
OptiDICE: Offline Policy Optimization via
Stationary Distribution Correction Estimation

(Supplementary Material)

A. Proof of Proposition 1
We first show that our original problem (2-4) is an instance of convex programming due to the convexity of f .

Lemma 5. The constraint optimization (2-4) is a convex optimization.

Proof.

max
d

E(s,a)∼d[R(s, a)]− αDf (d||dD) (2)

s.t. (B∗d)(s) = (1− γ)p0(s) + γ(T∗d)(s) ∀s, (3)
d(s, a) ≥ 0 ∀s, a, (4)

The objective function E(s,a)∼d[R(s, a)]−αDf (d||dD) is concave for d : S ×A→ R (not only for probability distribution
d ∈ ∆(S ×A)) since Df (d||dD) is convex in d: for t ∈ [0, 1] and any d1 : S ×A→ R, d2 : S ×A→ R,

Df ((1− t)d1 + td2||dD) =
∑
s,a

dD(s, a)f

(
(1− t) d1(s, a)

dD(s, a)
+ t

d2(s, a)

dD(s, a)

)
<
∑
s,a

dD(s, a)

{
(1− t)f

(
d1(s, a)

dD(s, a)

)
+ tf

(
d2(s, a)

dD(s, a)

)}
= (1− t)Df (d1||dD) + tDf (d2||dD),

where the strict inequality follows from assuming f is strictly convex. In addition, the equality constraints (3) are affine
in d, and the inequality constraints (4) are linear and thus convex in d. Therefore, our problem is an instance of a convex
programming, as we mentioned in Section 3.1.

In addition, by using the strong duality and the change-of-variable from d to w, we can rearrange the original maximin
optimization to the minimax optimization.

Lemma 6. We assume that all states s ∈ S are reachable for a given MDP. Then,

max
w≥0

min
ν
L(w, ν) = min

ν
max
w≥0

L(w, ν).

Proof. Let us define the Lagrangian of the constraint optimization (2-4)

L(d, ν, µ) := E(s,a)∼d[R(s, a)]− αDf (d||dD) +
∑
s

ν(s)

(
(1− γ)p0(s) + γ

∑
s̄,ā

T (s|s̄, ā)d(s̄, ā)−
∑
ā

d(s, ā)

)
+
∑
s,a

µ(s, a)d(s, a)

with Lagrange multipliers ν(s) ∀s and µ(s, a) ∀s, a. With the Lagrangian L(d, ν, µ), the original problem (2-4) can be
represented by

max
d≥0

min
ν
L(d, ν, 0) = max

d
min
ν,µ≥0

L(d, ν, µ).
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For an MDP where every s ∈ S is reachable, there always exists d such that d(s, a) > 0 ∀s, a. From Slater’s condition for
convex problems (the condition that there exists a strictly feasible d (Boyd et al., 2004)), the strong duality holds, i.e., we
can change the order of optimizations:

max
d

min
ν,µ≥0

L(d, ν, µ) = min
ν,µ≥0

max
d
L(d, ν, µ) = min

ν
max
d≥0
L(d, ν, 0).

Here, the last equality holds since maxd≥0 L(d, ν, 0) = maxd minµ≥0 L(d, ν, µ) = minµ≥0 maxd L(d, ν, µ) for fixed ν
due to the strong duality. Finally, by applying the change of variable w = d/dD, we have

max
w≥0

min
ν
L(w, ν) = min

ν
max
w≥0

L(w, ν).

Finally, the solution of the inner maximization maxw≥0 L(w, ν) can be derived as follows:

Proposition 1. The closed-form solution of the inner maximization of (10), i.e.

w∗ν := arg max
w≥0

(1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[
−αf

(
w(s, a)

)]
+ E(s,a)∼dD

[
w(s, a)

(
eν(s, a)

)]
is given as

w∗ν(s, a) = max

(
0, (f ′)−1

(
eν(s, a)

α

))
∀s, a, (32)

where (f ′)−1 is the inverse function of the derivative f ′ of f and is strictly increasing by strict convexity of f .

Proof. For a fixed ν, let the maximization maxw≥0 L(w, ν) be the primal problem. Then, its corresponding dual problem is

max
w

min
µ≥0

L(w, ν) +
∑
s,a

µ(s, a)w(s, a).

Since the strong duality holds, satisfying KKT condition is both necessary and sufficient conditions for the solutions w∗ and
µ∗ of primal and dual problems (we will use w∗ and µ∗ instead of w∗ν and µ∗ν for notational brevity).

Condition 1 (Primal feasibility). w∗ ≥ 0 ∀s, a.

Condition 2 (Dual feasibility). µ∗ ≥ 0 ∀s, a.

Condition 3 (Stationarity). dD(s, a)(−αf ′(w∗(s, a)) + eν(s, a) + µ∗(s, a)) = 0 ∀s, a.

Condition 4 (Complementary slackness). w∗(s, a)µ∗(s, a) = 0 ∀s, a.
From Stationarity and dD > 0, we have

f ′(w∗(s, a)) =
eν(s, a) + µ∗(s, a)

α
∀s, a

and since f ′ is invertible due to the strict convexity of f ,

w∗(s, a) = (f ′)−1

(
eν(s, a) + µ∗(s, a)

α

)
∀s, a.

Now for fixed (s, a) ∈ S ×A, let us consider two cases: either w∗(s, a) > 0 or w∗(s, a) = 0, where Primal feasibility is
always satisfied in either way:

Case 1 (w∗(s, a) > 0). µ∗(s, a) = 0 due to Complementary slackness, and thus,

w∗(s, a) = (f ′)−1

(
eν(s, a)

α

)
> 0.
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Note that Dual feasibility holds. Since f ′ is a strictly increasing function, eν(s, a) > αf ′(0) should be satisfied if f ′(0) is
well-defined.

Case 2 (w∗(s, a) = 0). µ∗(s, a) = αf ′(0)− eν(s, a) ≥ 0 due to Stationarity and Dual feasibility, and thus, eν(s, a) ≤
αf ′(0) should be satisfied if f ′(0) is well-defined.

In summary, we have

w∗ν(s, a) = max

(
0, (f ′)−1

(
eν(s, a)

α

))
.

B. Proofs of Proposition 2 and Corollary 3
Proposition 2. L(w∗ν , ν) is convex with respect to ν.

Proof by Lagrangian duality. Let us consider Lagrange dual function

g(ν, µ) := max
d
L(d, ν, µ),

which is always convex in Lagrange multipliers ν, µ since L(d, ν, µ) is affine in ν, µ. Also, for any µ1, µ2 ≥ 0 and its
convex combination (1− t)µ1 + tµ2 for 0 ≤ t ≤ 1, we have

min
µ≥0

g((1− t)ν1 + tν2, µ) ≤ g((1− t)ν1 + tν2, (1− t)µ1 + tµ2) ≤ (1− t)g(ν1, µ1) + tg(ν2, µ2)

by using the convexity of g(ν, µ). Since the above statement holds for any µ1, µ2 ≥ 0, we have

min
µ≥0

g((1− t)ν1 + tν2, µ) ≤ (1− t) min
µ1≥0

g(ν1, µ1) + t min
µ2≥0

g(ν2, µ2).

Therefore, a function

G(ν) := min
µ≥0

g(ν, µ) = min
µ≥0

max
d
L(d, ν, µ) = max

d≥0
L(d, ν, 0)

is convex in ν. By following the change-of-variable, we have

max
d≥0
L(d, ν, 0) = max

w≥0
L(w, ν) = L(arg max

w≥0
L(w, ν), ν) = L(w∗ν , ν)

is convex in ν.

Proof by exploiting second-order derivative. Suppose ((f ′)−1)′ is well-defined, where f we consider in this work satisfies
the condition. Let us define

h(x) := −f
(

max
(

0, (f ′)−1(x)
))

+ max
(

0, (f ′)−1(x)
)
· x. (33)

Then, L(w∗ν , ν) can be represented by using h:

L(w∗ν , ν)

= (1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[
− αf

(
max

(
0, (f ′)−1

(
1
αeν(s, a)

)))
+ max

(
0, (f ′)−1

(
1
αeν(s, a)

))
eν(s, a)

]
= (1− γ)Es∼p0

[ν(s)] + E(s,a)∼dD
[
αh
(

1
αeν(s, a)

)]
(34)

We prove that h(x) is convex in x by showing h′′(x) ≥ 0 ∀x. Recall that f ′ is a strictly increasing function by the strict
convexity of f , which implies that (f ′)−1 is also a strictly increasing function.
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Case 1. If (f ′)−1(x) > 0 ∀x,

h(x) = −f((f ′)−1(x)) + (f ′)−1(x) · x,
h′(x) = − f ′((f ′)−1(x))︸ ︷︷ ︸

(identity function)

((f ′)−1)′(x) + ((f ′)−1)′(x) · x+ (f ′)−1(x)

= −x · ((f ′)−1)′(x) + ((f ′)−1)′(x) · x+ (f ′)−1(x)

= (f ′)−1(x),

h′′(x) = ((f ′)−1)′(x) > 0,

where ((f ′)−1)′(x) > 0 since it is the derivative of the strictly increasing function (f ′)−1.

Case 2. If (f ′)−1(x) ≤ 0 ∀x,

h(x) = −f(0) ⇒ h′(x) = 0 ⇒ h′′(x) = 0.

Therefore, h′′(x) ≥ 0 holds for all x, which implies that h(x) is convex in x. Finally, for t ∈ [0, 1] and any ν1 : S → R,
ν2 : S → R,

L(w∗tν1+(1−t)ν2
, tν1 + (1− t)ν2)

= (1− γ)Es∼p0
[tν1(s) + (1− t)ν2(s)]

+ E(s,a)∼dD
[
αh
(

1
α

(
t{R(s, a) + γ(T ν1)(s, a)− (Bν1)(s, a)}+ (1− t){R(s, a) + γ(T ν2)(s, a)− (Bν2)(s, a)}

))]
≤ t
{

(1− γ)Es∼p0 [ν1(s)] + E(s,a)∼dD
[
αh
(

1
α

(
R(s, a) + γ(T ν1)(s, a)− (Bν1)(s, a)

))]}
(by convexity of h)

+ (1− t)
{

(1− γ)Es∼p0
[ν2(s)] + E(s,a)∼dD

[
αh
(

1
α

(
R(s, a) + γ(T ν2)(s, a)− (Bν2)(s, a)

))]}
= tL(w∗ν1

, ν1) + (1− t)L(w∗ν2
, ν2)

which concludes the proof.

Corollary 3. L̃(ν) in (13) is an upper bound of L(w∗ν , ν) in (12), i.e. L(w∗ν , ν) ≤ L̃(ν) always holds, where equality holds
when the MDP is deterministic.

Proof by Lagrangian duality. Let us consider a function h in (33). From Proposition 2, we have E(s,a)∼dD [h( 1
αeν(s, a))]

is convex in ν, i.e., for t ∈ [0, 1], ν1 : S → R and ν2 : S → R,

E(s,a)∼dD
[
h
(

1
αe(1−t)ν1+tν2

(s, a)
)]

= E(s,a)∼dD
[
h
(
(1− t) · 1

αeν1
(s, a) + t · 1

αeν2
(s, a)

)]
≤ (1− t)E(s,a)∼dD

[
h
(

1
αeν1(s, a)

)]
+ tE(s,a)∼dD

[
h
(

1
αeν2(s, a)

)]
= E(s,a)∼dD

[
(1− t) · h

(
1
αeν1

(s, a)
)

+ t · h
(

1
αeν2

(s, a)
)]
.

Since Proposition 2 should be satisfied for any MDP and dD > 0, we have

h((1− t) · 1
αeν1(s, a) + t · 1

αeν2(s, a)) ≤ (1− t) · h
(

1
αeν1(s, a)

)
+ t · h

(
1
αeν2(s, a)

)
∀s, a.

To prove this, if

h((1− t) · 1
αeν1

(s, a) + t · 1
αeν2

(s, a)) > (1− t) · h
(

1
αeν1

(s, a)
)

+ t · h
(

1
αeν2

(s, a)
)
∃s, a,

we can always find out dD > 0 that contradicts Proposition 2. Also, since 1
αeν(s, a) can have an arbitrary real value, h

should be a convex function. Therefore, it can be shown that

h
(
Es′∼T (s,a)

[
1
α êν(s, a, s′)

])
≤ Es′∼T (s,a)

[
h
(

1
α êν(s, a, s′)

)]
∀s, a,

due to Jensen’s inequality, and thus,

E(s,a)∼dD
[
h
(

1
αeν(s, a)

)]
= E(s,a)∼dD

[
h
(
Es′∼T (s,a)

[
1
α êν(s, a, s′)

])]
≤ E(s,a,s′)∼dD

[
h
(

1
α êν(s, a, s′)

)]
.

Also, the inequality becomes tight when the transition model is deterministic since h
(

1
αEs′∼T (s,a)[ê(s, a, s

′)]
)

=

Es′∼T (s,a)[h
(

1
α ê(s, a, s

′)
)
] should always hold for the deterministic transition T .
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Proof by exploiting second-order derivative. We start from (34) in the proof of Proposition 2.

L(w∗ν , ν) = (1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[
αh
(

1
αeν(s, a)

)]
(34)

= (1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[
αh
(

1
αEs′∼T (s,a)[êν(s, a, s′)]

)]
≤ (1− γ)Es∼p0

[ν(s)] + E (s,a)∼dD
s′∼T (s,a)

[
αh
(

1
α êν(s, a, s′)

)]
(by Jensen’s inequality with the convexity of h)

= (1− γ)Es∼p0
[ν(s)] + E(s,a,s′)∼dD

[
− αf

(
max

(
0, (f ′)−1

(
1
α êν(s, a, s′)

)))
(by definition of h)

+ max
(

0, (f ′)−1
(

1
α êν(s, a, s′)

))(
êν(s, a, s′)

)]
= L̃(ν) (13)

Also, Jensen’s inequality becomes tight when the transition model is deterministic for the same reason we describe in Proof
by Lagrangian duality.

C. OptiDICE for Finite MDPs
For tabular MDP experiments, we assume that the data-collection policy is given to OptiDICE for a fair comparison with
SPIBB (Laroche et al., 2019) and BOPAH (Lee et al., 2020), which directly exploit the data-collection policy π

D
. However,

the extension of tabular OptiDICE to not assuming π
D

is straightforward.

As a first step, we construct an MLE MDP M̂ = 〈S,A, T,R, p0, γ〉 using the given offline dataset. Then, we compute a
stationary distribution of the data-collection policy π

D
on the MLE MDP, denoted as dπD . Finally, we aim to solve the

following policy optimization problem on the MLE MDP:

π∗ := arg max
π

E(s,a)∼dπ [R(s, a)]− αDf (dπ||dπD ),

which can be reformulated in terms of optimizing the stationary distribution corrections w with Lagrange multipliers ν:

min
ν

max
w≥0

L(w, ν) = (1− γ)Es∼p0(s) [ν(s)] + E(s,a)∼D

[
− αf

(
w(s, a)

)
+ w(s, a)

(
R(s, a) + γ(T ν)(s, a)− (Bν)(s, a)

)]
.

(35)

For tabular MDPs, we can describe the problem using vector-matrix notation. Specifically, ν ∈ R|S| is represented as a
|S|-dimensional vector, w ∈ R|S||A| by |S||A|-dimensional vector, and R ∈ R|S||A| by |S||A|-dimensional reward vector.
Then, we denote D = diag(dπD ) ∈ R|S||A|×|S||A| as a diagonal matrix, T ∈ R|S||A|×|S| as a matrix, and B ∈ R|S||A|×|S|
as a matrix that satisfies

T ν ∈ R|S||A| s.t. (T ν)((s, a)) =
∑
s′

T (s′|s, a)ν(s′)

Bν ∈ R|S||A| s.t. (Bν)((s, a)) = ν(s)

For brevity, we only consider the case where f(x) = 1
2 (x − 1)2 that corresponds to χ2-divergence-regularized policy

optimization, and the problem (35) becomes

min
ν

max
w≥0

L(w, ν) = (1− γ)p>0 v −
α

2
(w − 1)>D(w − 1) + w>D(R+ γT ν − Bv) (36)

From Proposition 1, we have the closed-form solution of the inner maximization as w∗ν = max
(
0, 1

α (R+ γT ν−Bν) + 1
)

since (f ′)−1(x) = x+ 1. By plugging w∗ν into L(w, ν), we obtain

min
ν
L(w∗ν , ν) = L(ν) := (1− γ)p>0 ν −

α

2
(w∗ν − 1)D(w∗ν − 1) + w∗>ν D(R+ γT ν − Bv) (37)
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Since L(ν) is convex in ν by Proposition 2, we perform a second-order optimization, i.e., Newton’s method, to compute an
optimal ν∗ efficiently. For almost every ν, we can compute the first and second derivatives as follows:

eν :=R+ γT ν − Bν (advantage using ν)

m :=1
(

1
αeν + 1 ≥ 0

)
(binary masking vector)

w∗ν :=
(

1
αeν + 1

)
�m (where �m denotes element-wise masking) (closed-form solution)

J :=
∂w∗ν
∂ν

= 1
α (γT − B)�m (where �m denotes row-wise masking) (Jacobian matrix)

g :=
∂L(ν)

∂ν
= (1− γ)p0 − αJ>D(w∗ν − 1) + J>Deν + (γT − B)>Dw∗ν (first-order derivative)

H :=
∂2L(ν)

∂ν2
= −αJ>DJ + J>D(γT − B) + (γT − B)>DJ (second-order derivative).

We iteratively update ν in the direction of −H−1g until convergence. Finally, w∗ν∗ and the corresponding optimal policy
π∗(a|s) ∝ w∗ν∗(s, a) · dπD (s, a) are computed. The pseudo-code of these procedures is presented in Algorithm 2.

Algorithm 2 Tabular OptiDICE (f(x) = 1
2 (x− 1)2)

Input: MLE MDP M̂ = 〈S,A, T , r, γ, p0〉, data-collection policy π
D

, regularization hyperparameter α > 0.
dπD ← COMPUTESTATIONARYDISTRIBUTION(M̂, π

D
)

D ← diag(dπ
D

)
ν ← (random initialization)
while ν is not converged do
e← r + γT v − Bv
m← 1

(
1
αeν + 1 ≥ 0

)
w ←

(
1
αe+ 1

)
�m

J ← 1
α

(
γT − B

)
�m

g ← (1− γ)p0 − αJ>D(w − 1) + J>De+ (γT − B)>Dw
H ← −αJ>DJ + J>D(γT − B) + (γT − B)>DJ
ν ← ν − ηH−1g (where η is a step-size)

end while

π∗(a|s)← w(s, a)dπD (s, a)∑
a′ w(s, a′)dπD (s, a′)

∀s, a

Output: π∗, w
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D. Proof of Proposition 4
Proposition 4. The closed-form solution of the inner maximization with normalization constraint, i.e.,

w∗ν,λ := arg max
w≥0

(1− γ)Es∼p0 [ν(s)] + E(s,a)∼dD
[
−αf

(
w(s, a)

)]
+ E(s,a)∼dD

[
w(s, a)

(
eν(s, a)− λ

)]
+ λ

is given as

w∗ν,λ(s, a) = max

(
0, (f ′)−1

(
eν(s, a)− λ

α

))
.

Proof. Similar to the proof for Proposition 1, we consider the maximization problem

max
w≥0

L(w, ν, λ)

for fixed ν and λ, where we consider this maximization as a primal problem. Then, its dual problem is

max
w

min
µ≥0

L(w, ν, λ) +
∑
s,a

µ(s, a)w(s, a).

Since the strong duality holds, KKT condition is both necessary and sufficient conditions for primal and dual solutionsw∗ and
µ∗, where dependencies on ν, λ are ignored for brevity. While the KKT conditions on Primal feasibility, Dual feasibility
and Complementary slackness are the same as those in the proof of Proposition 1, the condition on Stationarity is
slighted different due to the normalization constraint:

Condition 1 (Primal feasibility). w∗ ≥ 0 ∀s, a.

Condition 2 (Dual feasibility). µ∗ ≥ 0 ∀s, a.

Condition 3 (Stationarity). dD(s, a)(−αf ′(w∗(s, a)) + eν(s, a) + µ∗(s, a)− λ) = 0 ∀s, a.

Condition 4 (Complementary slackness). w∗(s, a)µ∗(s, a) = 0 ∀s, a.
The remainder of the proof is similar to the proof of Proposition 1. From Stationarity and dD > 0, we have

f ′(w∗(s, a)) =
eν(s, a) + µ∗(s, a)− λ

α
∀s, a,

and since f ′ is invertible due to the strict convexity of f ,

w∗(s, a) = (f ′)−1

(
eν(s, a) + µ∗(s, a)− λ

α

)
∀s, a.

Given s, a, assume either w∗(s, a) > 0 or w∗(s, a) = 0, satisfying Primal feasibility.

Case 1 (w∗(s, a) > 0). µ∗(s, a) = 0 due to Complementary slackness, and thus,

w∗(s, a) = (f ′)−1

(
eν(s, a)− λ

α

)
> 0.

Note that Dual feasibility holds. Since f ′ is a strictly increasing function due to the strict convexity of f , eν(s, a)− λ >
αf ′(0) should be satisfied if f ′(0) is well-defined.

Case 2 (w∗(s, a) = 0). µ∗(s, a) = αf ′(0) − eν(s, a) + λ ≥ 0 due to Stationarity and Dual feasibility, and thus,
eν(s, a)− λ ≤ αf ′(0) should be satisfied if f ′(0) is well-defined.

In summary, we have

w∗ν,λ(s, a) = max

(
0, (f ′)−1

(
eν(s, a)− λ

α

))
.
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Figure 6. We depict (a) generator functions f of f -divergences and (b) corresponding functions max(0, (f ′)−1(·)) used to define the
closed-form solution in Proposition 4. While fKL(x) has a numerical instability for large x and fχ2(x) provides zero gradients for
negative x, fsoft-χ2 does not suffer from both issues.

E. f -divergence
Pertinent to the result of Proposition 4, one can observe that the choice of the function f of f -divergence can affect the
numerical stability of optimization especially when using the closed-form solution of w∗ν,λ:

w∗ν,λ(s, a) = max

(
0, (f ′)−1

(
eν(s, a)− λ

α

))
.

For example, for the choice of f(x) = fKL(x) := x log x that corresponds to KL-divergence, we have (f ′KL)−1(x) =
exp(x− 1). This yields the following closed-form solution of w∗ν,λ:

w∗ν,λ(s, a) = exp

(
eν(s, a)− λ

α
− 1

)
.

However, the choice of fKL can incur numerical instability due to its inclusion of an exp(·), i.e. for values of 1
α (eν(s, a)−λ)

in order of tens, the value of w∗ν,λ(s, a) easily explodes and so does the gradient∇νw∗ν,λ(s, a).

Alternatively, for the choice of f(x) = fχ2(x) := 1
2 (x−1)2 that corresponds to χ2-divergence, we have (f ′χ2)−1(x) = x+1.

This yields the following closed-form solution of w∗ν,λ:

w∗ν,λ(s, a) = ReLU

(
eν(s, a)− λ

α
+ 1

)
,

where ReLU(x) := max(0, x). Still, this choice may suffer from dying gradient problem: for values of negative
1
α (eν(s, a)− λ) + 1, the gradient∇νw∗ν,λ(s, a) becomes zero, which can make training ν slow or even fail.

Consequently, we adopt the function f = fsoft-χ2 that combines the form of fKL and fχ2 , which can prevent both of the
aforementioned issues:

fsoft-χ2(x) :=

{
x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1.

⇒ (fsoft-χ2(x)′)−1(x) =

{
exp(x) if x < 0

x+ 1 if x ≥ 0

This particular choice of f yields the following closed-form solution of w∗ν,λ:

w∗v,λ(s, a) = ELU

(
ev(s, a)− λ

α

)
+ 1.

Here, ELU(x) := exp(x)− 1 if x < 0 and x for x ≥ 0. Note that the solution for f = fsoft-χ2 is numerically stable for
large 1

α (eν(s, a)− λ) and always gives non-zero gradients. We use f = fsoft-χ2 for the D4RL experiments.
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F. Experimental Settings
F.1. Random MDPs

We validate tabular OptiDICE’s efficiency and robustness using randomly generated MDPs with varying numbers of
trajectories and the degree of optimality of the data-collection policy, where we follow the experimental protocol of (Laroche
et al., 2019; Lee et al., 2020). We conduct repeated experiments for 10,000 runs. For each run, an MDP is generated
randomly, and a data-collection policy is constructed according to the given degree of optimality ζ ∈ {0.9, 0.5}. Then, N
trajectories for N ∈ {10, 20, 50, 100, 200, 500, 1000, 2000} are collected using the generated MDP and the data-collection
policy π

D
. Finally, the constructed data-collection policy and the collected trajectories are given to each offline RL algorithm,

and we measure the mean performance and the CVaR 5% performance.

F.1.1. RANDOM MDP GENERATION

We generate random MDPs with |S| = 50, |A| = 4, γ = 0.95, and a deterministic initial state distribution, i.e. p0(s) = 1
for a fixed s = s0. The transition model has connectivity 4: for each (s, a), non-zero probabilities of transition to next
states are given to four different states (s′1, s

′
2, s
′
3, s
′
4), where the random transition probabilities are sampled from a

Dirichlet distribution [p(s′1|s, a), p(s′2|s, a), p(s′3|s, a), p(s′4|s, a)] ∼ Dir(1, 1, 1, 1). The reward of 1 is given to one state
that minimizes the optimal state value at the initial state; other states have zero rewards. This design of the reward function
can be understood as we choose a goal state that is the most difficult to reach from the initial state. Once the agent reaches
the rewarding goal state, the episode terminates.

F.1.2. DATA-COLLECTION POLICY CONSTRUCTION

The notion of ζ-optimality of a policy is defined as a relative performance with respect to a uniform random policy πunif

and an optimal policy π∗:(
ζ-optimal policy π’s performance V π(s0)

)
= ζV ∗(s0) + (1− ζ)V πunif (s0)

However, there are infinitely many ways to construct a ζ-optimal policy. In this work, we follow the way introduced in
Laroche et al. (2019) to construct a ζ-optimal data-collection policy, and the process proceeds as follows. First, an optimal
policy π∗ and the optimal value function Q∗ are computed. Then, starting from πsoft := π∗, the policy πsoft is softened
via πsoft ∝ exp(Q∗(s, a)/τ) by increasing the temperature τ until the performance reaches ζ+1

2 -optimality. Finally, the
softened policy πsoft is perturbed by discounting action selection probability of an optimal action at randomly selected state.
This perturbation continues until the performance of the perturbed policy reaches ζ-optimality. The pseudo-code for the
process of the data-collection policy construction is presented in Algorithm 3.

Algorithm 3 Data-collection policy construction
Input: MDP M , Degree of optimality of the data-collection policy ζ
Compute the optimal policy π∗ and its value function Q∗(s, a) on the given MDP M .
Initialize πsoft ← π∗

Initialize a temperature parameter τ ← 10−7

while V πsoft(s0) > 1
2V
∗(s0) + 1

2

(
ζV ∗(s0) + (1− ζ)V πunif (s0)

)
do

Set πsoft to πsoft(a|s) ∝ exp
(
Q∗(s,a)

τ

)
∀s, a

τ ← τ/0.9
end while
Initialize π

D
← πsoft

while V πD (s0) > ζV ∗(s0) + (1− ζ)V πunif (s0) do
Sample s ∈ S uniformly at random.
π
D

(a∗|s)← 0.9π
D

(a∗|s) where a∗ = arg maxaQ
∗(s, a).

Normalize π
D

(·|s) to ensure
∑
a πD (a|s) = 1.

end while
Output: The data-collection policy π

D
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F.1.3. HYPERPARAMETERS

We compare our tabular OptiDICE with BasicRL, RaMDP (Petrik et al., 2016), RobustMDP (Nilim & El Ghaoui, 2005;
Iyengar, 2005), SPIBB (Laroche et al., 2019), and BOPAH (Lee et al., 2020). For the hyperparameters, we follow the setting
in the public code of SPIBB and BOPAH, which are listed as follows:

RaMDP. κ = 0.003 is used for the reward-adjusting hyperparameter.

RobustMDP. δ = 0.001 is used for the confidence interval hyperparameter to construct an uncertainty set.

SPIBB. N∧ = 5 is used for the data-collection policy bootstrapping threshold.

BOPAH. The 2-fold cross validation criteria and fully state-dependent KL-regularization is used.

OptiDICE. α = N−1 for the number N of trajectories is used for the reward-regularization balancing hyperparameter. We
also use f(x) = 1

2 (x− 1)2 which corresponds to χ2-divergence.

F.2. D4RL benchmark

F.2.1. TASK DESCRIPTIONS

We use Maze2D and Gym-MuJoCo environments of D4RL benchmark (Fu et al., 2021) to evaluate OptiDICE and
CQL (Kumar et al., 2020) in continuous control tasks. We summarize the descriptions of tasks in D4RL paper (Fu et al.,
2021) as follows:

Maze2D. This is a navigation task in 2D state space, while the agent tries to reach a fixed goal location. By using priorly
gathered trajectories, the goal of the agent is to find out a shortest path to reach the goal location. The complexity of the
maze increases with the order of ”maze2d-umaze”, ”maze2d-medium” and ”maze2d-large”.

Gym-MuJoCo. For each task in {hopper, walker2d, halfcheetah} of MuJoCo continuous controls, the dataset is gathered in
the following ways.

random. The dataset is generated by a randomly initialized policy in each task.

medium. The dataset is generated by using the policy trained by SAC (Haarnoja et al., 2018) with early stopping.

medium-replay. The “replay” dataset consists of the samples gathered during training the policy for “medium” dataset. The
“medium-replay” dataset includes both “medium” and “replay” datasets.

medium-expert. The dataset is given by using the same amount of expert trajectories and suboptimal trajectories, where
those suboptimal ones are gathered by using either a randomly uniform policy or a medium-performance policy.

F.2.2. HYPERPARAMETER SETTINGS FOR CQL

We follow the hyperparameters specified by Kumar et al. (2020). For learning both the Q-funtions and the policy, fully-
connected multi-layer perceptrons (MLPs) with three hidden layers and ReLU activations are used, where the number of
hidden units on each layer is equal to 256. A Q-function learning rate of 0.0003 and a policy learning rate of 0.0001 are
used with Adam optimizer for these networks. CQL(H) is evaluated, with an approximate max-backup (see Appendix F
of (Kumar et al., 2020) for more details) and a static α = 5.0, which controls the conservativeness of CQL. The policy of
CQL is updated for 2,500,000 iterations, while we use 40,000 warm-up iterations where we update Q-functions as usual, but
the policy is updated according to the behavior cloning objective.

F.2.3. HYPERPARAMETER SETTINGS FOR OPTIDICE

For neural networks νθ, eφ, πψ and πβ in Algorithm 1, we use fully-connected MLPs with two hidden layers and ReLU
activations, where the number of hidden units on each layer is equal to 256. For πψ, we use tanh-squashed normal
distribution. We regularize the entropy of πψ with learnable entropy regularization coefficients, where target entropies are
set to be the same as those in SAC (Haarnoja et al., 2018) (−dim(A) for each task). For πβ , we use tanh-squashed mixture
of normal distributions, where we build means and standard deviations of each mixture component upon shared hidden
outputs. No entropy regularization is applied to πβ . For both πψ and πβ , means are clipped within (−7.24, 7.24), while log
of standard deviations are clipped within (−5, 2). For the optimization of each network, we use stochastic gradient descent
with Adam optimizer and its learning rate 0.0003. The batch size is set to be 512. Before training neural networks, we
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preprocess the dataset D by standardizing observations and rewards. We additionally scale the rewards by multiplying 0.1.
We update the policy πψ for 2,500,000 iterations, while we use 500,000 warm-up iterations for other networks, i.e., those
networks other than πψ are updated for 3,000,000 iterations.

For each task and OptiDICE methods (OptiDICE-minimax, OptiDICE-MSE), we search the number K of mixtures (for πβ)
within {1, 5, 9} and the coefficient α within {0.0001, 0.001, 0.01, 0.1, 1}, while we additionally search α over {2, 5, 10}
for hopper-medium-replay. The hyperparameters K and α showing the best mean performance were chosen, which are
described as follows:

Table 2. Hyperaparameters

Task OptiDICE-MSE OptiDICE-minimax
K α K α

maze2d-umaze 5 0.001 1 0.01
maze2d-medium 5 0.0001 1 0.01
maze2d-large 1 0.01 1 0.01

hopper-random 5 1 5 1
hopper-medium 9 0.1 9 0.1
hopper-medium-replay 9 10 1 2
hopper-medium-expert 9 1 5 1

walker2d-random 9 0.0001 1 0.0001
walker2d-medium 9 0.01 5 0.01
walker2d-medium-replay 9 0.1 9 0.1
walker2d-medium-expert 5 0.01 5 0.01

halfcheetah-random 5 0.0001 9 0.001
halfcheetah-medium 1 0.01 1 0.1
halfcheetah-medium-replay 9 0.01 1 0.1
halfcheetah-medium-expert 9 0.01 9 0.01
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G. Experimental results
G.1. Experimental results for γ = 0.99

Table 3. Normalized performance of OptiDICE compared with baselines. Mean scores for baselines—BEAR (Kumar et al., 2019),
BRAC (Wu et al., 2019), AlgaeDICE (Nachum et al., 2019b), and CQL (Kumar et al., 2020)— come from D4RL benchmark. We also
report the performance of CQL (Kumar et al., 2020) obtained by running the code released by authors (denoted as CQL (ours) in the table).
OptiDICE achieves the best performance on 6 tasks compared to our baselines. Note that 3-run mean scores without confidence intervals
were reported on each task by Fu et al. (2021). For CQL (ours) and OptiDICE, we use 5 runs and report means and 95% confidence
intervals.

Task BC SAC BEAR BRAC
-v

Algae
DICE CQL

CQL
(ours)

OptiDICE
minimax MSE

maze2d-umaze 3.8 88.2 3.4 -16.0 -15.7 5.7 -14.9 ± 0.7 111.0 ± 8.3 105.8 ± 17.5
maze2d-medium 30.3 26.1 29.0 33.8 10.0 5.0 17.2 ± 8.7 109.9 ± 7.7 145.2 ± 17.5
maze2d-large 5.0 -1.9 4.6 40.6 -0.1 12.5 1.6 ± 3.8 116.1 ± 43.1 155.7 ± 33.4
hopper-random 9.8 11.3 11.4 12.2 0.9 10.8 10.7 ± 0.0 11.2 ± 0.1 10.7 ± 0.2
hopper-medium 29.0 0.8 52.1 31.1 1.2 58.0 89.8 ± 7.6 92.9 ± 2.6 94.1 ± 3.7
hopper-medium-replay 11.8 3.5 33.7 0.6 1.1 48.6 33.3 ± 2.2 36.4 ± 1.1 30.7 ± 1.2
hopper-medium-expert 111.9 1.6 96.3 0.8 1.1 98.7 112.3 ± 0.2 111.5 ± 0.6 106.7 ± 1.8
walker2d-random 1.6 4.1 7.3 1.9 0.5 7.0 3.0 ± 1.8 9.4 ± 2.2 9.9 ± 4.3
walker2d-medium 6.6 0.9 59.1 81.1 0.3 79.2 73.7 ± 2.7 21.8 ± 7.1 20.8 ± 3.1
walker2d-medium-replay 11.3 1.9 19.2 0.9 0.6 26.7 13.4 ± 0.8 21.5 ± 2.9 21.6 ± 2.1
walker2d-medium-expert 6.4 -0.1 40.1 81.6 0.4 111.0 99.7 ± 7.2 74.7 ± 7.5 74.8 ± 9.2
halfcheetah-random 2.1 30.5 25.1 31.2 -0.3 35.4 25.5 ± 0.5 8.3 ± 0.8 11.6 ± 1.2
halfcheetah-medium 36.1 -4.3 41.7 46.3 -2.2 44.4 42.3 ± 0.1 37.1 ± 0.1 38.2 ± 0.1
halfcheetah-medium-replay 38.4 -2.4 38.6 47.7 -2.1 46.2 43.1 ± 0.7 38.9 ± 0.5 39.8 ± 0.3
halfcheetah-medium-expert 35.8 1.8 53.4 41.9 -0.8 62.4 53.5 ± 13.3 76.2 ± 7.0 91.1 ± 3.7
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G.2. Experimental results with importance-weighted BC
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Figure 7. Performance of BC, OptiDICE with importance-weighted BC (IWBC) and information projection (I-Proj) methods on D4RL
benchmark. γ = 0.99 is used.

The empirical results of OptiDICE for different policy extraction methods (information-weighted BC, I-projection methods)
are depicted in Figure 7. For those results with IWBC, we search α within {0.0001, 0.001, 0.01, 0.1, 1} and choose one
with the best mean performance, which are summarized in Table 4. The hyperparameters other than α are the same as those
used for information-projection methods, which is described in Section F.2.3. We empirically observe that policy extraction
with information projection method performs better than the extraction with importance-weighted BC, as discussed in
Section 3.3.

Table 4. Hyperaparameters for importance-weighted BC

Task OptiDICE-MSE OptiDICE-minimax
α α

maze2d-umaze 0.001 0.001
maze2d-medium 0.0001 0.001
maze2d-large 0.001 0.001

hopper-random 1 1
hopper-medium 0.01 0.1
hopper-medium-replay 0.1 0.1
hopper-medium-expert 0.1 0.1

walker2d-random 0.0001 0.0001
walker2d-medium 0.1 0.1
walker2d-medium-replay 0.1 0.1
walker2d-medium-expert 0.01 0.01

halfcheetah-random 0.001 0.01
halfcheetah-medium 0.0001 0.1
halfcheetah-medium-replay 0.01 0.01
halfcheetah-medium-expert 0.01 0.01
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G.3. Experimental results for γ ∈ {0.99, 0.999, 0.9999, 1.0}
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Figure 8. Performance of BC, CQL, OptiDICE-minimax and OptiDICE-MSE on D4RL benchmark for γ = 0.99.
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Figure 9. Performance of BC, CQL, OptiDICE-minimax and OptiDICE-MSE on D4RL benchmark for γ = 0.999.
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Figure 10. Performance of BC, CQL, OptiDICE-minimax and OptiDICE-MSE on D4RL benchmark for γ = 0.9999.
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Figure 11. Performance of BC, OptiDICE-minimax and OptiDICE-MSE on D4RL benchmark for γ = 1. Note that CQL cannot deal with
γ = 1 case. Thus, we only provide the results of OptiDICE and BC.




