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Abstract
Existing evaluation suites for multi-agent rein-
forcement learning (MARL) do not assess gener-
alization to novel situations as their primary ob-
jective (unlike supervised-learning benchmarks).
Our contribution, Melting Pot, is a MARL evalu-
ation suite that fills this gap, and uses reinforce-
ment learning to reduce the human labor required
to create novel test scenarios. This works because
one agent’s behavior constitutes (part of) another
agent’s environment. To demonstrate scalability,
we have created over 80 unique test scenarios
covering a broad range of research topics such
as social dilemmas, reciprocity, resource sharing,
and task partitioning. We apply these test scenar-
ios to standard MARL training algorithms, and
demonstrate how Melting Pot reveals weaknesses
not apparent from training performance alone.

1. Introduction
No broadly accepted benchmark test set for multi-agent rein-
forcement learning (MARL) research yet exists. This lack of
a standardized evaluation protocol has impeded progress in
the field by making it difficult to obtain like-for-like compar-
isons between algorithms. The situation in MARL is now in
stark contrast to the status quo in single-agent reinforcement
learning (SARL) where a diverse set of benchmarks suitable
for different purposes are available (e.g. Brockman et al.
(2016); Fortunato et al. (2019); Machado et al. (2018); Os-
band et al. (2019); Tassa et al. (2018); Torrado et al. (2018)).
Further afield, the comparison to the evaluation landscape
in other machine learning subfields is even more unfavor-
able. Datasets like ImageNet (Deng et al., 2009) and their
associated evaluation methodology achieve a level of rigor
and community acceptance unparalleled in reinforcement
learning.

Within the SARL research community there have been sev-
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eral recent calls to import the methodological stance con-
cerning the primacy of generalization from supervised learn-
ing (Cobbe et al., 2019; Farebrother et al., 2018; Juliani et al.,
2019; Zhang et al., 2018a;b). However, MARL research is
still lagging behind. No one has yet attempted to build a
benchmark with the explicit aim of pushing standards for
judging multi-agent reinforcement learning research toward
making generalization the first-and-foremost goal.

Supervised learning research benefits immensely from hav-
ing a clear experimental protocol and set of benchmarks that
explicitly measure how well methods generalize outside
the data to which they were exposed in training (Chollet,
2019; Deng et al., 2009; LeCun et al., 2015). This facilitates
clear like-for-like comparison between methods, channeling
competition between research groups, and driving progress.
One problem that arises when trying to import these ideas to
reinforcement learning however is that generating a test set
of environments is a lot more labor intensive than labeling
a set of images. The engineering challenge of creating just
a single test environment is akin to designing and imple-
menting a new computer game. Thus calls to appreciate the
primacy of generalization in SARL appear sometimes to
justify a Sisyphean struggle to create ever more clever and
more diverse intelligence tests.

This obstacle to scalability turns out to be much less se-
vere for research aimed at multi-agent intelligence. In fact,
multi-agent approaches have a natural advantage over single-
player approaches in the measurement arena. In multi-agent
systems, agents naturally pose tasks to one another. Any
change to the policy of one agent changes the environ-
ment experienced by a set of interdependent others. For
instance, if a focal agent learns an effective policy against
a fixed set of co-players, it could be rendered useless if
the co-players change. This aspect of multi-agent learning
is more commonly associated with proposals for “training
time” ideas like autocurricula (Baker et al., 2019; Bansal
et al., 2017; Leibo et al., 2019a; Sukhbaatar et al., 2017)
and open-endedness (Clune, 2019). Here however, we pro-
pose to make a different use of it. We can take advantage
of multi-agent interaction to create large and diverse sets
of generalization tests by pre-training “background popu-
lations” of agents to use for subsequent evaluation only,
never training on them—much like the test images in the
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ImageNet challenge for supervised learning.

Our proposal, Melting Pot, consists of an evaluation method-
ology and a suite of specific test environments. Its essence
is embodied in its central “equation”:

Substrate + Background Population = Scenario

A scenario is a multi-agent environment that we use only
for testing; we do not allow agents to train in it. The term
substrate refers to the physical part of the world, it includes:
the layout of the map, where the objects are, how they can
move, the rules of physics, etc. The term background popu-
lation refers to the part of the simulation that is imbued with
agency—excluding the focal population of agents being
tested.

The Melting Pot research protocol aims to assess and com-
pare multi-agent reinforcement learning algorithms. It is
only concerned with test-time evaluation, and so is mostly
agnostic to training method. That is, training-time access to
each test’s substrate is allowed but we do not mandate how
to use it. The suite consists of a collection of zero-shot—
i.e. not allowing for test-time learning—test scenarios that
preserve a familiar substrate while substituting a new and
unfamiliar background population.

Our intention is for Melting Pot to cover the full breadth
of different types of strategic situations commonly studied
in multi-agent reinforcement learning1. As such, we have
included purely competitive games, games of pure com-
mon interest, team-based competitive games, and a range of
different kinds of mixed-motivation games including pris-
oner’s dilemma-like social dilemmas and games that stress
coordination. The numbers of simultaneous players in each
game range from two to sixteen and most substrates have
around eight.

Finally, we provide benchmark results on Melting Pot for
several different MARL models. Intriguingly, we find that
maximizing collective reward often produces policies that
are less robust to novel social situations than the policies
obtained by maximizing individual reward.

2. What does Melting Pot evaluate?
We use the term multi-agent population learning algorithm
(MAPLA) to refer to any training process that produces a
decentralized population of agents capable of simultane-
ous interaction with one another. Melting Pot evaluates
MAPLAs on their fulfillment of three desiderata. They are

1The largest category of extant research that we left unrep-
resented is communication/language (e.g. Lazaridou & Baroni
(2020); Lowe et al. (2019); Mordatch & Abbeel (2018)). We see
no reason why scenarios engaging these ideas could not be added
in the future. Turn-based games (e.g. Lanctot et al. (2019)) and
games involving physics (e.g. Liu et al. (2018)) were also omitted.

best introduced by way of an example. Consider the follow-
ing problem faced by a manufacturer of self-driving cars.
The goal is to build a population of agents that will act simul-
taneously in the world as decentralized individuals. They
do not necessarily know in advance whether their cars will
be a small minority of the overall number of vehicles on the
road, interacting with large numbers of human drivers and
self-driving cars from competing manufacturers, or whether
their product might prove so popular that it rapidly becomes
a majority of the cars on the road. This fraction may even
change dynamically from day to day (consider: a competitor
might recall their product, or human driving could become
illegal). The self-driving fleet (a multi-agent population)
must then satisfy the following:

Individual agents and sets of agents sampled from the popu-
lation must:

1. perform well across a range of social situations where
individuals are interdependent,

2. generalize to interact effectively with unfamiliar in-
dividuals not seen during training (who may well be
human), and

3. pass a universalization test: answering positively to the
question “what if everyone behaved like that?”.

The class of MAPLA algorithms is very broad. Most multi-
agent reinforcement learning approaches can be made to
produce populations. For instance self-play schemes like
those used for AlphaGo (Silver et al., 2016; 2017), Alp-
haZero (Silver et al., 2018), FTW (Capture the Flag) (Jader-
berg et al., 2019), hide and seek (Baker et al., 2019), and
AlphaStar (Vinyals et al., 2019) fit in the class of MAPLAs,
as does recent work on DOTA (Berner et al., 2019) and
MOBA (Ye et al., 2020) games, as well as algorithms
like MADDPG (Lowe et al., 2017), LOLA (Foerster et al.,
2018), PSRO (Lanctot et al., 2017), PSROrN (Balduzzi
et al., 2019), and Malthusian reinforcement learning (Leibo
et al., 2019b).

3. Related work
The idea to use agents to create tasks for other agents ap-
pears in research on competitive games, such as Capture the
Flag (Jaderberg et al., 2019), DOTA (Berner et al., 2019)
and StarCraft II (Vinyals et al., 2019). There evaluation
against held-out agents was successfully used to measure
generalization, and ultimately beat human professionals.
This idea also appears in contexts where agent interaction is
used to drive learning (Racaniere et al., 2019; Wang et al.,
2019). In these cases it was not used to create benchmarks
for generalisation. Zero-shot transfer to new co-players in
coordination games was investigated in Hu et al. (2020).
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Several papers Song et al. (2020b); Lowe et al. (2017) have
introduced MARL benchmarks for specific domains, but do
not measure generalisation and don’t use learning agents
to produce evaluation tasks. Another approach with a long
history in game theory involves organizing a competition
between strategies submitted by different research groups
(e.g. Axelrod (1984)). Doing well in such a competition
involves generalization since a submitted agent must play
with the other researchers’ submissions. Perez-Liebana et al.
(2019) brought this competition approach to MARL. Differ-
ing from all these approaches, Melting Pot covers a broader
range of multi-agent interactions and is more explicitly fo-
cused on providing a benchmark for generalization.

4. The Melting Pot protocol
Our term, substrate, refers to a partially observable general-
sum Markov game (e.g. Shapley (1953); Littman (1994)).
In each game state, agents take actions based on a partial
observation of the state space and receive an individual re-
ward. The rules of the game are not given to the agents; they
must explore to discover them. Thus a Melting Pot substrate
is simultaneously a game of imperfect information—each
player possesses some private information not known to
their coplayers (as in card-games like poker)—and incom-
plete information—lacking common knowledge of the rules
(Harsanyi, 1967). We describe the various substrates avail-
able in Melting Pot in Section 5.

Formally, a substrate is an N -player partially observable
Markov game M defined on a finite set of states S, ob-
servations X , and actions A. The observation function
O : S × {1, . . . , N} → X , specifies each player’s view
of the state space. In each state, each player i selects
an individual action ai ∈ A. Following their joint ac-
tion a = (a1, . . . , aN ) ∈ AN , the state change obeys the
stochastic transition function T : S ×AN → ∆(S), where
∆(S) denotes the set of discrete probability distributions
over S . After a transition, each player receives an individual
reward defined byR : S ×AN × {1, . . . , N} → R.

A policy π : X × A × X × A × · · · × X → ∆(A) is a
probability distribution over a single agent’s actions, condi-
tioned on that agent’s history of observations and previous
actions. Policies are not transferable between substrates,
since X and A can differ between them. Let π ∈ ΠM
indicate a policy defined on the substrate M, and con-
sider a joint policy formed by a tuple of individual policies
π = (π1, . . . , πn) ∈ ΠM

n. We call this (factorized) joint
policy compatible with the N -player substrateM if n = N .
A compatible joint policy is necessary to sample episodes
from the interaction between the individual policies and the
substrate.

Given a compatible joint policy π on substrateM, we mea-

sure the performance of each individual policy within this
context as the individual return Ri(π|M)—the expected
total reward for player i. We then measure the performance
of the joint policy using the per-capita return—the mean
individual return:

R̄(π|M) =
1

N

N∑
i=1

Ri(π|M)

A population for an N -player substrate M is a distribu-
tion f(ΠM) over individual policies. A population forM
can therefore create a compatible joint policy π for M
by independently sampling N individual policies from f :
π ∼ f(π1) . . . f(πN ). Performance on a substrate by a
population is measured by the expected per-capita return:

R̄(f |M) =
1

N

N∑
i=1

Eπ1∼f . . .EπN∼fRi(π|M)

4.1. Testing

Let a scenario configuration for an N -player substrateM
be a binary vector c = (c1, . . . , cN ) ∈ {0, 1}N of n zeros
and m ones that indicates whether each player i is a focal
player (ci = 1), or a background player (ci = 0). Let
the background population for a substrate M be a distri-
bution g(ΠM) that is used to sample individual policies
for the background players. Now, from the perspective of
the focal players, the N -player substrateM is reduced to
an equivalent m-player substrateM′ (via marginalization
of the transition and reward functions by the background
player policies). We call this reduced m-player substrate
—formed from a substrate, configuration, and background
population—a test scenario.

Performance on a test scenario by a focal population f is
measured by the expected per-capita return as before, except
that background players are excluded from the mean:

R̄(f |M, c, g) =R̄(f |M′)

=
1

m

N∑
i=1

ciEπ1∼h1
. . .EπN∼hN

Ri(π|M)

where hi(π) = f(π)cig(π)1−ci .

When focal players outnumber background players, we say
the test scenario is in resident mode. These scenarios usually
test the emergent cooperative structure of the population
under evaluation for its robustness to interactions with a
minority of unfamiliar individuals not encountered during
training. When background players outnumber focal players,
we say the test scenario is in visitor mode. One common
use case for visitor-mode scenarios in Melting Pot is to test
whether an individual from the focal population can observe
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the conventions and norms of the dominant background
population and act accordingly (without retraining).

We use another kind of test scenario to test universalization.
In this case, we have no background players, but instead
of independently sampling each focal policy πi from f , we
sample from f once and use this policy repeatedly. So
the joint policy consists of N copies of the same policy
(π, . . . , π) ∈ ΠN where π ∼ f . We call this the universal-
ization mode. It answers the rhetorical question “how would
you like it if everyone behaved like you?”. Such universal-
ization is an important part of human moral psychology
(Levine et al., 2020), at least in some cultures (Henrich,
2020). Because this universalization test scenario does not
require a background population, it could easily be incorpo-
rated into a training process, in which case it would not be a
test of generalization. However, we included it because it is
useful in diagnosing failure cases.

4.2. Training

During training, MAPLA F is provided with unlimited
access to a substrateM, which it uses to train a population
f . Thus, the whole training process may be represented
as F [M] 7→ f(ΠM). The purpose of Melting Pot is to
evaluate the MAPLA by measuring the performance of the
resulting focal population f .

We do this by measuring the per-capita return of the focal
population when used to sample focal players in our test sce-
narios. Note that the learning algorithms only have access to
the raw substrates and not the background populations. This
means that policies sampled from the focal population must
show good zero-shot generalization to unseen test scenarios.

Consider a MAPLA where N separate policies are trained
together in a N -player substrate, and f selects a trained
policy uniformly. In order for f to perform well in test
scenarios, self-play should have adequately explored similar
behavior to that present in the background population.

Our definition of population deliberately penalizes heteroge-
neous specialization. Since policies must be independently
sampled at test-time, the training algorithm cannot control
their joint distribution, and so cannot prescribe a fixed di-
vision of labor. To perform well on test scenarios, trained
agents should be generalists. Division of labor is possible
in Melting Pot, but it works best when it self-organizes at
test time with individuals taking on their roles in response
to the ongoing behavior of others. In the cases where spe-
cialization is most important, successful populations should
feature significant redundancy in order to be robust enough
to do well in Melting Pot.

Melting Pot focuses only on test-time evaluation, and is
agnostic to the method of training. For example, during
training, the substrate can be augmented to give agents priv-

ileged access to the rewards and observations of co-players.
This privileged information is not present in test scenarios,
so policies that rely on it will generalize poorly. But it can
be useful for providing auxiliary targets to improve the train-
ing of internal representations (e.g. “centralized training
and decentralized execution” (Kraemer & Banerjee, 2016;
Lowe et al., 2017; Oliehoek & Amato, 2016)).

4.3. Secondary evaluation metrics

We propose the focal-population per-capita return as a pri-
mary evaluation metric, to test the performance of a learning
algorithm in a novel social situation. This is because, first
and foremost, we want Melting Pot to provide a rigorous
and clearly interpretable evaluation metric that highlights
unsolved problems and compares innovative algorithms to
one another.

However, when evaluating the suitability of trained agents
for a practical application, there will be additional consid-
erations, which can be assessed from secondary evaluation
metrics using the same test scenarios. For example, impacts
on the background population may be an indicator of the
impacts the trained agents might have on humans in the
real world. So we can measure the background-population
per-capita return to see if it is negatively impacted by the
introduction of the focal population. This could be useful
to study whether the joint policy of the focal agents pro-
duces negative externalities—“side effects” that impact the
broader population while sparing the focal population, dove-
tailing well with research on value alignment and AI safety
(Soares & Fallenstein, 2014; Amodei et al., 2016). Or fol-
lowing Perolat et al. (2017), we can measure the inequality
of the background-population individual returns to see if
any benefit or harm arising from having introduced the focal
population is fairly shared, perhaps connecting fruitfully
to beneficial and cooperative AI research agendas (Russell
et al., 2015; Dafoe et al., 2020).

5. Description of the substrates
Fig. 2 provides a rough guide to the strategic and social
intelligence concepts covered by the suite. See the appendix
for additional details that describe the precise setup for all
substrates and test scenarios. Some substrates share com-
mon game mechanics. All * in the Matrix games all share
the same pattern: Players can collect items representing
some number of choices (e.g. defect and cooperate or rock,
paper, and scissors), and when they encounter each other
their inventory is used to dispense rewards according to the
payoff matrix of a classic matrix game.
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Figure 1. Overview of substrates.

5.1. Conflicting greater than corresponding interests

Running with Scissors in the Matrix first appeared in Vezhn-
evets et al. (2020). Two individuals gather rock, paper, or
scissor resources in the environment, and can challenge oth-
ers to a ‘rock, paper scissor’ game, the outcome of which de-
pends on the resources they collected. It is possible (though
not trivial) to observe the policy that one’s partner is starting
to implement, and to take countermeasures. This induces a
wealth of possible feinting strategies. Arena Running with
Scissors in the Matrix extends the game to eight players.

In Capture the Flag teams of players can expand their ter-
ritory by painting the environment, which gives them an
advantage in a confrontation with the competing team. The
final goal is capturing the opposing team’s flag. Payoffs are
common to the entire winning team. King of the Hill has
the same dynamics except the goal is to control the “hill”
region in the center of the map. For both substrates there
are scenarios where agents play with familiar teammates
against unfamiliar opponents as well as scenarios where
ad-hoc teamwork is needed (Stone et al., 2010).

Clean up is a social dilemma where individuals have to bal-

ance harvesting of berries for reward with cleaning a river
that suppresses berry growth if it gets too dirty (Hughes
et al., 2018). As cleaning the river is a public good, individ-
uals are motivated to harvest instead of clean.

In Commons Harvest: Open individuals harvest apples that
fail to regrow if a patch is exhausted. Preserving a patch
requires all agents to show restraint in not harvesting the last
apple (Perolat et al., 2017). Commons Harvest: Closed has
the apples in rooms that can be defended by a single player,
alleviating the risk of others over-harvesting. In Commons
Harvest: Partnership it takes two players to defend a room,
requiring effective cooperation both in defending and in not
over-harvesting.

Prisoner’s Dilemma in the Matrix mirrors the classic matrix
game that exposes tension between individual and collective
reward. In Chicken in the Matrix, both players attempting
to defect leads to the worst outcome for both. These sub-
strates target similar concepts to the Coins game of Lerer
& Peysakhovich (2018), though they are somewhat more
complex—in part because they have more players (eight
versus two).

In Territory: Open individuals can claim a territory for re-
ward by coloring it. They can find a peaceful partition, but
also have the option of irreversibly destroying potentially
rewarding territory rendering it useless for everyone. Terri-
tory: Rooms has segregated rooms that strongly suggest a
partition individuals could adhere to.

5.2. Corresponding greater than conflicting interests

Collaborative Cooking: Impassable is inspired by (Carroll
et al., 2019; Wang et al., 2020)’s work on an Overcooked-
like environment. Players need to collaborate to follow
recipes, but are separated by an impassable kitchen counter
so no player can complete the objective alone. In Collab-
orative Cooking: Passable, players can have access to all
sections of the kitchen, which allows individual players
to sequentially perform all subtasks unilaterally (but less
efficiently).

In Pure Coordination in the Matrix all individuals need to
converge on the same color choice to gain reward when
they encounter each other. Which convention emerges in
a given population is entirely arbitrary, and all players are
indifferent between the possible conventions. In Rationaliz-
able Coordination in the Matrix the choices are of different
values, suggesting an optimal color to converge on.

Bach or Stravinsky in the Matrix and Stag Hunt in the Matrix
focus on coordination. In the former, coordination is tied to
unfairness and “stubbornness” could play a role. In the latter,
coordination is associated with risk for the individual. It
engages similar concepts to Peysakhovich & Lerer (2017)’s
Markov Stag Hunt game, though it is more complex—in part
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Figure 2. Multi-agent concepts engaged by each substrate. Gray ticks represent secondary characteristics. Properties highlighted here are
only intended as a rough guide to the concepts at play in each substrate. They should not be taken as a serious theoretical attempt to
classify multi-agent situations.

due to it being an eight player game (instead of two-player).

Combining the above dynamics, in Allelopathic Harvest,
players can increase the growth-rate of berries by planting
berries in the same color. However, for each player, a differ-
ent berry color is intrinsically more rewarding. This creates
tensions between groups of players and a free-rider problem
between individuals who prefer to consume rather than plant
(Köster et al., 2020).

In Chemistry, individuals control chemical reactions by
transporting molecules around the space. Chemistry:
Branched Chain Reaction requires alternation between two
specific reactions. Combining molecules efficiently requires
coordination, but can also lead to exclusion of players. In
Chemistry: Metabolic cycles, individuals benefit from two
different cyclic reaction networks and must coordinate to
keep them both running.

6. Extending Melting Pot
We want to grow Melting Pot over time and ultimately create
a comprehensive platform where most aspects of social
intelligence can be assessed. To that end, we designed

Melting Pot around the need to establish a scalable process
through which it can be expanded. This led us to consider
not just modular environment components (which we have),
but also a modular process for contributing new scenarios.

A scenario consists of two parts: a substrate, and a back-
ground population. We built substrates on DMLab2D (Beat-
tie et al., 2020) using an entity-component system approach
similar to that of modern game engines like Unity (Unity
Technologies, 2020). Members of the background popula-
tion are RL agents. We call them bots to distinguish them
from the agents in the focal population. A Melting Pot sub-
strate emits events when interactions occur between agents,
or agents and the environment, such as one player zapping
another player or eating an apple. Events can be conditional
on the identities of the players involved or the location where
the interaction occurred.

Our approach to creating background populations involves
three steps: (1) specification, (2) training, and (3) quality
control (Fig. 3). We describe each in turn.

1. Specification: The designer typically starts with an idea
of what they want the final bot’s behavior to look like. Since
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Figure 3. The process for extending Melting Pot.

substrate events provide privileged information about other
agents and the substrate, we can often easily specify reward
functions that induce the right behaviour. This is a much
easier task than what focal agents need to solve—learning
from only pixels and the final reward. However, sometimes
the desired behavior is difficult to specify using a single
reward function. In these cases, we generate background
populations using techniques inspired by hierarchical rein-
forcement learning (Sutton et al., 2011; Schaul et al., 2015;
Sutton et al., 1999); in particular reward shaping (Sutton &
Barto, 2018) and “option keyboard” (Barreto et al., 2019).
We create a basic portfolio of behaviors by training bots that
use different environment events as the reward signal (as
in Horde (Sutton et al., 2011)), and then chain them using
simple Python code. This allows us to express complex
behaviours in a “if this event, run that behaviour” way. For
example, in Clean Up we created a bot that only cleans if
other players are cleaning. These bots had a special network
architecture based on FuN (Vezhnevets et al., 2017), with
goals specified externally via substrate events rather than
being produced inside the agent. See appendix for details.

2. Training: The decision at this stage is how to train the
background population. The thing to keep in mind is that
the bots must generalize to the focal population. To this end,
we chose at least some bots—typically not used in the final
scenario—that are likely to develop behaviors resembling
that of the focal agent at test time. For instance, in Running
With Scissors in the Matrix, we train rock, paper, and scis-
sors specialist bots alongside “free” bots that experience the
true substrate reward function.

3. Quality control: Bot quality control is done by running

10–30 episodes where candidate bots interact with other
fixed bots. These other bots are typically a mixture of famil-
iar and unfamiliar bots (that trained together or separately).
We verify that agents trained to optimize for a certain event,
indeed do. We reject agents that fail to do so.

7. Experiments
To demonstrate the use of Melting Pot, we provide bench-
mark MARL results for a number of agent architectures.

For each agent architecture, we performed 21 training runs—
one for each substrate. Within each training run, we trained
a group of N agents—one for each player in the N -player
substrate. Every agent participated in every training episode,
with each agent playing as exactly one player (selected
randomly on each episode). Each agent was trained for 109

steps. At test time, we set the focal population to be the
uniform distribution over the N agents.

The different architectures we trained are: A3C (Mnih et al.,
2016), V-MPO (Song et al., 2020a), and OPRE (Vezhnevets
et al., 2020). A3C is a well established, off-the-shelf RL
method. V-MPO is relatively new and state-of-the-art on
many single agent RL benchmarks. OPRE was specifically
designed for MARL. We also trained prosocial variants of
all three algorithms, which directly optimized the per-capita
return (rather than individual return), by sharing reward
between players during training. Optimizing for collective
return as a surrogate objective has previously been used
for collaborative games (substrates) and social dilemmas
(Claus & Boutilier, 1998; Peysakhovich & Lerer, 2017),
and our experiments here allow us to investigate whether it
generalizes well.

All agent architectures had the same size convolutional net
and LSTM. The OPRE agent had additional hierarchical
structure in its policy as described in (Vezhnevets et al.,
2020). V-MPO had a pop-art layer (Hessel et al., 2019)
for normalizing the value function. A3C minimized a con-
trastive predictive coding loss (Oord et al., 2018) as an
auxiliary objective (Jaderberg et al., 2016) to promote dis-
crimination between nearby time points via LSTM state
representations (a standard augmentation in recent work
with A3C). See the appendix for additional implementation
details.

We also use two special agents: “exploiters” and “random”.
Each exploiter is an A3C agent trained directly on a single
test scenario, using their individual return as the reward
signal without further augmentation. Exploiters trained for
up to 109 steps. The random agent selects actions uniformly
at random, and ignores input observations. Together, ex-
ploiters and the random agent provide a rough estimate of
the upper and lower bounds (respectively) of performance
on the test scenarios. To contextualize the range of agent
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Figure 4. MAPLA performance scores on test scenarios for each substrate. Rows correspond to the agent training algorithms, columns
to scenarios. PS stands for prosocial, SC for scenario, S-P for self-play score (i.e. the training performance), univ. for universalization
scenario. Note: we did not train prosocial variants on zero-sum substrates since the per-capita return is zero by definition.

returns, we min-max normalize the focal per-capita returns
to get a performance score that is between 0 (for the worst
agent) and 1 (for the best agent). Often the score of 0 corre-
sponds to the random agent and 1 to the exploiter. However,
for some scenarios this is not the case. We discuss the
reasons below.

Fig. 4 presents the full results, showing the score obtained
by each agent on each test scenario. Fig. 5 presents an
overview, showing the average test scenario score for each
substrate. Alongside the total average score, we present Elo
scores (Balduzzi et al., 2018; Hunter et al., 2004), which are
computed separately for competitive substrates and the rest.

On average, the top performing agent was V-MPO (Song
et al., 2020a), followed by OPRE (Vezhnevets et al., 2020),
and A3C (Mnih et al., 2016). All three performed similarly
in mixed-motivation games, but V-MPO outperforms in
competitive games like King of the Hill. However, ranking

agents’ by skill is complicated (Balduzzi et al., 2018), and
dependent on the contribution of each test scenario to the
overall score. Here we did only a simple evaluation which
is far from the only option.

There is scope to dramatically improve performance on the
most challenging substrates. The Collaborative Cooking
substrates proved impossible for these agents to learn, with
no agent obtaining a self-play (training) score above ran-
dom. In Arena Running with Scissors and Capture The
Flag, agents are far below exploiter performance on the test
scenarios.

Exploiters do not always achieve the highest score. In some
cases (Running with Scissors in the Matrix, King of the
Hill), exploiters fail because the scenario bots are strong
opponents and learning to exploit them is hard. Here, the
MAPLAs have the advantage of a gentler curriculum: in self-
play training, all opponents are of a similar skill level, which
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Figure 5. MAPLA performance scores averaged over each substrate’s scenarios. Three columns on the left show: average score per
algorithm; Elo per agent on competitive substrates, and Elo on the rest the suite. Elo is min-max normalised such that 0 corresponds to
lowest performing agent, and 1 to the highest performing one.

ramps up as they all learn. In other cases (Commons Harvest
Open, Clean Up), exploiters fail due to their selfish reward
maximization in games where cooperation is required. In
these cases, a better performance upper bound might be
obtained by exploiters with within-group reward sharing.

Agents often exhibit a degree of overfitting. In Fig. 4 we
see agents with high self-play scores (obtained during train-
ing), but low test-scenario scores. For example, in Bach
or Stravinsky in the Matrix and Stag Hunt in the Matrix,
prosocial OPRE and prosocial A3C achieve a similar self-
play score to regular OPRE and A3C, but obtain a closer to
random score in the test scenarios. This overfitting is due to
prosocial agents only learning cooperation strategies during
self-play training, and so becoming exploitable by defectors
at test time.

Overall, prosocial agents underperformed their selfish coun-
terparts, but the picture is nuanced. Optimizing for per-
capita return can be difficult because it complicates credit
assignment, and creates spurious reward “lazy agent” prob-
lems (Sunehag et al., 2018; Rashid et al., 2018). However,
in the social dilemma Clean Up, only prosocial agent archi-
tectures managed to learn policies that were significantly
better than random. This suggests that doing well on Melt-
ing Pot will require agents to be able to contingently balance
selfishness and prosociality.

The universalization scenarios can diagnose issues with the
of division of labour. For example, in Chemistry: Metabolic
Cycles, OPRE performs well in self-play and other scenarios,
but has low universalization scores. This means that some
agents in the population learned specialized policies that
expect other agents to behave in a particular way. Although
such division of labour can create efficiency, it also makes

populations less robust.

8. Conclusion
Here we have presented Melting Pot: an evaluation suite
for MAPLAs that evaluates generalization to novel social
situations. Melting Pot engages with concepts that have
long been neglected by research in artificial intelligence.
Solutions to the problems posed here seem to require agents
that understand trust, generosity, and forgiveness, as well as
reciprocity, stubbornness, and deception.

Melting Pot is scalable. We have used reinforcement learn-
ing to reduce human labor in environment design. This is
how we rapidly created the diverse set of ∼ 85 scenarios
considered so far. Since Melting Pot will be openly released,
it can be extended by any interested researchers. In addi-
tion, since the effectiveness of the bots in test scenarios
is itself advanced by improvements in the performance of
learning systems, Melting Pot will likewise improve over
time by reincorporating the latest agent technology into new
background populations and test scenarios.
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Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. In Advances in neural information processing
systems (NeurIPS), pp. 4190–4203, 2017.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi,
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