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A. Notations
We collect in Table A.1 the notations of performance measures used in this paper.

Notation Meaning Definition

Weak
Measure

4w(w,v) weak PD population risk sup
v′∈V

E
[
F (w,v′)

]
− inf

w′∈W
E
[
F (w′,v)

]
4wS (w,v) weak PD empirical risk sup

v′∈V
E
[
FS(w,v′)

]
− inf

w′∈W
E
[
FS(w′,v)

]
4w(w,v)−4wS (w,v) weak PD generalization error

(
sup
v′∈V

E
[
F (w,v′)

]
− sup

v′∈V
E
[
FS(w,v′)

])
+
(

inf
w′∈V

E
[
FS(w′,v)

]
− inf

w′∈W
E
[
F (w′,v)

])

Strong
Measure

4s(w,v) strong PD population Risk sup
v′∈V

F (w,v′)− inf
w′∈W

F (w′,v)

4sS(w,v) strong PD empirical Risk sup
v′∈V

FS(w,v′)− inf
w′∈W

FS(w′,v)

4s(w,v)−4sS(w,v) strong PD generalization error

(
sup
v′∈V

F (w,v′)− sup
v′∈W

FS(w,v′)
)

+
(

inf
w′∈V

FS(w′,v)− inf
w′∈W

F (w′,v)
)

Primal
Measure

R(w)− inf
w′∈W

R(w′) excess primal population risk sup
v′∈V

F (w,v′)− inf
w′∈W

sup
v′∈V

F (w′,v′)

RS(w)− inf
w′∈W

RS(w′) excess primal empirical risk sup
v′∈V

FS(w,v′)− inf
w′∈W

sup
v′∈V

FS(w′,v′)

R(w)−RS(w) primal generalization error sup
v′∈V

F (w,v′)− sup
v′∈V

FS(w,v′)

F (w,v)− FS(w,v) plain generalization error

Table A.1. Notations on Measures of Performance.

We collect in Table A.2 the stability measures for a (randomized) algorithm A.

Stability Measure Definition

Weak Stability sup
z

(
sup
v′∈V

EA
[
f(Aw(S),v′; z)− f(Aw(S′),v′; z)

]
+ sup

w′∈W
EA
[
f(w′, Av(S); z)− f(w′, Av(S′); z)

])
Argument Stability EA

∥∥∥∥∥∥
Aw(S)−Aw(S′)

Av(S)−Av(S′)

∥∥∥∥∥∥
2

 or

∥∥∥∥∥∥
Aw(S)−Aw(S′)

Av(S)−Av(S′)

∥∥∥∥∥∥
2

Uniform Stability sup
z

[
f(Aw(S), Av(S); z)− f(Aw(S′), Av(S′); z)

]
Table A.2. Stability Measures. Here S and S′ are neighboring datasets.
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B. Proof of Theorem 1
In this section, we prove Theorem 1 on the connection between stability measure and generalization.

Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be two datasets drawn from the same distribution. For any i ∈ [n], define
S(i) = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}. For any function g, g̃, we have the basic inequalities

sup
w
g(w)− sup

w
g̃(w) ≤ sup

w

(
g(w)− g̃(w)

)
inf
w
g(w)− inf

w
g̃(w) ≤ sup

w

(
g(w)− g̃(w)

)
.

(B.1)

B.1. Proof of Part (a)

We first prove Part (a). It follows from (B.1) that

4w(Aw(S), Av(S))−4wS (Aw(S), Av(S)) ≤ sup
v′∈V

E[F (Aw(S),v′)− FS(Aw(S),v′)]

+ sup
w′∈W

E[FS(w′, Av(S))− F (w′, Av(S))].

According to the symmetry between zi and z′i we know

E[F (Aw(S),v′)− FS(Aw(S),v′)] = 1
n

n∑
i=1

E[F (Aw(S(i)),v′)]− E[FS(Aw(S),v′)]

= 1
n

n∑
i=1

E
[
f(Aw(S(i)),v′; zi)− f(Aw(S),v′; zi)

]
,

where the second identity holds since zi is not used to train Aw(S(i)). In a similar way, we can prove

E[FS(w′, Av(S))− F (w′, Av(S))] = 1
n

n∑
i=1

[
f(w′, Av(S(i)); zi)− f(w′, Av(S); zi)

]
.

As a combination of the above three inequalities we get

4w(Aw(S), Av(S))−4wS (Aw(S), Av(S)) ≤ sup
v′∈V

[ 1
n

n∑
i=1

E
[
f(Aw(S(i)),v′; zi)− f(Aw(S),v′; zi)

]]
+

sup
w′∈W

[ 1
n

n∑
i=1

[
f(w′, Av(S(i)); zi)− f(w′, Av(S); zi)

]]
.

The stated bound in Part (a) then follows directly from the definition of stability.

B.2. Proof of Part (b)

The following lemma quantifies the sensitivity of the optimal v w.r.t. the perturbation of w.

Lemma B.1 (Lin et al. 2020). Let φ :W×V 7→ R. Assume that for any w, the function v 7→ φ(w,v) is ρ-strongly-concave.
Suppose for any (w,v), (w′,v′) we have∥∥∇vφ(w,v)−∇vφ(w′,v)

∥∥
2 ≤ L‖w−w′‖2.

For any w, denote v∗(w) = arg maxv∈V φ(w,v). Then for any w,w′ ∈ W , we have

∥∥v∗(w)− v∗(w′)‖2 ≤
L

ρ
‖w−w′‖2.
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We now prove Part (b). For any S, let v∗S = arg maxv∈V F (Aw(S),v). According to the symmetry between zi and z′i we
know

E
[

sup
v′∈V

F (Aw(S),v′)
]

= 1
n

n∑
i=1

E
[

sup
v′∈V

F (Aw(S(i)),v′)
]

= 1
n

n∑
i=1

E
[
F (Aw(S(i)),v∗S(i))

]
= 1
n

n∑
i=1

E
[
f(Aw(S(i)),v∗S(i) ; zi)

]
,

where the last identity holds since zi is independent of Aw(S(i)) and v∗
S(i) .

According to Assumption 1, we know

f(Aw(S(i)),v∗S(i) ; zi)− f(Aw(S),v∗S ; zi)
= f(Aw(S(i)),v∗S(i) ; zi)− f(Aw(S(i)),v∗S ; zi) + f(Aw(S(i)),v∗S ; zi)− f(Aw(S),v∗S ; zi)
≤ G

∥∥Aw(S(i))−Aw(S)
∥∥

2 +G
∥∥v∗S(i) − v∗S

∥∥
2 ≤

(
1 + L/ρ

)
G
∥∥Aw(S(i))−Aw(S)

∥∥
2, (B.2)

where in the last inequality we have used Lemma B.1 due to the strong concavity of v 7→ F (w,v) for any w. As a
combination of the above two inequalities, we get

E
[

sup
v′∈V

F (Aw(S),v′)
]
≤ 1
n

n∑
i=1

E
[
f(Aw(S),v∗S ; zi)

]
+
(
1 + L/ρ

)
G

n

n∑
i=1

E
[∥∥Aw(S(i))−Aw(S)

∥∥
2

]
= E

[
FS(Aw(S),v∗S)

]
+
(
1 + L/ρ

)
G

n

n∑
i=1

E
[∥∥Aw(S(i))−Aw(S)

∥∥
2

]
≤ E

[
sup
v′∈V

FS(Aw(S),v′)
]

+
(
1 + L/ρ

)
G

n

n∑
i=1

E
[∥∥Aw(S(i))−Aw(S)

∥∥
2

]
. (B.3)

The stated bound in Part (b) then follows.

B.3. Proof of Part (c)

In a similar way, one can show that

E
[

inf
w′∈W

FS(w′, Av(S))
]
− E

[
inf

w′∈W
F (w′, Av(S))

]
≤
(
1 + L/ρ

)
G

n

n∑
i=1

E
[
‖Av(S(i))−Av(S)‖2

]
.

The above inequality together with (B.3) then implies

E
[
4s(Aw(S), Av(S))

]
− E

[
4sS(Aw(S), Av(S))

]
= E

[
sup
v′∈V

F (Aw(S),v′)
]
− E

[
sup
v′∈V

FS(Aw(S),v′)
]

+ E
[

inf
w′∈W

FS(w′, Av(S))
]
− E

[
inf

w′∈W
F (w′, Av(S))

]
≤
(
1 + L/ρ

)
GE
[
‖Aw(S(i))−Aw(S)‖2

]
+
(
1 + L/ρ

)
GE
[
‖Av(S(i))−Av(S)‖2

]
≤
(
1 + L/ρ

)
G
√

2E
[∥∥∥(Aw(S(i))−Aw(S)

Av(S(i))−Av(S)

)∥∥∥
2

]
,

where we have used the elementary inequality a+ b ≤
√

2(a2 + b2). This proves the stated bound in Part (c).

B.4. Proof of Part (d)

To prove Part (d) on high-probability bounds, we need to introduce some lemmas.

The following lemma establishes a concentration inequality for a summation of weakly-dependent random variables. We
denote by S\{zi} the set {z1, . . . , zi−1, zi+1, . . . , zn}. The Lp-norm of a random variable Z is denoted by ‖Z‖p :=(
E[|Z|p]

) 1
p , p ≥ 1.
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Lemma B.2 (Bousquet et al. 2020). Let S = {z1, . . . , zn} be a set of independent random variables each taking values in
Z and M > 0. Let g1, . . . , gn be some functions gi : Zn 7→ R such that the following holds for any i ∈ [n]

•
∣∣ES\{zi}[gi(S)]

∣∣ ≤M almost surely (a.s.),

• Ezi
[
gi(S)

]
= 0 a.s.,

• for any j ∈ [n] with j 6= i, and z′′j ∈ Z∣∣gi(S)− gi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∣∣ ≤ β. (B.4)

Then, for any p ≥ 2 ∥∥∥ n∑
i=1

gi(S)
∥∥∥
p
≤ 12

√
6pnβdlog2 ne+ 3

√
2M√pn.

The following lemma shows how to relate moment bounds of random variables to tail behavior.

Lemma B.3 (Bousquet et al. 2020; Vershynin 2018). Let a, b ∈ R+ and δ ∈ (0, 1/e). Let Z be a random variable with
‖Z‖p ≤

√
pa+ pb for any p ≥ 2. Then with probability at least 1− δ

|Z| ≤ e
(
a
√

log(e/δ) + b log(e/δ)
)
.

With the above lemmas we are now ready to prove Part (d). For any S, denote

v∗S = arg max
v∈V

F (Aw(S),v). (B.5)

We have the following error decomposition

nF (Aw(S),v∗S)− n sup
v′∈V

FS(Aw(S),v) =
n∑
i=1

EZ
[
f(Aw(S),v∗S ;Z)− Ez′

i
[f(Aw(S(i)),v∗S(i) ;Z)]

]
+

n∑
i=1

Ez′
i

[
EZ [f(Aw(S(i)),v∗S(i) ;Z)]−f(Aw(S(i)),v∗S(i) ; zi)

]
+

n∑
i=1

Ez′
i

[
f(Aw(S(i)),v∗S(i) ; zi)

]
−n sup

v′∈V
FS(Aw(S),v).

By the definition of v∗
S(i) we know EZ [f(Aw(S(i)),v∗

S(i) ;Z)] ≥ EZ [f(Aw(S(i)),v∗S ;Z)]. It then follows that

nF (Aw(S),v∗S)− n sup
v′∈V

FS(Aw(S),v′) ≤
n∑
i=1

EZ
[
f(Aw(S),v∗S ;Z)− Ez′

i
[f(Aw(S(i)),v∗S ;Z)]

]
+

n∑
i=1

Ez′
i

[
EZ [f(Aw(S(i)),v∗S(i) ;Z)]−f(Aw(S(i)),v∗S(i) ; zi)

]
+

n∑
i=1

Ez′
i

[
f(Aw(S(i)),v∗S(i) ; zi)

]
−n sup

v′∈V
FS(Aw(S),v′).

According to (B.2), we know

n∑
i=1

Ez′
i

[
f(Aw(S(i)),v∗S(i) ; zi)

]
≤
(
1 + L/ρ

)
G

n∑
i=1

Ez′
i

[∥∥Aw(S(i))−Aw(S)
∥∥

2

]
+

n∑
i=1

f(Aw(S),v∗S ; zi)

=
(
1 + L/ρ

)
G

n∑
i=1

Ez′
i

[∥∥Aw(S(i))−Aw(S)
∥∥

2

]
+ nFS(Aw(S),v∗S)

≤
(
1 + L/ρ

)
G

n∑
i=1

Ez′
i

[∥∥Aw(S(i))−Aw(S)
∥∥

2

]
+ n sup

v′∈V
FS(Aw(S),v′).

As a combination of the above two inequalities, we derive

nF (Aw(S),v∗S)− n sup
v′∈V

FS(Aw(S),v′) ≤
(
2 + L/ρ

)
nGε+

n∑
i=1

gi(S), (B.6)
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where we introduce
gi(S) = Ez′

i

[
EZ [f(Aw(S(i)),v∗S(i) ;Z)]− f(Aw(S(i)),v∗S(i) ; zi)

]
and use the inequality

f(Aw(S),v∗S ;Z)− f(Aw(S(i)),v∗S ;Z) ≤ G‖Aw(S)−Aw(S(i))‖2 ≤ Gε.

Due to the symmetry between zi and Z, we know Ezi [gi(S)] = 0. The inequality |ES\{zi}[gi(S)]| ≤ 2R is also clear.

For any j 6= i and any z′′j ∈ Z , we know∣∣∣Ez′
i

[
EZ [f(Aw(S(i)),v∗S(i) ;Z)]− f(Aw(S(i)),v∗S(i) ; zi)

]
− Ez′

i

[
EZ [f(Aw(S(i)

j ),v∗
S

(i)
j

;Z)]− f(Aw(S(i)
j ),v∗

S
(i)
j

; zi)
]∣∣∣

≤
∣∣∣Ez′

i

[
EZ [f(Aw(S(i)),v∗S(i) ;Z)]− EZ [f(Aw(S(i)

j ),v∗
S

(i)
j

;Z)]
]∣∣∣+

∣∣∣Ez′
i

[
f(Aw(S(i)),v∗S(i) ; zi)− f(Aw(S(i)

j ),v∗
S

(i)
j

; zi)
]∣∣∣,

where S(i)
j is the set derived by replacing the j-th element of S(i) with z′′j . For any z, there holds∣∣f(Aw(S(i)),v∗S(i) ; z)− f(Aw(S(i)

j ),v∗
S

(i)
j

; z)
∣∣

≤
∣∣f(Aw(S(i)),v∗S(i) ; z)− f(Aw(S(i)),v∗

S
(i)
j

; z)
∣∣+
∣∣f(Aw(S(i)),v∗

S
(i)
j

; z)− f(Aw(S(i)
j ),v∗

S
(i)
j

; z)
∣∣

≤ G‖v∗S(i) − v∗
S

(i)
j

‖2 +G‖Aw(S(i))−Aw(S(i)
j )‖2 ≤

(
L/ρ+ 1

)
G‖Aw(S(i))−Aw(S(i)

j )‖2,

where in the last inequality we have used the definition of v∗
S(i) and Lemma B.1 with φ = F . Therefore gi(S) satisfies the

condition (B.4) with β =
(
L/ρ+ 1

)
Gε. Therefore, all the conditions of Lemma B.2 hold and we can apply Lemma B.2 to

derive the following inequality for any p ≥ 2∥∥∥ n∑
i=1

gi(S)
∥∥∥
p
≤ 12

√
6pn

(
L/ρ+ 1

)
Gεdlog2 ne+ 6

√
2R√pn.

This together with Lemma B.3 implies the following inequality with probability 1− δ∣∣∣ n∑
i=1

gi(S)
∣∣∣ ≤ e(6R

√
2n log(e/δ) + 12

√
6n
(
L/ρ+ 1

)
Gε log(e/δ)dlog2 ne

)
.

We can plug the above inequality back into (B.6) and derive the following inequality with probability at least 1− δ

F (Aw(S),v∗S)− sup
v′∈V

FS(Aw(S),v′) ≤
(
2+L/ρ

)
Gε+e

(
6R
√

2n−1 log(e/δ)+12
√

6
(
L/ρ+1

)
Gε log(e/δ)dlog2 ne

)
.

This proves the stated bound in Part (d).

B.5. Proof of Part (e)

Part (e) is standard in the literature (Bousquet et al., 2020).

C. Proof of Theorem 2
In this section, we present the proof of Theorem 2 on the argument stability of SGDA.

C.1. Approximate Nonexpansiveness of Gradient Map

To prove stability bounds, we need to study the expansiveness of the gradient map

Gf,η :
(

w
v

)
7→
(

w− η∇wf(w,v)
v + η∇vf(w,v)

)
associated with a (strongly) convex-concave f . The following lemma shows that Gf,η is approximately nonexpansive in
both the Lipschitz continuous case and the smooth case. It also shows that Gf,η is nonexpansive if f is SC-SC and the step
size is small. Part (b) can be found in Farnia & Ozdaglar (2020).
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Lemma C.1. Let f be ρ-SC-SC with ρ ≥ 0.

(a) If Assumption 1 holds, then∥∥∥∥(w− η∇wf(w,v)
v + η∇vf(w,v)

)
−
(

w′ − η∇wf(w′,v′)
v′ + η∇vf(w′,v′)

)∥∥∥∥2

2
≤ (1− 2ρη)

∥∥∥∥(w−w′
v− v′

)∥∥∥∥2

2
+ 8G2η2.

(b) If Assumption 2 holds, then∥∥∥∥(w− η∇wf(w,v)
v + η∇vf(w,v)

)
−
(

w′ − η∇wf(w′,v′)
v′ + η∇vf(w′,v′)

)∥∥∥∥2

2
≤ (1− 2ρη + L2η2)

∥∥∥∥(w−w′
v− v′

)∥∥∥∥2

2
.

To prove Lemma C.1 we require the following standard lemma (Rockafellar, 1976).

Lemma C.2. Let f be a ρ-SC-SC function, ρ ≥ 0. Then〈(
w−w′
v− v′

)
,

(
∇wf(w,v)−∇wf(w′,v′)
∇vf(w′,v′)−∇vf(w,v)

)〉
≥ ρ
∥∥∥∥(w−w′

v− v′
)∥∥∥∥2

2
. (C.1)

Proof of Lemma C.1. It is clear that

A :=
∥∥∥∥(w− η∇wf(w,v)

v + η∇vf(w,v)

)
−
(

w′ − η∇wf(w′,v′)
v′ + η∇vf(w′,v′)

)∥∥∥∥2

2
=
∥∥∥∥(w−w′

v− v′
)∥∥∥∥2

2

+ η2
∥∥∥∥(∇wf(w′,v′)−∇wf(w,v)
∇vf(w,v)−∇vf(w′,v′)

)∥∥∥∥2

2
− 2η

〈(
w−w′
v− v′

)
,

(
∇wf(w,v)−∇wf(w′,v′)
∇vf(w′,v′)−∇vf(w,v)

)〉
.

Plugging (C.1) to the above inequality, we derive

A ≤ (1− 2ρη)
∥∥∥∥(w−w′

v− v′
)∥∥∥∥2

2
+ η2

∥∥∥∥(∇wf(w′,v′)−∇wf(w,v)
∇vf(w,v)−∇vf(w′,v′)

)∥∥∥∥2

2
.

We can combine the above inequality with the Lipschitz continuity to derive Part (a). We refer the interested readers to
Farnia & Ozdaglar (2020) for the proof of Part (b).

We now prove Theorem 2. Let S = {z1, . . . , zn} and S′ = {z1, . . . , zn−1, z
′
n}. Let {wt,vt} and {w′t,v′t} be the sequence

produced by (4.1) w.r.t. S and S′, respectively.

C.2. Proof of Part (a)

We first prove Part (a). Note that the projection step is nonexpansive. We consider two cases at the t-th iteration. If it 6= n,
then it follows from Part (a) of Lemma C.1 that∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2
≤
∥∥∥∥(wt − ηt∇wf(wt,vt; zit)−w′t + ηt∇wf(w′t,v′t; zit)

vt + ηt∇vf(wt,vt; zit)− v′t − ηt∇vf(w′t,v′t; zit)

)∥∥∥∥2

2

≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t . (C.2)

If it = n, then it follows from the elementary inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 (p > 0) that∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
∥∥∥∥(wt − ηt∇wf(wt,vt; zn)−w′t + ηt∇wf(w′t,v′t; z′n)

vt + ηt∇vf(wt,vt; zn)− v′t − ηt∇vf(w′t,v′t; z′n)

)∥∥∥∥2

2

≤ (1 + p)
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ (1 + 1/p)η2

t

∥∥∥∥(∇wf(wt,vt; zn)−∇wf(w′t,v′t; z′n)
∇vf(wt,vt; zn)−∇vf(w′t,v′t; z′n)

)∥∥∥∥2

2
. (C.3)
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Note that the event it 6= n happens with probability 1− 1/n and the event it = n happens with probability 1/n. Therefore,
we know

Eit

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ n− 1

n

(∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

)
+ 1 + p

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)

n
η2
tG

2

= (1 + p/n)
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8η2

tG
2(1 + 1/(np)).

Applying this inequality recursively implies that

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 8η2G2(1 + 1/(np)

) t∑
k=1

(
1 + p

n

)t−k
= 8η2G2

(
1 + 1

np

)n
p

((
1 + p

n

)t
− 1
)

= 8η2G2
(n
p

+ 1
p2

)((
1 + p

n

)t
− 1
)
.

By taking p = n/t in the above inequality and using (1 + 1/t)t ≤ e, we get

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 16η2G2

(
t+ t2

n2

)
.

The stated bound then follows by Jensen’s inequality.

C.3. Proof of Part (b)

We now prove Part (b). Analogous to (C.2), we can use Part (b) of Lemma C.1 to derive∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ (1 + L2η2

t )
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2

in the case it 6= n. We can combine the above inequality and (C.3) to derive

Eit

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ (n− 1)(1 + L2η2

t )
n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 1 + p

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)

n
η2
tG

2

≤
(

1 + L2η2
t + p/n

)∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)

n
η2
tG

2.

Applying this inequality recursively, we derive

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 8G2(1 + 1/p)

n

t∑
k=1

η2
k

t∏
j=k+1

(
1 + L2η2

j + p/n
)
.

By the elementary inequality 1 + a ≤ exp(a), we further derive

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 8G2(1 + 1/p)

n

t∑
k=1

η2
k

t∏
j=k+1

exp
(
L2η2

j + p/n
)

= 8G2(1 + 1/p)
n

t∑
k=1

η2
k exp

(
L2

t∑
j=k+1

η2
j + p(t− k)/n

)

≤ 8G2(1 + 1/p)
n

exp
(
L2

t∑
j=1

η2
j + pt/n

) t∑
k=1

η2
k.

By taking p = n/t we get

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 8eG2(1 + t/n)

n
exp

(
L2

t∑
j=1

η2
j

) t∑
k=1

η2
k.

The stated result then follows from the Jensen’s inequality.
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C.4. Proof of Part (c)

To prove stability bounds with high probability, we first introduce a concentration inequality (Chernoff, 1952).

Lemma C.3 (Chernoff’s Bound). Let X1, . . . , Xt be independent random variables taking values in {0, 1}. Let X =∑t
j=1 Xj and µ = E[X]. Then for any δ̃ > 0 with probability at least 1− exp

(
− µδ̃2/(2 + δ̃)

)
we have X ≤ (1 + δ̃)µ.

Furthermore, for any δ ∈ (0, 1) with probability at least 1− δ we have

X ≤ µ+ log(1/δ) +
√

2µ log(1/δ).

We now prove Part (c). According to the analysis in Part (a), we know∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤

(∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

)
I[it 6=n] +

(
(1 + p)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)η2

tG
2

)
I[it=n].

It then follows that ∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
(
1 + pI[it=n]

) ∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

(
1 + I[it=n]/p

)
. (C.4)

Applying this inequality recursively gives∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8G2η2

t∑
k=1

(
1 + I[ik=n]/p

) t∏
j=k+1

(
1 + pI[ij=n]

)
= 8G2η2

t∑
k=1

(
1 + I[ik=n]/p

) t∏
j=k+1

(1 + p)I[ij=n]

≤ 8G2η2(1 + p)
∑t

j=1
I[ij=n]

(
t+

t∑
k=1

I[ik=n]/p
)
.

Applying Lemma C.3 with Xj = I[ij=n] and µ = t/n (note EA[Xj ] = 1/n), with probability 1− δ there holds

t∑
j=1

I[ij=n] ≤ t/n+ log(1/δ) +
√

2tn−1 log(1/δ). (C.5)

The following inequality then holds with probability at least 1− δ∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8G2η2(1 + p)t/n+log(1/δ)+

√
2tn−1 log(1/δ)

(
t+ t/(pn) + p−1 log(1/δ) + p−1

√
2tn−1 log(1/δ)

)
.

We can choose p = 1
t/n+log(1/δ)+

√
2tn−1 log(1/δ)

(note (1 + x)1/x ≤ e) and derive the following inequality with probability

at least 1− δ ∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8eG2η2

(
t+
(
t/n+ log(1/δ) +

√
2tn−1 log(1/δ)

)2
)
.

This finishes the proof of Part (c).

C.5. Proof of Part (d)

We now turn to Part (d). Under the smoothness assumption, the analysis in Part (b) implies∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ (1 + L2η2

t )
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
I[it 6=n] +

(
(1 + p)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)η2

tG
2

)
I[it=n].
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It then follows that∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
(
1 + L2η2

t + pI[it=n]
) ∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)η2

tG
2I[it=n].

We can apply the above inequality recursively and derive∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8(1 + 1/p)G2

t∑
k=1

η2
kI[ik=n]

t∏
j=k+1

(
1 + L2η2

j + pI[ij=n]
)

≤ 8(1 + 1/p)G2η2
t∑

k=1
I[ik=n]

t∏
j=k+1

(
1 + L2η2

j

) t∏
j=k+1

(
1 + pI[ij=n]

)
= 8(1 + 1/p)G2η2

t∑
k=1

I[ik=n]

t∏
j=k+1

(
1 + L2η2

j

) t∏
j=k+1

(
1 + p

)I[ij=n]

≤ 8(1 + 1/p)G2η2
t∏

j=1

(
1 + L2η2

j

) t∏
j=1

(
1 + p

)I[ij=n]
t∑

k=1
I[ik=n].

It then follows from the elementary inequality 1 + x ≤ ex that∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8(1 + 1/p)G2η2 exp

(
L2

t∑
j=1

η2
j

)(
1 + p

)∑t

j=1
I[ij=n]

t∑
k=1

I[ik=n]

According to (C.5), we get the following inequality with probability at least 1− δ∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8(1+1/p)G2η2 exp

(
L2tη2)(1+p

)t/n+log(1/δ)+
√

2tn−1 log(1/δ)(
t/n+log(1/δ)+

√
2tn−1 log(1/δ)

)
.

We can choose p = 1
t/n+log(1/δ)+

√
2tn−1 log(1/δ)

and derive the following inequality with probability at least 1− δ

∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8eG2η2 exp

(
L2tη2)(1 + t/n+ log(1/δ) +

√
2tn−1 log(1/δ)

)2
.

The stated bound then follows.

C.6. Proof of Part (e)

If it 6= n, we can analyze analogously to (C.2) excepting using the strong convexity, and show∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ (1− 2ρηt)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t .

If it = n, then (C.3) holds. We can combine the above two cases and derive

Eit

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]

≤ n− 1
n

(
(1− 2ρηt)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

)
+ 1 + p

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)

n
η2
tG

2

= (1− 2ρηt + (2ρηt + p)/n)
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8η2

tG
2(1 + 1/(np)).

We can choose p = ρηt(n− 2) to derive

Eit

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ (1− ρηt)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8η2

tG
2
(

1 + 1
n(n− 2)ρηt

)
.



Stability and Generalization of Stochastic Gradient Methods for Minimax Problems

It then follows that

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 8G2

t∑
j=1

ηj

(
ηj + 1

n(n− 2)ρ

) t∏
k=j+1

(1− ρηk).

For ηt = 1/(ρt), it follows from the identity
∏t
k=j+1(1− 1/k) = j/t that

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 8G2

tρ

t∑
j=1

(
(ρj)−1 + 1

n(n− 2)ρ

)
≤ 8G2

ρ2

( log(et)
t

+ 1
n(n− 2)

)
.

The stated result then follows from the Jensen’s inequality.

D. Optimization Error Bounds: Convex-Concave Case
In this section, we present optimization error bounds for SGDA, which are standard in the literature (Nedić & Ozdaglar,
2009; Nemirovski et al., 2009). We give both bounds in expectation and bounds with high probability. The high-probability
analysis requires to use concentration inequalities for martingales. Lemma D.1 is an Azuma-Hoeffding inequality for real-
valued martingale difference sequence (Hoeffding, 1963), while Lemma D.2 is a Bernstein-type inequality for martingale
difference sequences in a Hilbert space (Tarres & Yao, 2014).

Lemma D.1. Let {ξk : k ∈ N} be a martingale difference sequence taking values in R, i.e., E[ξk|ξ1, . . . , ξk−1] = 0.
Assume that |ξk − Ezk [ξk]| ≤ bk for each k. For δ ∈ (0, 1), with probability at least 1− δ we have

n∑
k=1

ξk ≤
(

2
n∑
k=1

b2
k log 1

δ

) 1
2
. (D.1)

Lemma D.2. Let {ξk : k ∈ N} be a martingale difference sequence in a Hilbert space with the norm ‖ · ‖2. Suppose
that almost surely ‖ξk‖ ≤ B and

∑t
k=1 E[‖ξk‖2|ξ1, . . . , ξk−1] ≤ σ2

t for σt ≥ 0. Then, for any 0 < δ < 1, the following
inequality holds with probability at least 1− δ

max
1≤j≤t

∥∥∥ j∑
k=1

ξk

∥∥∥ ≤ 2
(B

3 + σt

)
log 2

δ
.

Lemma D.3. Let {wt,vt} be the sequence produced by (4.1) with ηt = η. Let Assumption 1 hold and FS be convex-concave.
Assume supw∈W ‖w‖2 ≤ BW and supv∈V ‖v‖2 ≤ BV . Then the following inequality holds

EA
[

sup
v∈V

FS(w̄T ,v)− inf
w∈W

FS(w, v̄T )
]
≤ ηG2 + B2

W +B2
V

2ηT + G(BW +BV )√
T

, (D.2)

where
(
w̄T , v̄T

)
is defined in (4.2). Let δ ∈ (0, 1). Then with probability at least 1− δ we have

sup
v∈V

FS(w̄T ,v)− inf
w∈W

FS(w, v̄T ) ≤ ηG2 + B2
W +B2

V

2Tη +
G
(
BW +BV

)(
9 log(6/δ) + 2)
√
T

. (D.3)

Proof. According to the non-expansiveness of projection and (4.1), we know

‖wt+1 −w‖2
2 ≤ ‖wt − ηt∇wf(wt,vt; zit)−w‖2

2

= ‖wt −w‖2
2 + η2

t ‖∇wf(wt,vt; zit)‖2
2 + 2ηt〈w−wt,∇wf(wt,vt; zit)〉

≤ ‖wt −w‖2
2 + η2

tG
2 + 2ηt〈w−wt,∇wFS(wt; vt)〉+ 2ηt〈w−wt,∇wf(wt,vt; zit)−∇wFS(wt,vt)〉,

where we have used Assumption 1. According to the convexity of FS(·,vt), we know

2ηt
(
FS(wt,vt)− FS(w,vt)

)
≤ ‖wt −w‖2

2 − ‖wt+1 −w‖2
2+

η2
tG

2 + 2ηt〈w−wt,∇wf(wt,vt; zit)−∇wFS(wt,vt)〉. (D.4)
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Taking a summation of the above inequality from t = 1 to t = T (w1 = 0), we derive

2η
T∑
t=1

(
FS(wt,vt)− FS(w,vt)

)
≤ ‖w‖2

2 + Tη2G2

+ 2η
T∑
t=1
〈wt,∇wFS(wt,vt)−∇wf(wt,vt; zit)〉+ 2η

T∑
t=1
〈w,∇wf(wt,vt; zit)−∇wFS(wt,vt)〉.

It then follows from the concavity of FS(w, ·) and Schwartz’s inequality that

2η
T∑
t=1

(
FS(wt,vt)− FS(w, v̄T )

)
≤ B2

W + Tη2G2

+ 2η
T∑
t=1
〈wt,∇wFS(wt,vt)−∇wf(wt,vt; zit)〉+ 2ηBW

∥∥∥ T∑
t=1

(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥
2
.

Since the above inequality holds for all w, we further get

2η
T∑
t=1

(
FS(wt,vt)− inf

w
FS(w, v̄T )

)
≤ B2

W + Tη2G2

+ 2η
T∑
t=1
〈wt,∇wFS(wt,vt)−∇wf(wt,vt; zit)〉+ 2ηBW

∥∥∥ T∑
t=1

(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥
2
. (D.5)

Note
Eit
[
〈wt,∇wFS(wt,vt)−∇wf(wt,vt; zit)〉

]
= 0. (D.6)

We can take an expectation over both sides of (D.5) and get

1
T

T∑
t=1

EA
[
FS(wt,vt)

]
−EA

[
inf
w
FS(w, v̄T )

]
≤ B2

W

2ηT + ηG2

2 +BW
T

EA
[∥∥∥ T∑

t=1

(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥
2

]
.

According to Jensen’s inequality and (D.6), we know(
EA
[∥∥∥ T∑

t=1

(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥
2

])2
≤ EA

[∥∥∥ T∑
t=1

(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥2

2

]
=

T∑
t=1

EA
[∥∥∥∇wf(wt,vt; zit)−∇wFS(wt,vt)

∥∥∥2

2

]
≤ TG2.

It then follows that

1
T

T∑
t=1

EA
[
FS(wt,vt)

]
− EA

[
inf
w
FS(w, v̄T )

]
≤ B2

W

2ηT + ηG2

2 + BWG√
T
. (D.7)

In a similar way, we can show that

EA
[

sup
v
FS(w̄T ,v)

]
− 1
T

T∑
t=1

EA
[
FS(wt,vt)

]
≤ B2

V

2ηT + ηG2

2 + BVG√
T
. (D.8)

The stated bound (D.2) then follows from (D.7) and (D.8).

We now turn to (D.3). It is clear that
∣∣〈wt,∇FS(wt,vt)−∇f(wt,vt; zit)〉

∣∣ ≤ 2GBW , and therefore we can apply Lemma
D.1 to derive the following inequality with probability at least 1− δ/6 that

T∑
t=1
〈wt,∇wFS(wt,vt)−∇wf(wt,vt; zit)〉 ≤ 2GBW

(
2T log(6/δ)

) 1
2
. (D.9)
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For any t ∈ N, define ξt = ∇wf(wt,vt; zit)−∇wFS(wt,vt). Then it is clear that ‖ξt‖2 ≤ 2G and

T∑
t=1

E[‖ξt‖2
2|ξ1, . . . , ξt−1] ≤ 4TG2.

Therefore, we can apply Lemma D.2 to derive the following inequality with probability at least 1− δ/3

∥∥∥ T∑
t=1

ξt

∥∥∥
2
≤ 2
(2G

3 + 2G
√
T
)

log(6/δ).

Then, the following inequality holds with probability at least 1− δ/3

∥∥∥ T∑
t=1

(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥
2
≤ 4G

(
1 +
√
T
)

log(6/δ).

We can plug the above inequality and (D.9) back into (D.5), and derive the following inequality with probability at least
1− δ/2

1
T

T∑
t=1

FS(wt,vt)− inf
w
FS(w, v̄T ) ≤ B2

W

2Tη + ηG2

2 +
2GBW

√
2 log(6/δ)√
T

+ 8BWG log(6/δ)√
T

.

In a similar way, we can get the following inequality with probability at least 1− δ/2

sup
v∈V

FS(w̄T ,v)− 1
T

T∑
t=1

FS(wt,vt) ≤
B2
V

2Tη + ηG2

2 + 9BVG log(6/δ) + 2BVG√
T

.

Combining the above two inequalities together we get the stated inequality with probability at least 1 − δ. The proof is
complete.

The following lemma gives optimization error bounds for SC-SC problems.

Lemma D.4. Let Assumption 1 hold, t0 ≥ 0 and FS(·, ·) be ρ-SC-SC with ρ > 0. Let {wt,vt} be the sequence produced
by (4.1) with ηt = 1/(ρ(t+ t0)). If t0 = 0, then for

(
w̄T , v̄T

)
defined in (4.2) we have

EA
[

sup
v∈V

FS(w̄T ,v)− inf
w∈W

FS(w, v̄T )
]
≤ G2 log(eT )

ρT
+ (BW +BV )G√

T
. (D.10)

If supw∈W ‖w‖2 ≤ BW and supv∈V ‖v‖2 ≤ BV , then

4wS (w̄T , v̄T ) ≤ 2ρt0(B2
W +B2

V )
T

+ G2 log(eT )
ρT

. (D.11)

Proof. Analyzing analogously to (D.4) but using the strong convexity of w 7→ FS(w,v), we derive

2ηt
[
FS(wt,vt)− FS(w,vt)

]
≤ (1− ηtρ)‖wt −w‖2

2 − ‖wt+1 −w‖2
2 + η2

tG
2 + ξt(w),

where ξt(w) = 2ηt〈w−wt,∇wf(wt,vt; zit)−∇wFS(wt,vt)〉. Since ηt = 1/(ρ(t+ t0)), we further get

2
ρ(t+ t0)

[
FS(wt,vt)− FS(w,vt)

]
≤ (1− 1/(t+ t0))‖wt −w‖2

2 − ‖wt+1 −w‖2
2 + G2

ρ2(t+ t0)2 + ξt(w).

Multiplying both sides by t+ t0 gives

2
ρ

[
FS(wt,vt)− FS(w,vt)

]
≤ (t+ t0 − 1)‖wt −w‖2

2 − (t+ t0)‖wt+1 −w‖2
2 + (t+ t0)ξt(w) + G2

ρ2(t+ t0) .
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Taking a summation of the above inequality further gives
T∑
t=1

[
FS(wt,vt)− FS(w,vt)

]
≤ 2ρt0B2

W + G2 log(eT )
2ρ + ρ

2

T∑
t=1

(t+ t0)ξt(w),

where we have used
∑T
t=1 t

−1 ≤ log(eT ). This together with the concavity of v 7→ FS(w,v) gives
T∑
t=1

[
FS(wt,vt)− FS(w, v̄T )

]
≤ 2ρt0B2

W + G2 log(eT )
2ρ + ρ

2

T∑
t=1

(t+ t0)ξt(w). (D.12)

Since the above inequality holds for any w, we know
T∑
t=1

[
FS(wt,vt)− inf

w∈W
FS(w, v̄T )

]
≤ 2ρt0B2

W + G2 log(eT )
2ρ + ρ

2 sup
w∈W

T∑
t=1

(t+ t0)ξt(w).

Since EA[〈wt,∇wf(wt,vt; zit)−∇wFS(wt,vt)〉] = 0 we know

EA
[

sup
w∈W

T∑
t=1

(t+ t0)ξt(w)
]

= 2EA
[

sup
w∈W

T∑
t=1

(t+ t0)ηt〈w,∇wf(wt,vt; zit)−∇wFS(wt,vt)〉
]

≤ 2 sup
w∈W

‖w‖2EA
∥∥∥ T∑
t=1

(t+ t0)ηt
(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥
2

≤ 2BW
(
EA
∥∥∥∥ T∑
t=1

(t+ t0)ηt
(
∇wf(wt,vt; zit)−∇wFS(wt,vt)

)∥∥∥∥2

2

)1/2

≤ 2BW

(
T∑
t=1

(t+ t0)2η2
tEA‖∇wf(wt,vt; zit)‖2

2

)1/2

≤ 2BWGρ−1
√
T .

We can combine the above two inequalities together and derive
T∑
t=1

EA
[
FS(wt,vt)− inf

w∈W
FS(w, v̄T )

]
≤ 2ρt0B2

W + G2 log(eT )
2ρ +BWG

√
T .

In a similar way one can show
T∑
t=1

EA
[

sup
v∈V

FS(w̄T ,v)− FS(wt,vt)
]
≤ 2ρt0B2

V + G2 log(eT )
2ρ +BVG

√
T .

We can combine the above two inequalities together, and get the following optimization error bounds

TEA
[

sup
v∈V

FS(w̄T ,v)− inf
w∈W

FS(w, v̄T )
]
≤ 2ρt0(B2

W +B2
V ) + G2 log(eT )

ρ
+ (BW +BV )G

√
T .

This proves (D.10) with t0 = 0.

We now turn to (D.11). Since EA[ξt(w)] = 0, it follows from (D.12) that
T∑
t=1

EA
[
FS(wt,vt)− FS(w, v̄T )

]
≤ 2ρt0B2

W + G2 log(eT )
2ρ .

In a similar way, one can show
T∑
t=1

EA
[
FS(w̄T ,v)− FS(wt,vt)

]
≤ 2ρt0B2

V + G2 log(eT )
2ρ .

We can combine the above two inequalities together and derive

E
[
FS(w̄T ,v)− FS(w, v̄T

]
≤ 2ρt0(B2

W +B2
V )

T
+ G2 log(eT )

ρT
.

The stated bound (D.11) then follows by taking the supremum over w and v. The proof is complete.
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E. Proofs on Generalization Bounds: Convex-Concave Case
In this section, we prove the generalization bounds of SGDA in a convex-concave case. We first prove Theorem 3 on bounds
of weak PD population risks in expectation.

Proof of Theorem 3. We first prove Part (a). We have the decomposition

4w(w̄T , v̄T ) = 4w(w̄T , v̄T )−4wS (w̄T , v̄T ) +4wS (w̄T , v̄T ). (E.1)

According to Part (a) of Theorem 2 we know the following inequality for all t

EA
[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥
2

]
≤ 4ηG

(√
t+ t

n

)
.

It then follows from the convexity of a norm that

EA
[∥∥∥∥(w̄T − w̄′T

v̄T − v̄′T

)∥∥∥∥
2

]
≤ 4ηG

(√
T + T

n

)
and therefore

sup
z

(
sup
v′∈V

EA
[
f(w̄T ,v′; z)− f(w̄′T ,v′; z)

]
+ sup

w′∈W
EA
[
f(w′, v̄T ; z)− f(w′, v̄′T ; z)

])
≤ G

(
EA
[∥∥w̄T − w̄′T ‖2

]
+ EA

[∥∥v̄T − v̄′T
∥∥

2

])
≤ 4
√

2ηG2
(√

T + T

n

)
.

According to Part (a) of Theorem 1, we know

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤ 4
√

2ηG2
(√

T + T

n

)
.

According to Eq. (D.2), we know

4wS (w̄T , v̄T ) ≤ ηG2 + B2
W +B2

V

2ηT + G(BW +BV )√
T

.

The bound (4.3) then follows directly from (E.1).

Eq. (4.4) in Part (b) can be proved in a similar way (e.g., by combining the stability bounds in Part (b) of Theorem 2 and
optimization error bounds in Eq. (D.2) together). We omit the proof for brevity.

We now turn to Part (c). According to Part (e) of Theorem 2 and the convexity of norm, we know

EA
[∥∥∥∥(w̄T − w̄′T

v̄T − v̄′T

)∥∥∥∥
2

]
≤ 2
√

2G
ρ

( log
1
2 (eT )√
T

+ 1√
n(n− 2)

)
.

Analyzing analogous to Part (a), we further know

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤ 4G2

ρ

( log
1
2 (eT )√
T

+ 1√
n(n− 2)

)
.

This together with the optimization error bounds in Lemma D.4 and (E.1) gives

4w(w̄T , v̄T ) ≤ 4G2

ρ

( log
1
2 (eT )√
T

+ 1√
n(n− 2)

)
+ G2 log(eT )

ρT
+ (BW +BV )G√

T
.

The stated bound then follows from the choice of T . The proof is complete.
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Finally, we consider Part (d). Since t0 ≥ L2/ρ2 we know ηt = 1/(ρ(t+ t0)) ≤ ρ/L2. The stability analysis in Farnia &
Ozdaglar (2020)3 then shows that A is ε-argument stable with ε = O(1/(ρn)). This together with Part (a) of Theorem 1
then shows that

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) = O(1/(ρn)).

We can combine the above generalization bound and the optimization error bound in (D.11) together, and get

4w(w̄T , v̄T ) = O(1/(ρn)) +O
( ρ
T

+ log(eT )
ρT

)
.

The stated bound then follows from T � n. The proof is complete.

We now present proofs of Theorem 4 on primal population risks.

Proof of Theorem 4. We have the decomposition

R(w̄T )−R(w∗) =
(
R(w̄T )−RS(w̄T )

)
+
(
RS(w̄T )− FS(w∗, v̄T )

)
+
(
FS(w∗, v̄T )− F (w∗, v̄T )

)
+
(
F (w∗, v̄T )− F (w∗,v∗)

)
.

Since F (w∗, v̄T ) ≤ F (w∗,v∗), it then follows that

R(w̄T )−R(w∗) ≤
(
R(w̄T )−RS(w̄T )

)
+
(
RS(w̄T )− FS(w∗, v̄T )

)
+
(
FS(w∗, v̄T )− F (w∗, v̄T )

)
. (E.2)

Taking an expectation on both sides gives

E
[
R(w̄T )−R(w∗)

]
≤ E

[
R(w̄T )−RS(w̄T )

]
+ E

[
RS(w̄T )− FS(w∗, v̄T )

]
+ E

[
FS(w∗, v̄T )− F (w∗, v̄T )

]
. (E.3)

Note that the first and the third term on the right-hand side is related to generalization, while the second term RS(w̄T )−
FS(w∗, v̄T ) is related to optimization. According to Part (b) of Theorem 2 we know the following inequality for all t

EA
[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥
2

]
≤
G
√

8e(t+ t2/n)√
n

exp
(
L2tη2/2

)
η.

It then follows from the convexity of a norm that

EA
[∥∥∥∥(w̄T − w̄′T

v̄T − v̄′T

)∥∥∥∥
2

]
≤
G
√

8e(T + T 2/n)√
n

exp
(
L2Tη2/2

)
η. (E.4)

This together with Part (b) of Theorem 1 implies that

ES,A
[
R(w̄T )−RS(w̄T )

]
≤
(
1 + L/ρ

)
G2η

√
8e(T + T 2/n) exp

(
L2Tη2/2

)
√
n

.

Similarly, the stability bound (E.4) also implies the following bound on the gap between the population and empirical risk

ES,A
[
FS(w∗, v̄T )− F (w∗, v̄T )

]
≤
(
1 + L/ρ

)
G2η

√
8e(T + T 2/n) exp

(
L2Tη2/2

)
√
n

.

According to Lemma D.3, we know

EA
[
RS(w̄T )− FS(w∗, v̄T )

]
≤ EA

[
sup
v∈V

FS(w̄T ,v)− inf
w∈W

FS(w, v̄T )
]
≤ ηG2 + B2

W +B2
V

2ηT + G(BW +BV )√
T

.

We can plug the above three inequalities back into (E.3), and derive the stated bound on the excess primal population risk in
expectation.

3Farnia & Ozdaglar (2020) considered the constant step size ηt = η ≤ ρ/L2. It is direct to extend the analysis there to any step size
ηt ≤ ρ/L2 since an algorithm would be more stable if the step size decreases.
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We now turn to the high-probability bounds. According to Assumption 1 and Part (d) of Theorem 2, we know that with
probability at least 1− δ/4 that SGDA is ε-uniformly stable, where ε satisfies

ε = O
(
η exp(L2Tη2/2)

(
Tn−1 + log(1/δ)

))
. (E.5)

This together with Part (d) of Theorem 1 implies the following inequality with probability at least 1− δ/2

R(w̄T )−RS(w̄T ) = O
(
Lρ−1ε logn log(1/δ) + n−

1
2
√

log(1/δ)
)
,

where ε satisfies (E.5). In a similar way, one can use Part (d) of Theorem 1 and stability bounds in Part (d) of Theorem 2 to
show the following inequality with probability at least 1− δ/4

FS(w∗, v̄T )− F (w∗, v̄T ) = O
(

logn log(1/δ)ε
)

+O(n− 1
2 log

1
2 (1/δ)). (E.6)

According to (D.3), we derive the following inequality with probability at least 1− δ/4

RS(w̄T )− FS(w∗, v̄T ) = sup
v∈V

FS(w̄T ,v)− FS(w∗, v̄T ) = O
(
η + (Tη)−1 + T−

1
2 log(1/δ)

)
.

We can plug the above three inequalities back into (E.2) and derive the following inequality with probability at least 1− δ

R(w̄T )−R(w∗) = O
(
Lρ−1η exp(L2Tη2/2) logn log(1/δ)

(
Tn−1 + log(1/δ)

))
+O(n− 1

2
√

log(1/δ))

+O
(
η + (Tη)−1 + T−

1
2 log(1/δ)

)
. (E.7)

The high-probability bound (4.6) then follows from the choice of T and η. The proof is complete.

Finally, we present high-probability bounds of plain generalization errors for SGDA.

Theorem E.1 (High-probability bounds). Let {wt,vt} be the sequence produced by (4.1) with ηt = η. Assume for all z,
the function (w,v) 7→ f(w,v; z) is convex-concave. Let A be defined by Aw(S) = w̄T and Av(S) = v̄T for (w̄T , v̄T ) in
(4.2). Let supw∈W ‖w‖2 ≤ BW , supv∈V ‖v‖2 ≤ BV and δ ∈ (0, 1). Let 4̃T =

∣∣F (w̄T , v̄T )− F (w∗,v∗)
∣∣.

(a) If Assumption 1 holds, then with probability at least 1− δ

4̃T = O
(
η logn log(1/δ)

(√
T + Tn−1 + log(1/δ)

))
+O(n− 1

2 log
1
2 (1/δ)) +O

(
(Tη)−1 + T−

1
2 log(1/δ)

)
.

If we choose T � n2 and η � T−3/4 then we get the following inequality with probability at least 1− δ

4̃T = O(n−1/2 logn log2(1/δ)). (E.8)

(b) If Assumptions 1, 2 hold, then the following inequality holds with probability at least 1− δ

4̃T = O
(
η logn log(1/δ) exp

(
L2Tη2/2

)(
Tn−1 + log(1/δ)

)
+ n−

1
2 log

1
2 (1/δ) + (Tη)−1 + T−

1
2 log(1/δ)

)
.

In particular, we can choose T � n and η � T−1/2 to derive (E.8) with probability at least 1− δ.

Proof. We use the error decomposition

F (w̄T , v̄T )− F (w∗,v∗) = F (w̄T , v̄T )− FS(w̄T , v̄T ) + FS(w̄T , v̄T )− FS(w∗, v̄T )
+ FS(w∗, v̄T )− F (w∗, v̄T ) + F (w∗, v̄T )− F (w∗,v∗). (E.9)

We first prove Part (a). According to Assumption 1 and Part (c) of Theorem 2, we know that SGDA is ε-uniformly stable
with probability at least 1− δ/4, where

ε = O
(
η
(√
T + Tn−1 + log(1/δ)

))
.
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This together with Part (e) of Theorem 1 implies the following inequality with probability at least 1− δ/2

F (w̄T , v̄T )− FS(w̄T , v̄T ) = O
(
η logn log(1/δ)

(√
T + Tn−1 + log(1/δ)

))
+O(n− 1

2 log
1
2 (1/δ)). (E.10)

Similarly, the following inequality holds with probability at least 1− δ/4

FS(w∗, v̄T )− F (w∗, v̄T ) = O
(
η logn log(1/δ)

(√
T + Tn−1 + log(1/δ)

))
+O(n− 1

2 log
1
2 (1/δ)). (E.11)

According to Lemma D.3, the following inequality holds with probability at least 1− δ/4

FS(w̄T , v̄T )− FS(w∗, v̄T ) ≤ sup
v
FS(w̄T ,v)− inf

w
FS(w, v̄T ) = O

(
η + (Tη)−1 + T−

1
2 log(1/δ)

)
. (E.12)

According to the definition of (w∗,v∗), we know F (w∗, v̄T ) ≤ F (w∗,v∗). We can plug this inequality and (E.10), (E.11),
(E.12) back into (E.9), and derive the following inequality with probability at least 1− δ/2

F (w̄T , v̄T )− F (w∗,v∗) = O
(
η logn log(1/δ)

(√
T + Tn−1 + log(1/δ)

))
+O(n− 1

2 log
1
2 (1/δ)) +O

(
(Tη)−1 + T−

1
2 log(1/δ)

)
.

Analyzing in a similar way but using the error decomposition

F (w∗,v∗)− F (w̄T , v̄T ) = F (w∗,v∗)− F (w̄T ,v∗) + F (w̄T ,v∗)− FS(w̄T ,v∗)
+ FS(w̄T ,v∗)− FS(w̄T , v̄T ) + FS(w̄T , v̄T )− F (w̄T , v̄T ),

one can derive the following inequality with probability at least 1− δ/2

F (w∗,v∗)− F (w̄T , v̄T ) = O
(
η logn log(1/δ)

(√
T + Tn−1 + log(1/δ)

))
+O(n− 1

2 log
1
2 (1/δ)) +O

(
(Tη)−1 + T−

1
2 log(1/δ)

)
.

The stated bound then follows as a combination of the above two inequalities.

Part (b) can be derived similarly excepting using the stability bounds in Part (d) of Theorem 2. We omit the proof for brevity.
The proof is complete.

F. Stability and Generalization Bounds of SGDA on Non-Convex Objectives
F.1. Proof of Theorem 5

In this section, we show the stability and generalization bounds of SGDA for weakly-convex-weakly-concave objectives.
We first introduce some lemmas. As an extension of a lemma in Hardt et al. (2016), the next lemma is motivated by the fact
that SGDA typically runs several iterations before encountering the different example between S and S′.

Lemma F.1. Assume |f(·, ·, z)| ≤ 1 for any z and let Assumption 1 hold. Let S = {z1, . . . , zn} and S′ =
{z1, . . . , zn−1, z

′
n}. Let {wt,vt} and {w′t,v′t} be the sequence produced by (4.1) w.r.t. S and S′, respectively. De-

note

∆t =
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥
2
. (F.1)

Then for any t0 ∈ N and any w′,v′ we have

E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)] ≤ 4t0
n

+
√

2GE[∆T |∆t0 = 0].
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Proof. According to Assumption 1, we know

f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z) ≤ G
√

2∆T . (F.2)

Let E denote the event that ∆t0 = 0. Then we have

E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)]
=P[E ]E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)|E ]

+ P[Ec]E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)|Ec]
≤
√

2GE[∆T |E ] + 4P[Ec],

where in the last step we have used (F.2) and the condition |f(·, ·, z)| ≤ 1. Using the union bound on the outcome it = n
we obtain that

P[Ec] ≤
t0∑
t=1

P[it = n] = t0
n
.

The proof is complete by combining the above two inequalities together.

Lemma F.2 shows the monotonity of the gradient for weakly-convex-weakly-concave functions. Its proof is well known in
the literature (Liu et al., 2020; Rockafellar, 1976).

Lemma F.2. Let f be a ρ-weakly-convex-weakly-concave function. Then〈(
w−w′
v− v′

)
,

(
∇wf(w,v)−∇wf(w′,v′)
∇vf(w′,v′)−∇vf(w,v)

)〉
≥ −ρ

∥∥∥∥(w−w′
v− v′

)∥∥∥∥2

2
. (F.3)

We are now ready to prove Theorem 5.

Proof of Theorem 5. Note that the projection step is nonexpansive. We consider two cases at the t-th iteration. If it 6= n,
then it follows from Lemma F.2 and the Lipschitz continuity of f that∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2
≤
∥∥∥∥(wt − ηt∇wf(wt,vt; zit)−w′t + ηt∇wf(w′t,v′t; zit)

vt + ηt∇vf(wt,vt; zit)− v′t − ηt∇vf(w′t,v′t; zit)

)∥∥∥∥2

2
=
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2

+ η2
t

∥∥∥∥(∇wf(w′t,v′t; zit)−∇wf(wt,vt; zit)
∇vf(wt,vt; zit)−∇vf(w′t,v′t; zit)

)∥∥∥∥2

2
− 2ηt

〈(
wt −w′t
vt − v′t

)
,

(
∇wf(wt,vt; zit)−∇wf(w′t,v′t; zit)
∇vf(w′t,v′t; zit)−∇vf(wt,vt; zit)

)〉
≤(1 + 2ηtρ)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t . (F.4)

If it = n, then it follows from the elementary inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 that∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
∥∥∥∥(wt − ηt∇wf(wt,vt; zn)−w′t + ηt∇wf(w′t,v′t; z′n)

vt + ηt∇vf(wt,vt; zn)− v′t − ηt∇vf(w′t,v′t; z′n)

)∥∥∥∥2

2

≤ (1 + p)
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ (1 + 1/p)η2

t

∥∥∥∥(∇wf(wt,vt; zn)−∇wf(w′t,v′t; z′n)
∇vf(wt,vt; zn)−∇vf(w′t,v′t; z′n)

)∥∥∥∥2

2
. (F.5)

Note that the event it 6= n happens with probability 1− 1/n and the event it = n happens with probability 1/n. Therefore,
we know

Eit

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ n− 1

n

(
(1 + 2ηtρ)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

)
+ 1 + p

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)

n
η2
tG

2

≤ (1 + 2ηtρ+ p/n)
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8η2

tG
2(1 + 1/(np)).
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Let t0 ∈ N and E be defined as in the proof of Lemma F.1. We apply the above equation recursively from t = t0 + 1 to T ,
then

EA

[∥∥∥∥(wT −w′T
vT − v′T

)∥∥∥∥2

2

∣∣∣∣ E
]
≤ 8G2(1 + 1/(np)

) T∑
t=t0+1

η2
t

T∏
k=t+1

(
1 + 2ηkρ+ p/n

)
.

By the elementary inequality 1 + a ≤ exp(a) and ηt = c
t , we further derive

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

∣∣∣∣ E
]
≤8G2(1 + 1/(np)

) T∑
t=t0+1

c2

t2

T∏
k=t+1

exp
(2cρ
k

+ p

n

)

≤8G2(1 + 1/(np)
) T∑
t=t0+1

c2

t2
exp

( T∑
k=t+1

2cρ
k

+ pT

n

)
.

By taking p = n/T in the above inequality, we further derive

EA

[∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

∣∣∣∣ E
]
≤8eG2

(
1 + T

n2

) T∑
t=t0+1

c2

t2
exp

( T∑
k=t+1

2cρ
k

)

≤8eG2
(

1 + T

n2

) T∑
t=t0+1

c2

t2
exp

(
2cρ log

(T
t

))

≤8c2eG2
(

1 + T

n2

)
T 2cρ

T∑
t=t0+1

1
t2cρ+2

≤ 8c2eG2

2cρ+ 1

(
1 + T

n2

)(T
t0

)2cρ 1
t0
.

Combining the above inequality and Lemma F.1 together, we obtain

EA[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)] ≤4t0
n

+ 4
√
ecG2

√
2cρ+ 1

(
1 +
√
T

n

)(T
t0

)cρ 1√
t0
. (F.6)

The right hand side is approximately minimized when

t0 =
( √

ecG2
√

2cρ+ 1

(
1 +
√
T

n

)
T cρn

) 2
2cρ+3

.

Plugging it into the Eq. (F.6) we have (for simplicity we assume the above t0 is an integer)

EA[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)] ≤8
( √

ecG2
√

2cρ+ 1

(
1 +
√
T

n

)
T cρ
) 2

2cρ+3
(

1
n

) 2cρ+1
2cρ+3

.

Since the above bound holds for all z, S, S′ and w′,v′, we immediately get the same upper bound on the weak stability.
Finally the theorem holds by calling Theorem 1, Part (a).

F.2. High-Probability Stability and Generalization Bounds

In this section, we give stability and generalization bounds of SGDA with nonconvex-nonconcave smooth objectives with
high probability. The analysis requires a tail bound for a linear combination of independent Bernoulli random variables
(Raghavan, 1988).

Lemma F.3. Let ct ∈ (0, 1] and let X1, · · · , XT be independent Bernoulli random variables with the success rate of Xt

being pt ∈ [0, 1]. Denote s =
∑T
t=1 ctpt. Then, for all a > 0,

P
[ T∑
t=1

ctXt ≥ (1 + a)s
]
≤
( ea

(1 + a)(1+a)

)s
.
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In particular, for all δ ∈ (0, 1) such that log(1/δ) < s with probability at least 1− δ we have

T∑
t=1

ctXt ≤ s+ (e− 1)
√

log(1/δ)s.

Theorem F.4. Let {wt,vt} be the sequence produced by (4.1) with ηt ≤ c
t for some c > 0. Assume Assumption 1, 2 hold

and |f(·, ·; z)| ≤ 1. For any δ ∈ (0, 1), if c ≤ 1
(n log(2/δ)−1)L , then with probability at least 1− δ we have

∣∣F (wT ,vT )− FS(wT ,vT )
∣∣ = O

(
T cL log(n) log3/2(1/δ)n−1/2 + n−1/2 log1/2(1/δ)

)
.

Proof. Let S′ = {z1, . . . , zn−1, z
′
n} and {w′t,v′t} be the sequence produced by (4.1) w.r.t. S′. If it 6= n, it follows from

the L-smoothness of f that∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥
2
≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥
2

+ ηt

∥∥∥∥(∇wf(wt,vt; zit)−∇wf(w′t,v′t; zit)
∇vf(wt,vt; zit)−∇vf(w′t,v′t; zit)

)∥∥∥∥
2
≤ (1 + Lηt)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥
2
.

If it = n, we have ∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥
2
≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥
2

+ 4ηtG.

We can combine the above two inequalities together and get∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥
2
≤(1 + Lηt)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥
2

+ 4GηtI[it=n].

We apply the above inequality recursively from t = 1 to T and get∥∥∥∥(wT −w′T
vT − v′T

)∥∥∥∥
2
≤ 4G

T∑
t=1

ηtI[it=n]

T∏
k=t+1

(
1 + Lηk

)
.

By the elementary inequality 1 + a ≤ exp(a) and ηt ≤ c
t , we further derive∥∥∥∥(wT −w′T

vT − v′T

)∥∥∥∥
2
≤4cG

T∑
t=1

I[it=n]

t

T∏
k=t+1

exp
(cL
k

)
= 4cG

T∑
t=1

I[it=n]

t
exp

( T∑
k=t+1

cL

k

)

≤4cG
T∑
t=1

I[it=n]

t
exp

(
cL log

(T
t

))
≤ 4cGT cL

T∑
t=1

I[it=n]

tcL+1 .

By Lemma F.3, for any δ > 0 such that log(2/δ) <
∑T
t=1

1
tcL+1n

, with probability at least 1− δ/2 we have

∥∥∥∥(wT −w′T
vT − v′T

)∥∥∥∥
2
≤4cGT cL

( T∑
t=1

1
tcL+1n

+ (e− 1)

√√√√log(1/δ)
T∑
t=1

1
tcL+1n

)
. (F.7)

Note that

T∑
t=1

1
tcL+1 ≤1 +

∫ T

t=1

dt
tcL+1 ≤ 1 + 1

cL
.

Plugging the above bound into Equation (F.7) , we know with probability at least 1− δ/2∥∥∥∥(wT −w′T
vT − v′T

)∥∥∥∥
2
≤4cGT cL

(cL+ 1
cLn

+ (e− 1)
√

(cL+ 1) log(1/δ)
cLn

)
.
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By the Lipschitz continuity of f , the above equation implies SGDA is ε-uniformly stable with probability at least 1− δ/2
and

ε = O
(
T cL

√
log(1/δ)n− 1

2

)
.

This together with Part (e) of Theorem 1 implies the following inequality with probability at least 1− δ∣∣F (w,v)− FS(wT ,vT )
∣∣ = O

(
T cL log(n) log3/2(1/δ)n−1/2 + n−1/2 log1/2(1/δ)

)
.

The proof is complete.

F.3. Proof of Theorem 6

In this section, we prove Theorem 6 on generalization bounds under a regularity condition on the decay of weak-convexity-
weak-concavity parameter along the optimization process.

Proof of Theorem 6. Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be two neighboring datasets. Without loss of generality,
we assume zi = z′i for i ∈ [n− 1]. If it 6= n, then it follows from Assumption 2 that∥∥∥∥(∇wf(wt,vt; zit)−∇wf(w′t,v′t; z′it)

∇vf(wt,vt; zit)−∇vf(w′t,v′t; z′it)

)∥∥∥∥2

2
=
∥∥∥∥(∇wf(wt,vt; zit)−∇wf(w′t,v′t; zit)
∇vf(wt,vt; zit)−∇vf(w′t,v′t; zit)

)∥∥∥∥2

2
≤ L2

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

If it = n, then it follows from Assumption 1 that∥∥∥∥(∇wf(wt,vt; zit)−∇wf(w′t,v′t; z′it)
∇vf(wt,vt; zit)−∇vf(w′t,v′t; z′it)

)∥∥∥∥2

2
≤ 8G2.

Therefore, we have

Eit

∥∥∥∥(∇wf(wt,vt; zit)−∇wf(w′t,v′t; z′it)
∇vf(wt,vt; zit)−∇vf(w′t,v′t; z′it)

)∥∥∥∥2

2
≤ (n− 1)L2

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2

n
. (F.8)

According to (4.1), we know∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ η2

t

∥∥∥∥(∇wf(wt,vt; zit)−∇wf(w′t,v′t; z′it)
∇vf(wt,vt; zit)−∇vf(w′t,v′t; z′it)

)∥∥∥∥2

2

− 2ηt
〈(wt −w′t

vt − v′t

)
,

(
∇wf(wt,vt; zit)−∇wf(w′t,v′t; z′it)
∇vf(w′t,v′t; z′it)−∇vf(wt,vt; zit)

)〉
.

Taking a conditional expectation w.r.t. it gives

Eit

∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2

≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ L2η2

t

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

n
− 2ηtEit

〈(wt −w′t
vt − v′t

)
,

(
∇wf(wt,vt; zit)−∇wf(w′t,v′t; z′it)
∇vf(w′t,v′t; z′it)−∇vf(wt,vt; zit)

)〉
=
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ L2η2

t

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2η2

t

n
− 2ηt

〈(wt −w′t
vt − v′t

)
,

(
∇wFS(wt,vt)−∇wFS′(w′t,v′t)
∇vFS′(w′t,v′t)−∇vFS(wt,vt)

)〉
,

where we have used (F.8) in the first step and used the fact

Eit∇f(w,v, zit) = ∇FS(w,v), Eit∇f(w,v, z′it) = ∇FS′(w,v)

in the second step. According to (5.1), we know〈(wt −w′t
vt − v′t

)
,

(
∇wFS(wt,vt)−∇wFS′(w′t,v′t)
∇vFS′(w′t,v′t)−∇vFS(wt,vt)

)〉
=
〈(wt −w′t

vt − v′t

)
,

(
∇wFS(wt,vt)−∇wFS(w′t,v′t)
∇vFS(w′t,v′t)−∇vFS(wt,vt)

)〉
+
〈(wt −w′t

vt − v′t

)
,

(
∇wFS(w′t,v′t)−∇wFS′(w′t,v′t)
∇vFS′(w′t,v′t)−∇vFS(w′t,v′t)

)〉
≥ −ρt

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+
〈(wt −w′t

vt − v′t

)
,

(
∇wFS(w′t,v′t)−∇wFS′(w′t,v′t)
∇vFS′(w′t,v′t)−∇vFS(w′t,v′t)

)〉
.
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It follows from Assumption 1 that〈(wt −w′t
vt − v′t

)
,

(
∇wFS(w′t,v′t)−∇wFS′(w′t,v′t)
∇vFS′(w′t,v′t)−∇vFS(w′t,v′t)

)〉
= 1
n

〈(wt −w′t
vt − v′t

)
,

(
∇wf(w′t,v′t; zn)−∇wf(w′t,v′t; z′n)
∇vf(w′t,v′t; z′n)−∇vf(w′t,v′t; zn)

)〉
≥ − 1

n

∥∥∥(wt −w′t
vt − v′t

)∥∥∥
2

∥∥∥(∇wf(w′t,v′t; zn)−∇wf(w′t,v′t; z′n)
∇vf(w′t,v′t; z′n)−∇vf(w′t,v′t; zn)

)∥∥∥
2
≥ −2

√
2G
n

∥∥∥(wt −w′t
vt − v′t

)∥∥∥
2
.

We can combine the above three inequalities together and derive

Eit

∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
(
1 + 2ρtηt + L2η2

t

) ∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8η2

tG
2

n
+ 4
√

2Gηt
n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥
2

≤
(
1 + 2ρtηt + L2η2

t

) ∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8η2

tG
2

n
+ η2

t

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2
+ 8G2

n2 .

Applying the above inequality recursively, we get

EA
∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8G2

n

t∑
j=1

(
η2
t + 1

n

) t∏
k=j+1

(
1 + 2ρkηk + L2η2

k + η2
k

)
.

By the elementary inequality 1 + a ≤ exp(a) we know

EA
∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8G2

n

t∑
j=1

(
η2
t + 1

n

)
exp

( t∑
k=j+1

(
2ρkηk + (L2 + 1)η2

k

))
.

It then follows from the Jensen’s inequality that

EA
∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥
2
≤ 2
√

2G√
n

 t∑
j=1

(
η2
t + 1

n

)
exp

( t∑
k=j+1

(
2ρkηk + (L2 + 1)η2

k

)) 1
2

.

The stated bound then follows from Part (a) of Theorem 1 and Assumption 1. The proof is complete.

G. Stability and Generalization Bounds of AGDA on Nonconvex-Nonconcave Objectives
In this section, we give the proof on the stability and generalization bounds of AGDA for nonconvex-nonconcave functions.
The next lemma is similar to Lemma F.1, which shows AGDA typically runs several iterations before encountering the
different example between S and S′.

Lemma G.1. Assume |f(·, ·, z)| ≤ 1 for any z and let Assumption 1 hold. Let S = {z1, . . . , zn} and S′ =
{z1, . . . , zn−1, z

′
n}. Let {wt,vt} and {w′t,v′t} be the sequence produced by (5.2) w.r.t. S and S′, respectively. De-

note

∆t = ‖wt −w′t‖2 + ‖vt − v′t‖2. (G.1)

Then for any t0 ∈ N and any w′,v′ we have

E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)] ≤ 8t0
n

+GE[∆T |∆t0 = 0].

Proof. Let E denote the event that ∆t0 = 0. Then we have

E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)]
=P[E ]E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)|E ]

+ P[Ec]E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)|Ec]
≤GE[∆T |E ] + 4P[Ec], (G.2)
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where we have used (F.2) and the assumption |f(·, ·, z)| ≤ 1. Using the union bound on the outcome it = n and jt = n we
obtain that

P[Ec] ≤
t0∑
t=1

(
P[it = n] + P[jt = n]

)
= 2t0

n
.

The proof is complete by combining the above two inequalities together.

Proof of Theorem 7. Since zit and zjt are i.i.d, we can analyze the update of w and v separately. Note that the projection
step is nonexpansive. We consider two cases at the t-th iteration. If it 6= n, then it follows from Assumption 2 that

‖wt+1 −w′t+1‖2

≤‖wt − ηw,t∇wf(wt,vt, zit)−w′t + ηw,t∇wf(w′t,v′t, zit)‖2

≤‖wt − ηw,t∇wf(wt,vt, zit)−w′t + ηw,t∇wf(w′t,vt, zit)‖2 + ‖ηw,t∇wf(w′t,vt, zit)− ηw,t∇wf(w′t,v′t, zit)‖2

≤(1 + Lηw,t)‖wt −w′t‖2 + Lηw,t‖vt − v′t‖2.

If it = n, then it follows from Assumption 1 that

‖wt+1 −w′t+1‖2 ≤‖wt − ηw,t∇wf(wt,vt, zit)−w′t + ηw,t∇wf(w′t,v′t, zit)‖2

≤‖wt −w′t‖2 + 2Gηw,t.

According to the distribution of it, we have

EA[‖wt+1 −w′t+1‖2] ≤n− 1
n

EA
[
(1 + ηw,tL)‖wt −w′t‖2 + Lηw,t‖vt − v′t‖2

]
+ 1
n

(‖wt −w′t‖2 + 2ηw,tG)

≤(1 + ηw,tL)EA[‖wt −w′t‖2] + Lηw,tEA
[
‖vt − v′t‖2

]
+ 2ηw,tG

n
. (G.3)

Similarly, for v we also have

EA[‖vt+1 − v′t+1‖2] ≤(1 + ηv,tL)EA[‖vt − v′t‖2] + Lηv,tEA
[
‖wt −w′t‖2

]
+ 2ηv,tG

n
. (G.4)

Combining (G.3) and (G.4) we have

EA[‖wt+1 −w′t+1‖2 + ‖vt+1 − v′t+1‖2] ≤(1 + (ηw,t + ηv,t)L)EA
[
‖wt −w′t‖2 + ‖vt − v′t‖2

]
+ 2(ηw,t + ηv,t)G

n
.

Recalling the event E that ∆t0 = 0, we apply the above equation recursively from t = t0 + 1 to T , then

EA
[
‖wt+1 −w′t+1‖2 + ‖vt+1 − v′t+1‖2

∣∣∆t0 = 0
]
≤2G
n

T∑
t=t0+1

(ηw,t + ηv,t)
T∏

k=t+1
(1 + (ηw,k + ηv,k)L).

By the elementary inequality 1 + x ≤ exp(x) and ηw,t + ηv,t ≤ c
t , we have

EA
[
‖wt+1 −w′t+1‖2 + ‖vt+1 − v′t+1‖2

∣∣∆t0 = 0
]

≤2cG
n

T∑
t=t0+1

1
t

T∏
k=t+1

exp
(cL
k

)
= 2cG

n

T∑
t=t0+1

1
t

exp
( T∑
k=t+1

cL

k

)

≤2cG
n

T∑
t=t0+1

1
t

exp
(
cL log

(T
t

))
≤ 2cGT cL

n

T∑
t=t0+1

1
tcL+1 ≤

2G
Ln

(T
t0

)cL
.

By Lemma G.1 we have

E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)] ≤8t0
n

+ 2G2

Ln

(T
t0

)cL
. (G.5)
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The right hand side of the above inequality is approximately minimized when

t0 =
(G2

4L

) 1
cL+1

T
cL
cL+1 .

Plugging it into Eq. (G.5) we have (for simplicity we assume the above t0 is an integer)

E[f(wT ,v′; z)− f(w′T ,v′; z) + f(w′,vT ; z)− f(w′,v′T ; z)] ≤16
(G2

4L

) 1
cL+1

n−1T
cL
cL+1 .

Since the above bound holds for all z, S, S′ and w′,v′, we immediately get the same upper bound on the weak stability.
Finally the theorem holds by calling Theorem 1, Part (a).

We require an assumption on the existence of saddle point to address the optimization error of AGDA (Yang et al., 2020).

Assumption 4 (Existence of Saddle Point). Assume for any S, FS has at least one saddle point. Assume for any v,
minw FS(w,v) has a nonempty solution set and a finite optimal value. Assume for any w, maxv FS(w,v) has a nonempty
solution set and a finite optimal value.

The following lemma establishes the generalization bound for the empirical maximizer of a strongly concave objective. It is
a direct extension of the stability analysis in Shalev-Shwartz et al. (2010) for strongly convex objectives.

Lemma G.2. Assume that for any w and S, the function v 7→ FS(w,v) is ρ-strongly-concave. Suppose for any w, v,v′
and for any z we have ∣∣f(w,v; z)− f(w,v′; z)

∣∣ ≤ G‖v− v′‖2. (G.6)

Fix any w. Denote v̂∗S = arg maxv∈V FS(w,v). Then

E[FS(w, v̂∗S)− F (w, v̂∗S)] ≤ 4G2

ρn
.

Proof. Let S′ = {z′1, . . . , z′n} be drawn independently from ρ. For any i ∈ [n], define S(i) =
{z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}. Denote v̂∗

S(i) = arg maxv∈V FS(i)(w,v). Then

FS(w, v̂∗S)− FS(w, v̂∗S(i)) = 1
n

∑
j 6=i

(
f(w, v̂∗S ; zj)− f(w, v̂∗S(i) ; zj)

)
+ 1
n

(
f(w, v̂∗S ; zi)− f(w, v̂∗S(i) ; zi)

)
= 1
n

(
f(w, v̂∗S(i) ; z′i)− f(w, v̂∗S ; z′i)

)
+ 1
n

(
f(w, v̂∗S ; zi)− f(w, v̂∗S(i) ; zi)

)
+ FS(i)(w, v̂∗S)− FS(i)(w, v̂∗S(i))

≤ 1
n

(
f(w, v̂∗S(i) ; z′i)− f(w, v̂∗S ; z′i)

)
+ 1
n

(
f(w, v̂∗S ; zi)− f(w, v̂∗S(i) ; zi)

)
≤2G
n

∥∥v̂∗S − v̂∗S(i)

∥∥
2, (G.7)

where the first inequality follows from the fact that v̂∗
S(i) is the maximizer of FS(i)(w, ·) and the second inequality follows

from (G.6). Since FS is strongly-concave and v̂∗S maximizes FS(w, ·), we know

ρ

2
∥∥v̂∗S − v̂∗S(i)

∥∥2
2 ≤ FS(w, v̂∗S)− FS(w, v̂∗S(i)).

Combining it with (G.7) we get
∥∥v̂∗S − v̂∗

S(i)

∥∥
2 ≤ 4G/(ρn). By (G.6), the following inequality holds for any z

∣∣f(w, v̂∗S ; z)− f(w, v̂∗S(i) ; z)
∣∣ ≤ 4G2

ρn
.

Since zi and z′i are i.i.d., we have

E
[
F (w, v̂∗S)

]
= E

[
F (w, v̂∗S(i))

]
= 1
n

n∑
i=1

E
[
f(w, v̂∗S(i) ; zi)

]
,
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where the last identity holds since zi is independent of v̂∗
S(i) . Therefore

E
[
FS(w, v̂∗S)− F (w, v̂∗S)

]
= 1
n

n∑
i=1

E
[
f(w, v̂∗S ; zi)− f(w, v̂∗S(i) ; zi)

]
≤ 4G2

ρn
.

The proof is complete.

Corollary G.3. Let β1, ρ > 0. Let Assumptions 1, 2, 3 with β1(S) ≥ β1, β2(S) ≥ ρ and 4 hold. Assume for any w and
any S, the functions v 7→ F (w,v) and v 7→ FS(w,v) are ρ-strongly concave. Let {wt,vt} be the sequence produced by

(5.2) with ηw,t � 1/(β1t) and ηv,t � 1/(β1ρ
2t). Then for T �

(
n

β2
1ρ

3

) cL+1
2cL+1 , we have

E
[
R(wT )−R(w∗)

]
= O

(
n−

cL+1
2cL+1 β

− 2cL
2cL+1

1 ρ−
5cL+1
2cL+1

)
,

where c � 1/(β1ρ
2).

Proof. We have the error decomposition

R(wT )−R(w∗) =
(
R(wT )−RS(wT )

)
+
(
RS(wT )−RS(w∗)

)
+
(
RS(w∗)−R(w∗)

)
. (G.8)

First we consider the term R(wT )−RS(wT ). Analogous to the proof of Theorem 7 (i.e., the only difference is to replace
the conditional expectation of function values in (G.2) with the conditional expectation of E[‖wT −w′T ‖2 + ‖vT − v′T ‖2]),
one can show that AGDA is O

(
n−1T

cL
cL+1

)
-argument stable (note the step sizes satisfy ηw,t + ηv,t ≤ c/t). This together

with Part (b) of Theorem 1 implies that

E
[
R(wT )−RS(wT )

]
= O

(
(ρn)−1T

cL
cL+1

)
. (G.9)

For the term RS(wT )−RS(w∗), the optimization error bounds in Yang et al. (2020) show that

E
[
RS(wT )−RS(w∗)

]
= O

( 1
β2

1ρ
4T

)
. (G.10)

Finally, for the term RS(w∗)−R(w∗), we further decompose it as

E
[
RS(w∗)−R(w∗)

]
= E

[
FS(w∗, v̂∗S)− F (w∗,v∗)

]
= E

[
FS(w∗, v̂∗S)− F (w∗, v̂∗S)

]
+ E

[
F (w∗, v̂∗S)− F (w∗,v∗)

]
,

where v̂∗S = arg maxv FS(w∗,v). The second term E
[
F (w∗, v̂∗S)− F (w∗,v∗)

]
≤ 0 since (w∗,v∗) is a saddle point of

F . Therefore by Lemma G.2 we have

E
[
RS(w∗)−R(w∗)

]
≤ E

[
FS(w∗, v̂∗S)− F (w∗, v̂∗S)

]
= O

( 1
ρn

)
.

We can plug the above inequality, (G.9), (G.10) into (G.8), and get

E
[
R(wT )−R(w∗)

]
= O

(
(ρn)−1T

cL
cL+1

)
+O

( 1
β2

1ρ
4T

)
+O

( 1
ρn

)
.

We can choose T �
(

n
β2

1ρ
3

) cL+1
2cL+1 to get the stated excess primal population risk bounds. The proof is complete.

H. Proof of Theorem 9
To prove Theorem 9, we first introduce a lemma on relating the difference of function values to gradients.

Lemma H.1. Let Assumption 3 hold. For any u = (w,v) and any stationary point u(S) = (w(S),v(S)) of FS , we have

−‖∇vFS(w,v)‖2
2

2β2(S) ≤ FS(u)− FS(u(S)) ≤
‖∇wFS(w,v)‖2

2
2β1(S) .
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Proof. Since u(S) is a stationary point, it is also a saddle point under the PL condition (Yang et al., 2020) which means that

FS(w(S),v′) ≤ FS(w(S),v(S)) ≤ FS(w′,v(S)), ∀w′ ∈ W,v′ ∈ V.

It then follows that

FS(u)− FS(u(S)) = FS(w,v)− FS(w(S),v) + FS(w(S),v)− FS(w(S),v(S))

≤ FS(w,v)− FS(w(S),v) ≤ FS(w,v)− inf
w′∈W

FS(w′,v) ≤ 1
2β1(S)‖∇wFS(w,v)‖2

2,

where in the last inequality we have used Assumption 3. In a similar way, we know

FS(u)− FS(u(S)) = FS(w,v)− FS(w,v(S)) + FS(w,v(S))− FS(w(S),v(S))

≥ FS(w,v)− FS(w,v(S)) ≥ FS(w,v)− sup
v′
FS(w,v′) ≥ − 1

2β2(S)‖∇vFS(w,v)‖2
2.

The proof is complete.

Proof of Theorem 9. Let S′ = {z′1, . . . , z′n} be drawn independently from ρ. For any i ∈ [n], define S(i) =
{z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}. Let uS = (Aw(S), Av(S)) and u(S)

S be the projection of uS onto the set of station-
ary points of FS . For each i ∈ [n], we denote ui = (Aw(S(i)), Av(S(i))) and u(i)

i the projection of ui onto the set of
stationary points of FS(i) . Then ∇FS(i)(u(i)

i ) = 0.

We decompose f(ui; zi)− f(uS ; zi) as follows

f(ui; zi) − f(uS ; zi) =
(
f(ui; zi) − f(u(i)

i ; zi)
)

+
(
f(u(i)

i ; zi) − f(u(S)
S ; zi)

)
+
(
f(u(S)

S ; zi) − f(uS ; zi)
)
. (H.1)

We now address the above three terms separately.

We first address f(u(i)
i ; zi)− f(u(S)

S ; zi). According to the definition of FS , S, S(i), we know

f(u(i)
i ; zi) = nFS(u(i)

i )− nFS(i)(u(i)
i ) + f(u(i)

i ; z′i).

Since zi and z′i follow from the same distribution, we know E[f(u(i)
i ; z′i)] = E[f(u(S)

S ; zi)] and further get

E
[
f(u(i)

i ; zi)
]

= nE
[
FS(u(i)

i )
]
− nE

[
FS(i)(u(i)

i )
]

+ E
[
f(u(S)

S ; zi)
]
.

It then follows that

E
[
f(u(i)

i ; zi)− f(u(S)
S ; zi)

]
= nE

[
FS(u(i)

i )− FS(i)(u(i)
i )
]

= nE
[
FS(u(i)

i )− FS(u(S)
S )

]
, (H.2)

where we have used the following identity due to the symmetry between zi and z′i: E[FS(i)(u(i)
i )] = E

[
FS(u(S)

S )
]
. By the

PL condition of FS , it then follows from (H.2) and Lemma H.1 that

E
[
f(u(i); zi)− f(u(S)

S ; zi)
]
≤ n

2E
[ 1
β1(S)‖∇wFS(u(i)

i )‖2
2
]
. (H.3)

According to the definition of u(i)
i we know ∇wFS(i)(u(i)

i ) = 0 and therefore ((a+ b)2 ≤ 2a2 + 2b2)

‖∇wFS(u(i)
i )‖2

2 =
∥∥∥∇wFS(i)(u(i)

i )− 1
n
∇wf(u(i)

i ; z′i) + 1
n
∇wf(u(i)

i ; zi)
∥∥∥2

2

≤ 2
n2 ‖∇wf(u(i)

i ; z′i)‖2
2 + 2

n2 ‖∇wf(u(i)
i ; zi)‖2

2 ≤
4G2

n2 , (H.4)

where we have used Assumption 1. This together with (H.3) gives

E
[
f(u(i); zi)− f(u(S)

S ; zi)
]
≤ 2G2

n
E
[ 1
β1(S)

]
. (H.5)
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We then address f(ui; zi)− f(u(i)
i ; zi). Since ui and u(i)

i are independent of zi, we know

E
[
f(ui; zi)− f(u(i)

i ; zi)
]

= E
[
F (ui)− F (u(i)

i )
]

= E
[
F (uS)− F (u(S)

S )
]
, (H.6)

where we have used the symmetry between zi and z′i.

Finally, we address f(u(S)
S ; zi)− f(uS ; zi). By the definition of u(S)

S we know

n∑
i=1

(
f(u(S)

S ; zi)− f(uS ; zi)
)

= n
(
FS(u(S)

S )− FS(uS)
)
. (H.7)

Plugging (H.5), (H.6) and the above inequality back into (H.1), we derive

n∑
i=1

E
[
f(ui; zi)− f(uS ; zi)

]
≤ E

[ 2G2

β1(S)

]
+ nE

[
F (uS)− F (u(S)

S )
]

+ nE
[
FS(u(S)

S )− FS(uS)
]
.

Since zi and z′i are drawn from the same distribution, we know

E
[
F (uS)− FS(uS)

]
= 1
n

n∑
i=1

E
[
F (ui)− FS(uS)

]
= 1
n

n∑
i=1

E
[
f(ui; zi)− f(uS ; zi)

]
≤ 2G2

n
E
[ 1
β1(S)

]
+ E

[
F (uS)− F (u(S)

S )
]

+ E
[
FS(u(S)

S )− FS(uS)
]
, (H.8)

where the second identity holds since zi is independent of ui. It then follows that

E
[
F (u(S)

S )− FS(u(S)
S )

]
≤ 2G2

n
E
[ 1
β1(S)

]
. (H.9)

According to the Lipschitz continuity we know∣∣F (uS)− F (u(S)
S )

∣∣ ≤ G‖uS − u(S)
S ‖2 and

∣∣FS(uS)− FS(u(S)
S )

∣∣ ≤ G‖uS − u(S)
S ‖2.

Plugging the above inequality back into (H.8), we derive the following inequality

E
[
F (uS)− FS(uS)

]
≤ 2G2

n
E
[ 1
β1(S)

]
+ 2GE

[
‖uS − u(S)

S ‖2
]
. (H.10)

By Lemma H.1 and (H.2), we can also have

E
[
f(u(i)

i ; zi)− f(u(S)
S ; zi)

]
≥ −n2E

[ 1
β2(S)‖∇vFS(u(i)

i )‖2
2
]
.

Using this inequality, one can analyze analogously to (H.10) and derive the following inequality

E
[
F (uS)− FS(uS)

]
≥ −2G2

n
E
[ 1
β2(S)

]
− 2GE

[
‖uS − u(S)

S ‖2
]
.

The stated inequality follows from the above inequality and (H.10). The proof is complete.

I. Additional Experiments
In this section, we investigate the stability of SGDA on a nonconvex-nonconcave problem. We consider the vanilla GAN
structure proposed in Goodfellow et al. (2014). The generator and the discriminator consist of 4 fully connected layers,
and use the leaky rectified linear activation before the output layer. The generator uses the hyperbolic tangent activation
at the output layer. The discriminator uses the sigmoid activation at the output layer. In order to make experiments more
interpretable in terms of stability, we remove all forms of regularization such as the weight decay or dropout in the original
paper. In order to truly implement SGDA, we generate only one noise for updating both the discriminator and the generator
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at each iteration. This differs from the common GAN training strategy, which uses different noises for updating the
discriminator and the generator. We employ the mnist dataset (LeCun et al., 1998) and build neighboring datasets S and
S′ by removing a randomly chosen datum indexed by i from S and i+ 1 from S′. The algorithm is run based on the same
trajectory for S and S′ by fixing the random seed. We randomly pick 5 different i’s and 5 different random seeds (total
25 runs). The step sizes for the discriminator and the generator are chosen as constants, i.e. η = 0.0002. We compute the
Euclidean distance, i.e., Frobenius norm, between the parameters trained on the neighboring datasets. Note that we do not
target at optimizing the test accuracy, but give an interpretable visualization to validate our theoretical findings. The results
are given in Figure I.1.

Figure I.1. The parameter distance versus the number of passes. Left: generator, right: discriminator. ’total’ is the mean normalized
Euclidean distance across all layers and the shaded area is the standard deviation.

It is clear that the parameter distances for both the generator and the discriminator continue to increase during the training
process of SGDA, which is consistent with our analysis in Section F.1 and F.3.


