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Appendix
A. SUNRISE: Soft actor-critic
Background. SAC (Haarnoja et al., 2018) is a state-of-the-art off-policy algorithm for continuous control problems. SAC
learns a policy, ⇡�(a|s), and a critic, Q✓(s, a), and aims to maximize a weighted objective of the reward and the policy
entropy, Est,at⇠⇡

⇥P
t �

t�1rt + ↵H(⇡�(·|st))
⇤
. To update the parameters, SAC alternates between a soft policy evaluation

and a soft policy improvement. At the soft policy evaluation step, a soft Q-function, which is modeled as a neural network
with parameters ✓, is updated by minimizing the following soft Bellman residual:

L
SAC
critic(✓) = E⌧t⇠B[LQ(⌧t, ✓)],

LQ(⌧t, ✓) =
�
Q✓(st, at)� rt � �Eat+1⇠⇡�

⇥
Q✓̄(st+1, at+1)� ↵ log ⇡�(at+1|st+1)

⇤�2
,

where ⌧t = (st, at, rt, st+1) is a transition, B is a replay buffer, ✓̄ are the delayed parameters, and ↵ is a temperature
parameter. At the soft policy improvement step, the policy ⇡ with its parameter � is updated by minimizing the following
objective:

L
SAC
actor(�) = Est⇠B

⇥
L⇡(st,�)

⇤
, where L⇡(st,�) = Eat⇠⇡�

⇥
↵ log ⇡�(at|st)�Q✓(st, at)

⇤
.

We remark that this corresponds to minimizing the Kullback-Leibler divergence between the policy and a Boltzmann
distribution induced by the current soft Q-function.

SUNRISE without UCB exploration. For SUNRISE without UCB exploration, we use random inference proposed in
Bootstrapped DQN (Osband et al., 2016a), which randomly selects an index of policy uniformly at random and generates
the action from the selected actor for the duration of that episode (see Line 3 in Algorithm 2).

Algorithm 2 SUNRISE: SAC version (random inference)
1: for each iteration do
2: // RANDOM INFERENCE
3: Select an index of policy usingbi ⇠ Uniform{1, · · · , N}

4: for each timestep t do
5: Get the action from selected policy: at ⇠ ⇡�bi

(a|st)
6: Collect state st+1 and reward rt from the environment by taking action at
7: Sample bootstrap masks Mt = {mt,i ⇠ Bernoulli (�) — i 2 {1, . . . , N}}

8: Store transitions ⌧t = (st, at, st+1, rt) and masks in replay buffer B  B [ {(⌧t,Mt)}
9: end for

10: // UPDATE AGENTS VIA BOOTSTRAP AND WEIGHTED BELLMAN BACKUP
11: for each gradient step do
12: Sample random minibatch {(⌧j ,Mj)}Bj=1 ⇠ B

13: for each agent i do
14: Update the Q-function by minimizing 1

B

PB
j=1 mj,iLWQ (⌧j , ✓i)

15: Update the policy by minimizing 1
B

PB
j=1 mj,iL⇡(sj ,�i)

16: end for
17: end for
18: end for

B. Extension to Rainbow DQN
B.1. Preliminaries: Rainbow DQN

Background. DQN algorithm (Mnih et al., 2015) learns a Q-function, which is modeled as a neural network with parameters
✓, by minimizing the following Bellman residual:

L
DQN(✓) = E⌧t⇠B

"⇣
Q✓(st, at)� rt � �max

a
Q✓̄(st+1, a)

⌘2
#
, (8)
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where ⌧t = (st, at, rt, st+1) is a transition, B is a replay buffer, and ✓̄ are the delayed parameters. Even though Rainbow
DQN integrates several techniques, such as double Q-learning (Van Hasselt et al., 2016) and distributional DQN (Bellemare
et al., 2017), applying SUNRISE to Rainbow DQN can be described based on the standard DQN algorithm. For exposition,
we refer the reader to Hessel et al. (2018) for more detailed explanations of Rainbow DQN.

Algorithm 3 SUNRISE: Rainbow version
1: for each iteration do
2: for each timestep t do
3: // UCB EXPLORATION
4: Choose the action that maximizes UCB: at = arg max

at,i2A
Qmean(st, at,i) + �Qstd(st, at,i)

5: Collect state st+1 and reward rt from the environment by taking action at
6: Sample bootstrap masks Mt = {mt,i ⇠ Bernoulli (�) — i 2 {1, . . . , N}}

7: Store transitions ⌧t = (st, at, st+1, rt) and masks in replay buffer B  B [ {(⌧t,Mt)}
8: end for
9: // UPDATE Q-FUNCTIONS VIA BOOTSTRAP AND WEIGHTED BELLMAN BACKUP

10: for each gradient step do
11: Sample random minibatch {(⌧j ,Mj)}Bj=1 ⇠ B

12: for each agent i do
13: Update the Q-function by minimizing 1

B

PB
j=1 mj,iL

DQN
WQ (⌧j , ✓i)

14: end for
15: end for
16: end for

B.2. SUNRISE: Rainbow DQN

Bootstrap with random initialization. Formally, we consider an ensemble of N Q-functions, i.e., {Q✓i}
N
i=1, where ✓i

denotes the parameters of the i-th Q-function.3 To train the ensemble of Q-functions, we use the bootstrap with random
initialization (Efron, 1982; Osband et al., 2016a), which enforces the diversity between Q-functions through two simple
ideas: First, we initialize the model parameters of all Q-functions with random parameter values for inducing an initial
diversity in the models. Second, we apply different samples to train each Q-function. Specifically, for each Q-function i in
each timestep t, we draw the binary masks mt,i from the Bernoulli distribution with parameter � 2 (0, 1], and store them
in the replay buffer. Then, when updating the model parameters of Q-functions, we multiply the bootstrap mask to each
objective function.

Weighted Bellman backup. Since conventional Q-learning is based on the Bellman backup in (8), it can be affected by
error propagation. I.e., error in the target Q-function Q✓̄(st+1, at+1) gets propagated into the Q-function Q✓(st, at) at
the current state. Recently, Kumar et al. (2020) showed that this error propagation can cause inconsistency and unstable
convergence. To mitigate this issue, for each Q-function i, we consider a weighted Bellman backup as follows:

L
DQN
WQ (⌧t, ✓i) = w (st+1)

⇣
Q✓i(st, at)� rt � �max

a
Q✓̄i(st+1, a)

⌘2
,

where ⌧t = (st, at, rt, st+1) is a transition, and w(s) is a confidence weight based on ensemble of target Q-functions:

w(s) = �
�
�Q̄std(s) ⇤ T

�
+ 0.5, (9)

where T > 0 is a temperature, � is the sigmoid function, and Q̄std(s) is the empirical standard deviation of all target
Q-functions {maxa Q✓̄i(s, a)}

N
i=1. Note that the confidence weight is bounded in [0.5, 1.0] because standard deviation

is always positive.4 The proposed objective L
DQN
WQ down-weights the sample transitions with high variance across target

Q-functions, resulting in a loss function for the Q-updates that has a better signal-to-noise ratio. Note that we combine the
proposed weighted Bellman backup with prioritized replay (Schaul et al., 2016) by multiplying both weights to Bellman
backups.

3Here, we remark that each Q-function has a unique target Q-function.
4We find that it is empirically stable to set minimum value of weight w(s, a) as 0.5.
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UCB exploration. The ensemble can also be leveraged for efficient exploration (Chen et al., 2017; Osband et al., 2016a)
because it can express higher uncertainty on unseen samples. Motivated by this, by following the idea of Chen et al. (2017),
we consider an optimism-based exploration that chooses the action that maximizes

at = max
a

{Qmean(st, a) + �Qstd(st, a)}, (10)

where Qmean(s, a) and Qstd(s, a) are the empirical mean and standard deviation of all Q-functions {Q✓i}
N
i=1, and the � > 0

is a hyperparameter. This inference method can encourage exploration by adding an exploration bonus (i.e., standard
deviation Qstd) for visiting unseen state-action pairs similar to the UCB algorithm (Auer et al., 2002). This inference
method was originally proposed in Chen et al. (2017) for efficient exploration in DQN, but we further extend it to Rainbow
DQN. For evaluation, we approximate the maximum a posterior action by choosing the action maximizes the mean of
Q-functions, i.e., at = maxa{Qmean(st, a)}. The full procedure is summarized in Algorithm 3.

C. Implementation details for toy regression tasks
We evaluate the quality of uncertainty estimates from an ensemble of neural networks on a toy regression task. To this
end, we generate twenty training samples drawn as y = x3 + ✏, where ✏ ⇠ N (0, 32), and train ten ensembles of regression
networks using bootstrap with random initialization. The regression network is as fully-connected neural networks with
2 hidden layers and 50 rectified linear units in each layer. For bootstrap, we draw the binary masks from the Bernoulli
distribution with mean � = 0.3. As uncertainty estimates, we measure the empirical variance of the networks’ predictions.
As shown in Figure 1(b), the ensemble can produce well-calibrated uncertainty estimates (i.e., variance) on unseen samples.

D. Experimental setups and results: OpenAI Gym
Environments. We evaluate the performance of SUNRISE on four complex environments based on the standard bench-
marking environments5 from OpenAI Gym (Brockman et al., 2016). Note that we do not use a modified Cheetah
environments from PETS (Chua et al., 2018) (dented as Cheetah in POPLIN (Wang & Ba, 2020)) because it includes
additional information in observations.

Training details. We consider a combination of SAC and SUNRISE using the publicly released implementation repository
(https://github.com/vitchyr/rlkit) without any modifications on hyperparameters and architectures. For
our method, the temperature for weighted Bellman backups is chosen from T 2 {10, 20, 50}, the mean of the Bernoulli
distribution is chosen from � 2 {0.5, 1.0}, the penalty parameter is chosen from � 2 {1, 5, 10}, and we train five ensemble
agents. The optimal parameters are chosen to achieve the best performance on training environments. Here, we remark that
training ensemble agents using same training samples but with different initialization (i.e., � = 1) usually achieves the best
performance in most cases similar to Osband et al. (2016a) and Chen et al. (2017). We expect that this is because splitting
samples can reduce the sample-efficiency. Also, initial diversity from random initialization can be enough because each
Q-function has a unique target Q-function, i.e., target value is also different according to initialization.

Learning curves. Figure 4 shows the learning curves on all environments. One can note that SUNRISE consistently
improves the performance of SAC by a large margin.

Effects of ensembles. Figure 5 shows the learning curves of SUNRISE with varying values of ensemble size on all
environments. The performance can be improved by increasing the ensemble size, but the improvement is saturated around
N = 5.

E. Experimental setups and results: noisy reward
DisCor. DisCor (Kumar et al., 2020) was proposed to prevent the error propagation issue in Q-learning. In addition to a
standard Q-learning, DisCor trains an error model � (s, a), which approximates the cumulative sum of discounted Bellman
errors over the past iterations of training. Then, using the error model, DisCor reweights the Bellman backups based on a
confidence weight defined as follows:

w(s, a) / exp

✓
�
�� (s, a)

T

◆
,

5We used the reference implementation at https://github.com/WilsonWangTHU/mbbl (Wang et al., 2019).

https://github.com/vitchyr/rlkit
https://github.com/WilsonWangTHU/mbbl
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Figure 4. Learning curves of SUNRISE and single agent with h hidden units and five gradient updates per each timestep on OpenAI Gym.
The solid line and shaded regions represent the mean and standard deviation, respectively, across four runs.
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Figure 5. Learning curves of SUNRISE with varying values of ensemble size N . The solid line and shaded regions represent the mean
and standard deviation, respectively, across four runs.

where � is a discount factor and T is a temperature. By following the setups in Kumar et al. (2020), we take a network
with 1 extra hidden layer than the corresponding Q-network as an error model, and chose T = 10 for all experiments.
We update the temperature via a moving average and use the learning rate of 0.0003. We use the SAC algorithm as
the RL objective coupled with DisCor and build on top of the publicly released implementation repository (https:
//github.com/vitchyr/rlkit).

Hyperparameter Value Hyperparameter Value
Random crop True Initial temperature 0.1
Observation rendering (100, 100) Learning rate (f✓,⇡ , Q�) 2e� 4 cheetah, run
Observation downsampling (84, 84) 1e� 3 otherwise
Replay buffer size 100000 Learning rate (↵) 1e� 4
Initial steps 1000 Batch Size 512 (cheetah), 256 (rest)
Stacked frames 3 Q function EMA ⌧ 0.01
Action repeat 2 finger, spin; walker, walk Critic target update freq 2

8 cartpole, swingup Convolutional layers 4
4 otherwise Number of filters 32

Hidden units (MLP) 1024 Non-linearity ReLU
Evaluation episodes 10 Encoder EMA ⌧ 0.05
Optimizer Adam Latent dimension 50
(�1,�2)! (f✓,⇡ , Q�) (.9, .999) Discount � .99
(�1,�2)! (↵) (.5, .999)

Table 4. Hyperparameters used for DeepMind Control Suite experiments. Most hyperparameters values are unchanged across environments
with the exception for action repeat, learning rate, and batch size.

https://github.com/vitchyr/rlkit
https://github.com/vitchyr/rlkit
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F. Experimental setups and results: DeepMind Control Suite
Training details. We consider a combination of RAD and SUNRISE using the publicly released implementation repository
(https://github.com/MishaLaskin/rad) with a full list of hyperparameters in Table 4. Similar to Laskin
et al. (2020), we use the same encoder architecture as in (Yarats et al., 2019), and the actor and critic share the same
encoder to embed image observations.6 For our method, the temperature for weighted Bellman backups is chosen from
T 2 {10, 100}, the mean of the Bernoulli distribution is chosen from � 2 {0.5, 1.0}, the penalty parameter is chosen from
� 2 {1, 5, 10}, and we train five ensemble agents. The optimal parameters are chosen to achieve the best performance
on training environments. Here, we remark that training ensemble agents using same training samples but with different
initialization (i.e., � = 1) usually achieves the best performance in most cases similar to Osband et al. (2016a) and Chen
et al. (2017). We expect that this is because training samples can reduce the sample-efficiency. Also, initial diversity
from random initialization can be enough because each Q-function has a unique target Q-function, i.e., target value is also
different according to initialization.

Learning curves. Figure 6(g), 6(h), 6(i), 6(j), 6(k), and 6(l) show the learning curves on all environments. Since RAD
already achieves the near optimal performances and the room for improvement is small, we can see a small but consistent
gains from SUNRISE. To verify the effectiveness of SUNRISE more clearly, we consider a combination of SAC and
SUNRISE in Figure 6(a), 6(b), 6(c), 6(d), 6(e), and 6(f), where the gain from SUNRISE is more significant.

G. Experimental setups and results: Atari games
Training details. We consider a combination of sample-efficient versions of Rainbow DQN and SUNRISE using the
publicly released implementation repository (https://github.com/Kaixhin/Rainbow) without any modifications
on hyperparameters and architectures. For our method, the temperature for weighted Bellman backups is chosen from
T 2 {10, 40}, the mean of the Bernoulli distribution is chosen from � 2 {0.5, 1.0}, the penalty parameter is chosen from
� 2 {1, 10}, and we train five ensemble agents. The optimal parameters are chosen to achieve the best performance on
training environments. Here, we remark that training ensemble agents using same training samples but with different
initialization (i.e., � = 1) usually achieves the best performance in most cases similar to Osband et al. (2016a) and Chen
et al. (2017). We expect that this is because splitting samples can reduce the sample-efficiency. Also, initial diversity
from random initialization can be enough because each Q-function has a unique target Q-function, i.e., target value is also
different according to initialization.

Learning curves. Figure 7, Figure 8 and Figure 9 show the learning curves on all environments.

6However, we remark that each agent does not share the encoders unlike Bootstrapped DQN (Osband et al., 2016a).

https://github.com/MishaLaskin/rad
https://github.com/Kaixhin/Rainbow
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Figure 6. Learning curves of (a-f) SAC and (g-I) RAD on DeepMind Control Suite. The solid line and shaded regions represent the mean
and standard deviation, respectively, across five runs.
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Figure 7. Learning curves on Atari games. The solid line and shaded regions represent the mean and standard deviation, respectively,
across three runs.
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Figure 8. Learning curves on Atari games. The solid line and shaded regions represent the mean and standard deviation, respectively,
across three runs.
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Figure 9. Learning curves on Atari games. The solid line and shaded regions represent the mean and standard deviation, respectively,
across three runs.


