formulation of the generalisation error dynamics of the student with respect to both teachers in the
thermodynamic limit. Further details on the integrals can be found in App. E. The next chapter introduces the experimental
framework that compliments the theoretical formalism presented above.

E. Gaussian Integrals under Scaled Error Function
In the derivations of App. C, we introduce a set of integrals over multivariate Gaussian distributions, labelled I2, I3 and I4.
They are defined as:

I2(f, h) ≡ 〈g(β)g(γ)〉, (E.1)
I3(d, f, h) ≡ 〈g′(ζ)βg(γ)〉, (E.2)

I4(d, e, f, h) ≡ 〈g′(ζ)g′(ι)g(β)g(γ)〉; (E.3)

where ζ, ι are local fields of the student with indices d, e; and β, γ can be local fields of either student or teacher with indices
f, h; and g is the activation function.

These integrals do not have closed form solutions for the ReLU activation. For the scaled error function however, they can
all be solved analytically. They are given by:

I2 =
1

π
arcsin

c12√
(1 + c11)(1 + c22)

; (E.4)

I3 =
2c23(1 + c11)− 2c12c13√

Λ3(1 + c11)
; (E.5)

I4 =
4

π2
√

Λ4

arcsin
Λ0√
Λ1Λ2

; (E.6)



Continual Learning in the Teacher-Student Setup

where

Λ0 = Λ4c34 − c23c24(1 + c11)− c13c14(1 + c22) + c12c13c24 + c12c14c23; (E.7)

Λ1 = Λ4(1 + c33)− c223(1 + c11)− c213(1 + c22) + 2c12c13c23; (E.8)

Λ2 = Λ4(1 + c44)− c224(1 + c11)− c214(1 + c22) + 2c12c14c24; (E.9)

Λ3 = (1 + c11)(1 + c33)− c213; (E.10)
(E.11)

and where c is the relevant projected down covariance matrix.

F. Overlap Generation
In subsubsection 2.1.2, we investigate the effect of task similarity on forgetting. In our framework, the teachers act as
tasks. From App. C, we know that the learning dynamics in the student can be fully described by the overlap parameters,
which includes the teacher-teacher overlap matrix, V . For our investigation we need a method to generate teachers with
specific overlaps; specifically— in the normalised teachers Ansatz, and for teachers with a single hidden unit—we perform
simulations over the full range of V from 0 to 1. In this configuration we simply need a procedure to generate two
N -dimensional vectors, v1, v2, with an angle θ between them such that:

v1 · v2 = θ. (F.1)

Fortunately there is a standard algorithm for this. First we define two vectors

ṽ1 =

(
0
1

)
; ṽ2 =

(
sin θ
cos θ

)
.

Second, we generate an N × N orthogonal matrix, R. There is a standard sicpy implementation for this based on QR
decomposition of a random Gaussian matrix2.

Finally, multiply the first two columns of R with either vector to generate the rotated vectors:

v1 = R[:, 1 : 2] · ṽ1; (F.2)
v2 = R[:, 1 : 2] · ṽ2. (F.3)

G. Experiment Details
In this section we provide details of experimental procedures used to obtain the graphs and figures presented in this work.

In the ODE limit investigation, the following parameters were used:

• Input dimension = 10,000;
• Test set size = 50,000;
• SGD optimiser;
• Mean squared error loss;
• Teacher weight initialisation: normal distribution with variance 1;
• Student weight initialisation: normal distribution with variance 0.001;
• Student hidden dimension: 2;
• Teacher hidden dimension: 1;
• Learning rate: 1

In the mean-field limit investigation the following parameters were used:

• Input dimension = 15;

2SciPy Stats Module Docs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html


Continual Learning in the Teacher-Student Setup

• Test set size = 25,000;
• SGD optimiser;
• Mean squared error loss;
• Teacher weight initialisation: normal distribution with variance 1;
• Student weight initialisation: normal distribution with variance 0.001;
• Student hidden dimension: 1000;
• Teacher hidden dimension: 250;
• Learning rate: 5
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H. Forgetting vs. V at Multiple Intervals
In Fig. 3, we show the cross section of forgetting vs. V at a set of intervals after the task boundary. In Fig. 7, we show this
cross-section at a greater range of time delays after the switch.
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Figure 7. Aggregate forgetting, Ft, vs. teacher-teacher overlap, V , at different time intervals post task-switch. A teacher-teacher overlap
of 0 corresponds to orthogonal teacher weight vectors, whereas a teacher-teacher overlap of 1 corresponds to aligned teacher weight
vectors. Forgetting is strongest for teachers that are intermediately correlated, while the student is relatively robust to forgetting for aligned
or orthogonal teachers. The distribution of error changes moves significantly as time spent training on the new task increases.

I. Forgetting vs. Feature Similarity, ReLU Networks
This sections contains the same experiments as those presented in subsubsection 2.1.2, but for networks with ReLU
nonlinearities. Fig. 8 shows for various values of V the generalisation error of the first teacher over time. Fig. 9 shows the
cross sections of forgetting vs. V at various time intervals after the task switch.
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Figure 8. Generalisation error with respect to first teacher, log ε†, vs. timestep, s, for a range of teacher-teacher overlaps for ReLU
networks. Task switches occur at steps 50,000 and 100,000. This plot is the ReLU equivalent of Fig. 3 in subsubsection 2.1.2
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Figure 9. Aggregate forgetting, Ft, vs. teacher-teacher overlap, V , at different time intervals post task-switch for ReLU networks. The
distribution of error changes moves faster compared to the sigmoid case in subsubsection 2.1.2. By the second task switch, the function is
monotonic.

J. Effect of Activation & Distribution Evolution
The learning dynamics and corresponding forgetting/transfer distributions for varying teacher-teacher overlaps presented
above are for sigmoidal activation functions. In our investigations we found that different activation functions can have a
strong impact on how the forgetting vs. teacher-teacher overlap distributions change over time. In particular, in the ReLU
case, the distribution moves relatively quickly from a hump curve (seen in the sigmoidal case) to a monotonic function,
where the higher overlaps lead to less forgetting. Detailed plots for the ReLU case are shown in App. I. Forgetting and
transfer are not stationary attributes, hence the inclusion of a time component in our definitions of these quantities. The
unsurprising observation that the distribution of forgetting over different overlaps changes as time progresses beyond the
switch point is not discussed in previous research. The nature of this evolution and its contributing factors are worthy of
further investigation.

K. First Task Convergence
The setting we work in throughout our experimentation is one in which good convergence has been achieved on the first
task before the switch. Some of the observations we make are therefore conditional on this convergence. We show below
in Fig. 10 one example of a phenomenon (higher rate of forgetting for greater task similarity) we observed in the main
results that does not hold in settings where lesser convergence is achieved on the first task.
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Figure 10. Generalisation error with respect to first teacher, log ε∗, vs. timestep, s, for a range of teacher-teacher overlaps, V . Here the
task switch occurs relatively early—before convergence on the first task. Unlike in settings where better convergence has been achieved
the initial rate of forgetting is not largest for highest overlap. In fact here there is a period of co-learning just after the task-switch.
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L. Forgetting/Transfer Metrics Procedure (Mean-Field Limit)
In Fig. 5, we present metrics of forgetting and transfer for various task similarity configurations averaged over 50 random
seeds. Specifically we give the initial rates, maxima, and long-time values. Here we provide details on how these are
evaluated.

L.1. Initial Rate

Let s̃ be the training step at which the teacher switches. We approximate the initial rate of forgetting as:

1

N

N∑
i=1

ε†|s̃+i − ε†|t=s̃+i−1, (L.1)

where N is the number of steps over which we take the average change (N = 20 for experiments shown in Fig. 5). Since
we are not using the ODE solutions but pure simulation of the mean-field limit in Fig. 5, such a sampling is necessary to
accurately approximate the rates. Likewise the initial rate of transfer is computed via:

1

N

N∑
i=1

ε‡|s̃+i−1 − ε‡|t=s̃+i. (L.2)

L.2. Maxima

The maximum forgetting and transfer amounts are computed with

max
t

(ε†|s̃+t)− ε†|s̃ and ε†|s̃ −min
t

(ε‡|s̃+t). (L.3)

L.3. Long-Time Limit

Initially we computed the long-time limits simply as the differences in generalisation error at the end of training with those
at the switch point. However, for forgetting we needed to adjust this procedure slightly. Fig. 11 shows a run associated with
a single task configuration in the mean-field limit—in particular, this run is for tasks with full feature overlap.
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Figure 11. Generalisation errors, log ε, vs. training step, s for both teacher 1 (†) and teacher 2 (‡) for the mean-field limit with full feature
similarity between teachers. In the second task phase, there is sharp initial forgetting. This is followed by a period of co-learning. Then at
around two million steps there is a second turn of forgetting. This corresponds with the point at which the performance on the second task
matches the best performance attained by the student with respect to the first teacher in the first phase.
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M. Ṽ = 0 Row in Mean-Field Limit
We noted in Fig. 5 that the orthogonal readout row, Ṽ , displays similar trends to the results of varying the feature similarity
in the ODE limit. Here we show more details plots from the row beyond the coarse heatmap in Fig. 5. Fig. 12 shows
cross sections of forgetting vs. α at different intervals after the switch. They are the equivalent plots of Fig. 3 but for the
orthogonal readout row runs of Fig. 5. They show that as for the feature similarity variation in the ODE limit, there is a
non-mnotonic relationship between similarity and forgetting such that the intermediate similarity is worst. The development
of the shape of the cross-section is also similar. Trivially it begins flat. The non-monoticity is sharpest at intermediate
intervals after the switch, and in the long-time limit flattens out again with a wide peak and very little forgetting for large
overlap.
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Figure 12. Aggregate forgetting, Ft, vs. teacher-teacher feature overlap, α, for constant zero readout overlap, Ṽ = 0 in the mean-field
limit, at different time intervals post task-switch.



Continual Learning in the Teacher-Student Setup

N. Readout Bias on Feature Solution
One of the interesting results we found from the experiment shown in Fig. 5 was that for full feature overlap there was still
variation in transfer ability for different readout similarities. After the switch in our multi-head student setup, the student is
given a new set of randomly initialised head weights. The previously learned readout weights for the first task are (as far as
the transfer ability is concerned) discarded. This newly initialised student head will be (approximately) orthogonal to all of
the second teacher head weights, regardless of the relationship between the second teacher head weights and the first teacher
head weights. Despite this, there is better transfer for the tasks where there is overlap in the teacher readouts. We hypothesis
that this is due to a bias in SGD dynamics: during the first task phase, the local minimum that the solution finds within the
feature space is biased by the readout weights it is concurrently trying to optimise. Taking an extreme example, suppose
you have two hidden nodes and teacher 1 has readout weight = 1 on node 1, and 0 on node 2. While training on task 1, the
network will not learn the input-to-hidden node 2 weights since this node does not impact the output. Therefore there will be
a transfer cost if the second task relies on both nodes, which arises from the requirement to learn the input-to-hidden weights
that were unimportant for task 1. We verify this idea empirically by tracking the movement of the feature weights after the
task switch for different readout similarities. The results are shown in Fig. 13 and demonstrate that the feature weights move
more (further away from the solution found for task 1, which has identical features to task 2) for task configurations with
lower readout similarity.
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Figure 13. (Normalised) mean squared error between the student feature weights at a given step of training and the student feature
weights at the switch point, W|s,W|s̃), vs. training step, s for full feature similarity and various readout similarity configurations in the
mean-field limit. Trivially the MSE is 0 at the switch. After the switch, despite moving onto a new teacher with the same features as the
first teacher, the student feature weights move. However they move more for task configurations in which the second readout weights are
more dissimilar from the first.


