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Abstract

We employ constraints to control the parameter
space of deep neural networks throughout training.
The use of customized, appropriately designed
constraints can reduce the vanishing/exploding
gradients problem, improve smoothness of clas-
sification boundaries, control weight magnitudes
and stabilize deep neural networks, and thus en-
hance the robustness of training algorithms and
the generalization capabilities of neural networks.
We provide a general approach to efficiently in-
corporate constraints into a stochastic gradient
Langevin framework, allowing enhanced explo-
ration of the loss landscape. We also present
specific examples of constrained training meth-
ods motivated by orthogonality preservation for
weight matrices and explicit weight normaliza-
tions. Discretization schemes are provided both
for the overdamped formulation of Langevin dy-
namics and the underdamped form, in which mo-
menta further improve sampling efficiency. These
optimization schemes can be used directly, with-
out needing to adapt neural network architecture
design choices or to modify the objective with reg-
ularization terms, and see performance improve-
ments in classification tasks.

1. Introduction

We study stochastic training methods based on Langevin
dynamics combined with algebraic constraints. Our general
framework allows for incorporating constraints into standard
training schemes and sampling methods for neural networks.
Constraints provide direct control of the parameter space of
a model and hence afford a means to improve its generaliza-
tion performance. As applications, we consider magnitude
control and orthogonality of neural network weights.
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Current approaches to enhance the generalization perfor-
mance of overparameterized neural networks consist of both
explicit and implicit regularization techniques (Neyshabur
et al., 2015). Examples of the former are L1 (Williams,
1995; Tibshirani, 1996) and L2 (Hoerl & Kennard, 1970)
regularization, which modify the loss by adding a parame-
ter norm penalty term. Batch normalization (BatchNorm)
(Ioffe & Szegedy, 2015) is a technique that causes an im-
plicit regularization effect. BatchNorm can be viewed as
tantamount to a constraint imposed on the network’s pa-
rameters during training. Although BatchNorm is widely
used, explanations for the method’s success remain elusive
(Santurkar et al., 2018; Yao et al., 2019). The reliance on
increasingly complex strategies does little to enhance the
explainability of neural networks, so robust simplification of
all aspects of training is desirable. The constrained approach
proposed in this paper provides a conceptually straightfor-
ward and interpretable framework that offers direct control
of parameter spaces, without requiring modifications to the
neural network architecture or objective. The transparency
of this approach allows for drawing a direct connection be-
tween the use of weight constraints and the generalisation
performance of the resulting neural network.

In neural network (NN) training one aims to minimize the
loss LX(✓) for parameters ✓ 2 Rn and data X . Constraints
can be seen as limiting cases of penalty-based regularization
which replaces minimization of the loss LX(✓) by that of
the augmented loss L

c

X
(✓) = LX(✓) + 1

"2
g(✓)2, where

g(·) is a suitable smooth function of the parameters. In the
limit " ! 0, these penalty terms introduce an undesirable
stiffness and consequent stability restriction in gradient-
based training, which limits the choice of step size (see
Figure 5 for an illustration). It is therefore natural to relate
the above system to a constrained optimization task subject
to g(✓) = 0 (see Section 3).

A popular NN training scheme is stochastic gradient descent
(SGD). SGD may be improved by incorporating momenta
(Sutskever et al., 2013) and additive noise (Welling & Teh,
2011; Wenzel et al., 2020), or more generally by embedding
the loss gradient in a Langevin dynamics (LD) framework
(Cheng et al., 2017). We will combine the resulting dis-
cretized stochastic differential equation (SDE) approach
with constraints (Sec. 4). The benefit of using constrained
SDEs for NN training is illustrated in Figure 1, where the
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Figure 1. Classifiers obtained using different optimizers: SGD (1st column), SGD with weight decay (WD) (2nd col.), constrained SGD
(C-SGD) (3rd col.), SGLD (Welling & Teh, 2011) (4th col.), constrained SGLD (5th col.) using a 500-node single hidden layer perceptron
for a spiral binary classification problem. Top and middle row show training and test data points, respectively, and decision boundaries of
the trained classifier. Bottom row shows loss curves. Hyperpar. settings: all: h = 0.05, 2% subsampling; SGD with WD = 1e-4; C-SGD:
r0 = 1, r1 = 5 (see Eq. (2)); SGLD and C-SGLD: ⌧ = 5e-5 (see Eq. (7)). We observe that although the use of WD can stabilize the test
loss, it does not improve test accuracy (2nd col.). In contrast, our constrained approach (3rd col.) maintains a stable test loss throughout
training and improved generalization performance. The use of additive noise (or low temperature) in combination with the constraints
(C-SGLD, 5th col.) strongly outperforms standard SGD: 91.7% vs. 81% test acc., resp., and obtains smoothened classification boundaries.

combination of using additive noise and magnitude con-
straints (as defined by Eq. (2)) leads to smoother classifica-
tion boundaries and significantly enhanced generalization
performance (compare the 5th column, the constrained SDE
approach, with column 1, standard SGD). These observa-
tions are maintained over 100 runs (see Fig. 2, Fig. 3, and
Table 1). We distinguish between two different types of
smoothness of the resulting classifiers: first, the curvature of
the classification boundary and second, the sharpness of the
transition between prediction regions belonging to different
classes. As shown in Table 1 and Fig. 3 the use of mag-
nitude constraints throughout training generates classifiers
which exhibit both types of smoothness. The use of additive
noise throughout training further reduces the curvature of
the classification boundary. In contrast, the use of weight
decay is not sufficient for SGD to obtain the same levels of
smoothness. See Appendix D for further numerical details.

Table 1. Accompanies Fig. 1 and 2, with same hyperparameter set-
tings. We present estimates of the mean, standard deviation (std),
and maximum (max) curvature of classifier boundaries obtained
using different optimizers evaluated over 100 runs after training for
a fixed number of 10,000 epochs. We computed our curvature esti-
mates using the method described in Appx. D, which we suggest
is indicative of the curvature of the locally smoothed classification
boundary and allows us to compare the relative curvature estimates
of classifiers trained using different optimizers. The combined use
of constraints and additive noise (C-SGLD) obtains much lower
curvatures compared to SGD with weight decay (WD).

Curvature Approximation
Optimizer Mean Std Max
SGD 519 4.33 ·104 3.26·108
SGD with WD 51.1 3.80 ·103 1.14 ·107
C-SGD 9.38 317 5.58 ·105
SGLD 8.73 189 6.27 ·105
C-SGLD 6.08 40.8 1.43 ·105
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Figure 2. Same data and hyperparameter settings as for Fig. 1, but these results are averaged over 100 runs. Constrained approaches,
C-SGD and C-SGLD (with additive noise), clearly outperform standard SGD and SGD with WD in terms of test loss and test accuracy.

Figure 3. Same data and hyperparameter settings as in Fig. 1 and 2. We show gradients of the prediction along horizontal (y = 0) and
vertical cross-sections (x = 0). The results are averaged over 100 runs and evaluated at 10,000 epochs. Our constrained approach
C-SGLD exhibits less sharp transitions between classes than SGD (middle/right plot). The size of the constraint directly controls this
property (this is illustrated in the left plot for the input layer with constraint size r0 in Eq. (2) for all input layer weights).

Apart from such magnitude constraints, the general frame-
work provided in this paper allows for straightforward incor-
poration of other constraints. Another specific example we
consider is orthogonality of the weight matrix. We provide
detailed algorithms for both of these purposes and for a
general constraint in a Langevin dynamics setting (Sec. 4
and Appendix B) and show improved generalization perfor-
mance on classification tasks (Sec. 5).

Concretely, our contributions are:

• We introduce the use of constrained stochastic differ-
ential equations for neural network training.

• We provide a general mathematical framework that
allows for implementation of new constraints.

• We propose specific constraints, magnitude control and
orthogonality of neural network weights, and provide
algorithms to accompany these. The benefit of using
these is illustrated for several networks and datasets
and is shown to outperform soft constraints (such as
weight decay or orthogonal regularization).

• We provide PyTorch code to support our algorithms,
which can be found on https://github.com/
TiffanyVlaar/ConstrainedNNtraining

2. Background and Related Work

Neural network loss landscapes are notoriously difficult to
characterize rigorously due to their high-dimensionality and
non-convexity. Although they appear to contain multiple,
roughly equivalent local minima which exhibit nearly zero
training loss (Choromanska et al., 2015; Kawaguchi, 2016;
Keskar et al., 2017), not all these minima obtain the same
generalization performance (Chaudhari et al., 2017; Wu
et al., 2017). The training of deep neural networks is hyper-
sensitive to e.g., the choice of initialization (Sutskever et al.,
2013), optimizer (Wilson et al., 2017), and hyperparameter
settings (Jastrzȩbski et al., 2018), including learning rate
scheduling (Loshchilov & Hutter, 2017; Smith, 2017). With-
out careful hyperparameter tuning, the loss landscape may
not be explored sufficiently by the optimization scheme,
thus resulting in a reduced generalization performance of
the trained network (Zhang et al., 2015; Keskar et al., 2017).
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Sampling methods, which use small amounts of additive
noise (Leimkuhler et al., 2019; Wenzel et al., 2020), have
been found to enhance exploration and speed the approach
to ‘good’ minima, which enhance their generalization to
nearby data sets. Hence, we incorporate the flexibility to
use additive noise to enhance exploration in our optimization
schemes by taking a constrained SDE approach to neural
network training. We propose a general mathematical frame-
work for this purpose and consider the ergodic properties of
the idealized SDEs associated with gradient schemes, which
may help these methods to ensure robust exploration of a
useful range of parameters (Sec. 4). We further propose
specific constraints (Sec. 3) and show that the use of these
leads to enhanced performance compared to soft constraints,
such as weight decay or orthogonal regularization (Sec. 5).

Magnitude control of neural network weights. In this
work we consider a circle constraint, which limits the mag-
nitude of the size of the weights (we typically leave the bi-
ases unconstrained). A corresponding soft constraint, which
adds a penalty term to the loss, is weight decay or L2 reg-
ularization (Hoerl & Kennard, 1970). We also propose a
sphere constraint, which is analogous to max-norm (Sre-
bro & Shraibman, 2005; Srivastava et al., 2014) as used
in some regularization procedures. However, applying this
constraint in combination with additive noise does yield a
distinctive training method.

Orthogonality of the weight matrix. The concept of or-
thogonality has surfaced several times in the recent neural
network literature. Orthogonal matrices have properties
(norm preservation, unit singular values) which are thought
to provide enhanced numerical stability (Zhou et al., 2006;
Rodrı́guez et al., 2017). An orthogonal matrix Q 2 Rr⇥s

(i.e., QT
Q = Is) is an isometry: kQzk = kzk 8z 2 Rs.

Orthogonal weight matrices were shown to mitigate the van-
ishing/exploding gradient problem in RNNs (Pascanu et al.,
2013; Arjovsky et al., 2016; Vorontsov et al., 2017) and are
developing a growing following in the CNN literature as
well (Rodrı́guez et al., 2017; Bansal et al., 2018; Huang
et al., 2018; Li et al., 2019). Orthogonal initialization is
linked to achieving dynamical isometry (Saxe et al., 2013;
Pennington et al., 2017; 2018), which can accelerate train-
ing. Xiao et al. (2018) were able to train 10,000 layer vanilla
CNNs, without learning rate decay, BatchNorm or residual
connections, by using initial orthogonal convolution kernels.

Methods for enforcing orthogonality during training include
the use of ‘soft’ constraints which add a restraint term to the
loss (Brock et al., 2017; Xie et al., 2017; Bansal et al., 2018)
and hard constraints based on optimization over Stiefel mani-
folds (Huang et al., 2018; Jia et al., 2019). The latter requires
repeated singular value decomposition of high-dimensional
matrices during training, which is costly. Int his work we
propose a straightforward algorithm to incorporate orthonor-

mality constraints for rectangular matrices within our NN
training framework, with manageable additional cost. We
make no empirical claims over other manifold optimization
methods, but rather provide a framework for network opti-
mization that is theoretically sound, flexible enough to incor-
porate new constraints, and demonstrates good properties
relative to standard SGD training or simple soft constraint
approaches.

Constrained SDEs. In this work we focus on optimization
schemes for neural networks using constrained Langevin
dynamics in both its overdamped and underdamped (with
momentum) form. A discussion of the properties of uncon-
strained Langevin dynamics in its overdamped and under-
damped forms was studied in Pavliotis (2014). We consider
the specific issues associated to the extension of the stan-
dard framework to constrained SDEs. The ergodic prop-
erties of constrained Langevin (in the absence of gradi-
ent noise) were previously studied in Lelièvre et al. (2010)
(overdamped) and Lelièvre et al. (2012) (underdamped). Ex-
ponential convergence to equilibrium for constrained over-
damped Langevin is a consequence of a Poincaré inequality.
Poincaré inequalities on manifolds and their use in the anal-
ysis of diffusion processes are presented in Bakry et al.
(2013), Chapter 4. Finally, Langevin dynamics discretiza-
tions are studied in Faou & Lelièvre (2009); Lelièvre et al.
(2010) (overdamped) and Lelièvre et al. (2012); Leimkuhler
& Matthews (2016) (underdamped).

An alternative to the use of constrained SDEs are con-
strained Hamiltonian Monte Carlo (HMC) methods (Gra-
ham & Storkey, 2017; Zappa et al., 2018; Lelièvre et al.,
2020). Although HMC schemes have nil sampling bias if
fully converged, their acceptance rates depend on stepsize
and system size (Beskos et al., 2013; Bou-Rabee & Sanz-
Serna, 2018). In practice SDE-based methods are often
preferred in many high-dimensional sampling calculations
compared to HMC schemes as they are found to offer greater
overall efficiency for a fixed computational budget.

3. Neural Networks with Constraints

Imposing good priors on neural networks is known to im-
prove performance, e.g. convolutional neural networks
(CNNs) suit image datasets better than overparameterized
fully connected NNs, despite being a subset of the latter
(d’Ascoli et al., 2019). Using constraints also arises nat-
urally in the control of vanishing/exploding gradients. In
Appendix C we illustrate this and also provide a connection
between the magnitude of the weights and the smoothness
of the interpolant. These observations suggest the use of
constraints to control the magnitudes of individual weights
and/or to limit the growth of gradients in deep networks. We
present various approaches in this section.
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We consider a L-layer neural network, which has parameters
✓ 2 Rn, with a weight matrix W

` 2 Rd
`⇥d

`�1

and bias
vector b` 2 Rd

`

for each layer `. To allow for inequality
constraints, we define slack variables vector ⇠ 2 Rn

⇠

and
consider variable q = (✓, ⇠) 2 Rd, where d = n+ n

⇠. The
constraint manifold is

⌃ = {q 2 Rd | g(q) = 0}, g : Rd ! Rm
. (1)

We partition ✓ = (✓u, ✓c) into unconstrained ✓
u 2 Rn

u

and constrained ✓
c 2 Rn

c

parameters. We typically only
constrain the neural network weights, not the biases.

Circle constraints: In a circle constraint, we restrict each
parameter in ✓

c as |✓c
i
|  ri, where ri > 0 is given. We

thus introduce m = n
c = n

⇠ slack variables ⇠i and define

gi(q) = |✓c
i
|2 + |⇠i|2 � r

2
i

1  i  m. (2)

If q 2 ⌃, then the parameters in ✓
c are bounded as desired.

Sphere constraints: In a similar way, we could opt to re-
strict the sums of squares of weights associated to the input
channels of any node. For layer `, we denote the i-th row
of the weight matrix W

` as ✓
c,i, set ✓u = b

`, introduce
m = d

` slack variables ⇠i, and define as sphere constraint:

gi(q) = k✓c,ik2 + |⇠i|2 � r
2
i
, 1  i  m, (3)

where k · k denotes the Euclidean norm. Sphere constraints
are analogous to max-norm (Srebro & Shraibman, 2005;
Srivastava et al., 2014), but have been unexplored in combi-
nation with additive noise. We leave this for future work.

Orthogonality constraints: We set ✓u = b
`, and define as

orthogonality constraint for layer ` with n
` parameters

g(q) =

( �
W

`
�T

W
` � In`�1 if n`�1  n

`
,

W
`
�
W

`
�T � In` otherwise.

(4)

As the matrix equality g(q) = 0 is symmetric, it corresponds
to m = s(s+ 1)/2 constraints, where s = min{nl�1

, n
l}.

4. Constrained SDEs and their Discretization

In this chapter we describe SDE-based methods for con-
strained neural network training. We first introduce standard
(unconstrained) Langevin dynamics in Section 4.1. Then in
Section 4.2 we discuss properties of constrained Langevin
dynamics (LD), such as ergodicity and exponential conver-
gence to equilibrium, which ensures the effectiveness of
our schemes as training methods. In Section 4.3 we dis-
cuss the discretization of constrained Langevin dynamics in
both the overdamped and the underdamped case, where the
use of momenta allow us to accelerate the training process.
The choice of discretization scheme will strongly affect the
efficiency and robustness of the resulting training method.

Hence, to allow for ease and efficacy of implementation of
our methods, we describe the most appropriate discretiza-
tion schemes in detail in Appendix B for both the general
setting and for the specific constraints we consider in this
paper, i.e., circle and orthogonality constraints.

4.1. Langevin Dynamics

Consider the unconstrained Langevin system of SDEs

d✓t = pt dt, (5)

dpt = (�rL(✓t)� �pt) dt+
p

2�⌧ dWt,

with momenta p, parameters ✓, loss L(✓), temperature hyper-
parameter ⌧ � 0, friction hyperpar. �, and d-dim. Wiener
process W (Leimkuhler & Matthews, 2015). Under some
mild assumptions, Langevin dynamics is provably ergodic,
which means that its solutions sample the distribution:

⇢ / exp[�(L(✓) + kpk2/2)/⌧ ]. (6)

The temperature hyperparameter ⌧ , which controls the addi-
tive noise level, provides a direct connection between a pure
optimization and sampling approach. The standard Bayes
posterior is recovered for ⌧ = 1, whereas setting ⌧ = 0
will provide maximum a posteriori (MAP) point estimates.
The range of values in between corresponds to an artifi-
cially sharpened posterior, where as ⌧ ! 0, the posterior
probability mass is confined closer and closer to the modes
of the distribution.1 Using low temperatures (Leimkuhler
et al., 2019; Wenzel et al., 2020), sampling methods have
been found to enhance exploration and speed the approach
to ‘good’ minima, which enhance their generalization to
nearby data sets. In this work we therefore consider a con-
strained SDE approach to neural network training to allow
for the incorporation of both constraints and additive noise.

4.2. Constrained Langevin: Ergodicity and Central

Limit Theorem.

The neural network loss function naturally extends to the
variable q = (✓, ⇠) 2 Rd taking the form V (q) = L(✓)
(note that in particular r⇠V = 0). The first continuous
training method we consider is the constrained overdamped
Langevin2 system

dqt = �rV (qt) dt+
p
2⌧ dWt �rqg(qt) d�t, (7)

0 = g(qt),

1Techniques such as annealing or simulated tempering vary
⌧ throughout training to enhance the optimization process (Kirk-
patrick et al., 1983; Marinari & Parisi, 1992).

2Unconstrained stochastic gradient overdamped Langevin dy-
namics is analogous to the algorithm known as SGLD (Welling &
Teh, 2011) in the machine learning literature. In SGLD one adds
an additional additive noise term (typically with constant variance)
to the dynamics. For a decaying sequence of stepsizes hn ! 0 one
expects to eventually sample from a known stationary distribution.
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where W is a d-dim. Wiener process, ⌧ � 0 is the tempera-
ture hyperparameter, and �t is an Rm-valued vector of La-
grange multipliers. Provided the initial configuration q0 sat-
isfies the constraint, any trajectory qt of (7) remains on the
constraint manifold ⌃ defined in Eq. (1). For ��1 = ⌧ > 0,
(7) is equivalent to an underlying ergodic (unconstrained)
SDE (see Appx. A.1) with unique invariant measure

d⌫⌃ = Z
�1

e
��V (q) d�⌃, Z =

Z

⌃
e
��V (q) d�⌃, (8)

where �⌃ is the surface measure on ⌃.

Ergodicity ensures that averages of observables with respect
to ⌫⌃ can be approximated by time averages of trajectories
of (7). To ensure the practical use of (7) as a training method,
we need the convergence to occur in a reasonable time.
Thanks to the reversibility of the underlying SDE (see Appx.
A.1), exponential convergence to equilibrium occurs as a
consequence of a Poincaré inequality for ⌫⌃ (see Appx. A.2,
A.3 and Bakry et al. (2013)). We provide a summary of the
results here and refer to Appx. A for more details.

A Poincaré inequality holds under a curvature-dimension
assumption: there exists ⇢ > 0 such that

CD(⇢,1) : Ricg + �r2
gV � ⇢g, (9)

in the sense of symmetric matrices. The terms in (9) rely
on the structure of ⌃ as a Riemannian manifold: g is the
Riemannian metric, Ricg is the Ricci curvature tensor and
r2

gV is the Hessian of V on the manifold. Under (9) we
have the following result ((Bakry et al., 2013), Appx. A.2).
Theorem 4.1 Assume that there exists ⇢ > 0 and N > n

such that CD(⇢, N) holds. Then ⌫⌃ satisfies a Poincaré
inequality: there exists a constant L > 0 such that
Z

⌃

���(q)� h�i⌫⌃

��2 d⌫⌃(q) 
1

2L

Z

⌃

��⇧(q)r�(q)
��2 d⌫⌃

8� 2 H
1(⌫⌃), (10)

where ⇧(q) is the projection onto the cotangent space T
⇤
q
⌃

Eq. (A-8) and H
1(⌫⌃) is the space of functions with square

⌫⌃-integrable gradients Eq. (A-7).

Consequences of Theorem 4.1 are the exponential conver-
gence and a central limit theorem (CLT) for the convergence
in Eq. (A-2) (see Appx. A.3).
Corollary 4.2 If (9) holds then
Z

⌃

��E(�(qt) | q0)� h�i⌫⌃

��2 d⌫⌃(q0)  C(�)e�2L/�t

8� 2 H
1(⌫⌃), (11)

where C(�) depends only on �. Furthermore we have the
following convergence in law:

p
T
�
h�iT � h�i⌫⌃

�
! N (0,�2

�
) as T ! 1,

where the asymptotic variance �
2
�

is bounded as

�
2
�
 �

L

R
⌃

���� h�i⌫⌃

��2 d⌫⌃.

In Rn assumption (9) is equivalent to convexity of V , which
is known to be too strong a requirement (a confining as-
sumption is sufficient, see e.g. Lelièvre & Stoltz (2016)).
Although (9) can certainly be weakened, the above results
ensure that provided the curvature of the manifold is well
behaved, sampling on ⌃ has similar properties as on a flat
space.

Introducing momenta p leads to constrained underdamped
Langevin dynamics, the 2nd order counterpart of Eq. (7)

dqt = pt dt, 0 = g(qt), (12)

dpt = (�rV (qt)� �pt) dt+
p
2�⌧ dWt �rg(qt)d�t,

where � is the friction hyperparameter. The constraint in-
duces a cotangency condition: p 2 T

⇤
q
⌃, where T

⇤
q
⌃ =

{p 2 Rd | rT
g(q)p = 0} is the cotangent space of the

manifold ⌃. The corresponding phase space is the cotan-
gent bundle T

⇤⌃ = {(q, p) | q 2 ⌃, p 2 T
⇤
q
⌃}. Given

an initial pair (q, p) 2 T
⇤⌃, any trajectory (qt, pt) of (12)

stays on T
⇤⌃ for all time.

(12) is equivalent to an underlying ergodic SDE, whose
invariant measure is dµ = e

��H(q,p)d�T⇤⌃, with Hamil-
tonian H(q, p) = V (q) + 1

2p
T
p and Liouville measure of

the cotangent bundle �T⇤⌃ (Lelièvre et al., 2012). Based on
the result for the unconstrained case, we expect exponential
convergence to equilibrium also to hold here, but will leave
this technical proof (e.g. based on hypocoercivity (Villani,
2009; Lelièvre & Stoltz, 2016)) for future work.

4.3. Discretization of Constrained Langevin Dynamics.

The simplest iteration scheme qn 2 ⌃ 7! qn+1 2 ⌃ for
constrained overdamped Langevin dynamics (7) consists of
an Euler–Maruyama step followed by projection onto the
constraint manifold ⌃. The best choice for the projection is
constraint-specific.

For circle constraints we suggest orthogonal projection,
which is both explicit and robust (we describe this in detail
in Appx. B.3). For orthogonality constraints, we derive
an efficient quasi-Newton scheme to solve the non-linear
system for the projection step (Appx. B.5). We present the
resulting training scheme in Algorithm 1, where we denote
Q = W

` if n`  n
`�1 and Q = (W `)T otherwise, and

present one training iteration Qn 2 ⌃ 7! Qn+1 2 ⌃. Fur-
ther, we denote h as the stepsize, G(Q) = rQV (Q) and G̃

the gradient of the loss evaluated on a randomly subsampled
partial data set. Rn is an independent standard random nor-
mal matrix of the same size as Q. The initialization must be
done with care: the constrained parameters and the potential
slack variable must satisfy the constraint initially.
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Algorithm 1 Orthog. constraint overdamped Langevin
Every step:

Q
(0) = Qn � hG̃(Qn) +

p
2⌧hRn,

for k = 0 to K � 1 do

Q
(k+1) = Q

(k) � 1
2Qn

�
(Q(k))TQ(k) � Is

�
,

end for

Qn+1 = Q
(K).

For underdamped Langevin dynamics a common way of
building discretization schemes is via the use of splitting
methods (Leimkuhler & Matthews, 2016). For the con-
strained underdamped Langevin system (12) an ABO split-
ting strategy under 0 = g(qt), 0 = rqg(qt)pt gives:

A: dqt = pt dt, dpt = �rqg(qt) d�t,

B: dqt = 0, dpt = �rqV (qt) dt�rqg(qt) dµt, (13)

O: dqt = 0, dpt = ��pt dt+
p

2�⌧ dWt �rg(qt) d⌫t,

In the specific case ⌧ = 0 and by re-scaling µ = e
��h

/h

and �t = h
2, an OBA sequence is equivalent to the standard

PyTorch form of SGD with momentum µ and stepsize �t

(Paszke et al., 2017; Leimkuhler et al., 2019). As alternative
one could use a symmetric splitting method, e.g. BAOAB
method (Leimkuhler et al., 2016), but this would lose its
accuracy order advantage in the presence of gradient noise.

In (13) the B and O components can be solved exactly (in
law) while the A component can be approximated using a
standard scheme for constrained ODEs (e.g. SHAKE or
RATTLE (Leimkuhler & Reich, 2004)[Chap. 7]). Impor-
tantly, the A component does not involve the evaluation of
the gradient. For circle constraints the A step can be solved
explicitly and the corresponding algorithm is provided in
detail in Appendix B.4. For orthogonality constraints all
details are provided in Appendix B.6, but we will provide
the algorithm here. For Q 2 ⌃, the projection onto the
cotangent space T

⇤
Q
⌃ is defined as ⇧Q : Rr⇥s ! Rr⇥s,

P̄ 7! ⇧QP̄ = P̄ � 1

2
Q(P̄T

Q+Q
T
P̄ ). (14)

We initialize the parameters and momenta (using projec-
tion (14)) to obey the constraint. Then the ABO steps
(Qn, Pn) 2 T

⇤⌃ 7! (Qn+1, Pn+1) 2 T
⇤⌃ are given by

Algorithm 2, where G̃(Q) is the gradient of the loss evalu-
ated on a subset of the data. More details in Appx. B.

5. Numerical Experiments

The use of constraints can enhance generalization perfor-
mance. We support this claim by comparing the perfor-
mance of neural network architectures trained using the con-
strained approaches described in this paper to nets trained
using unconstrained SGD. We typically set ⌧ = 0 and use

Algorithm 2 Orthog. constraint underdamped Langevin
Every step:

Q
(0) = Qn + hPn,

for k = 0 to K � 1 do

Q
(k+1) = Q

(k) � 1
2Qn

�
(Q(k))TQ(k) � Is

�
,

end for

Qn+1 = Q
(K)

, P̄n+1 = Pn + 1
h

�
Qn+1 �Q

(0)
�
,

Pn+1 = ⇧Qn+1 P̄n+1

P̄n+1 = Pn � hG̃(Qn),
Pn+1 = ⇧Qn P̄n+1,

Pn+1 = e
��h

Pn +
p
⌧(1� e�2�h)Rn,

Pn+1 = ⇧Qn P̄n+1

(A)

(B)

(C)

equivalent learning rates to present a fair comparison be-
tween constrained and unconstrained approaches. We de-
note our circle and orthogonal Constrained overdamped
Langevin Algorithms as c-CoLA-od and o-CoLA-od, re-
spectively. We compare underdamped variants (CoLA-ud)
with SGD with momentum (SGD-m).

5.1. Orthogonality Constraints

In Fig. 4 we want to train a multi-layer perceptron (MLP)
with p hidden layers on a tightly wound spiral binary clas-
sification problem (Fig. D1) and compare the performance
of SGD with our orthogonality-preserving overdamped
Langevin method o-CoLA-od. For SGD we show results
for i) standard PyTorch initialization, ii) orthogonal initial-
ization, and iii) orthogonal regularization (‘soft constraint’),
where a penalty term is added to the loss to encourage or-
thogonality of the NN weight matrices. Our o-CoLA-od
method clearly outperforms all of these variants in terms
of test accuracy for MLPs with more than 3 hidden layers.
In Appx. D (Fig. D2) we show that the use of a small
temperature perturbation can speed up training even further
and slightly increase the test accuracy. The performance of
the soft constraint approach can be somewhat improved by
lowering the stepsize, yet cannot match the performance of
o-CoLA-od (see Figure 5). This illustrates the undesirable
stiffness introduced into the system by using penalty-based
regularization. The use of o-CoLA-od also removes the
need to tune an additional parameter (the penalty strength).

For a ResNet-34 architecture with BatchNorm and learning
rate (LR) decay on CIFAR-10 (Krizhevsky & Hinton, 2009)
data our underdamped orthogonal constrained method, with-
out weight decay (WD) significantly outperforms SGD-m
without WD (Fig. 6). The overdamped case is presented in
the supplement, Fig. D3. In future work we will explore
the nuances of combining orthogonality constraints with
BatchNorm, residual connections and LR decay.
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Figure 4. Test acc. of MLPs with p-number of 100-node hidden layers (HL), ReLU activation. The MLPs are trained on a 4-turn spiral
dataset (Fig. D1) using SGD with standard initialization (1st column), SGD with orthogonal initialization (2nd col.), SGD with orthogonal
regularization (‘soft constraint’) by adding a penalty term with strength � to the loss (3rd col.), and o-CoLA-od with ⌧ = 0 (4th col.).
For the orthogonal regularization approach and o-CoLA-od we constrain weights in all layers, apart from input and output layers. We
set stepsize h = 0.1 for all methods and use 5% subsampling. We found the optimal penalty strength � = 0.05 for the orthogonal
regularization method through line search. Results are averaged over 10 runs. We observe that our o-CoLA-od method significantly
outperforms unconstrained SGD and SGD with a soft constraint for MLPs with more than 3 hidden layers.

5.2. Circle Constraints

We evaluate our circle constrained c-CoLA-ud method on
the Fashion-MNIST data set (Xiao et al., 2017). We reduce
the amount of training data to 10K samples and use the
remaining 60K samples as test data. c-CoLA-ud clearly
outperforms SGD-m in terms of both test accuracy and test
loss for a 1000-node single hidden layer perceptron (see
Fig. 7). The lower test loss of c-CoLA-ud is maintained
during training and the method shows no signs of overfitting,
thus eliminating the need for early stopping. Even with
weight decay, SGD-m is outperformed by its constrained
counterpart (for more detailed hyperparameter studies see
Appx. D). We also show that a small transformer (Vaswani
et al., 2017) with 2 encoder layers (each with 2-head self-
attention and 200-node feed-forward network) trained using
c-CoLA-ud achieves a lower validation loss on NLP datasets
than its unconstrained counterpart, SGD-m (Table 2).

6. Conclusion

We provide a general framework that can be used to directly
influence the parameter space of deep neural networks. The
constrained SDE-based algorithms described in this paper
allow for the use of additive noise to enhance exploration
but can also be used directly in combination with standard
SGD approaches. We provide a mathematical framework to
study these regularized training methods as discretizations
of constrained Langevin dynamics and provide detailed
discretization schemes (see Appendix B). As specific ex-
amples of constraints we consider circle and orthogonality
constraints, which obtain improved generalization perfor-
mance on classification tasks compared to unconstrained
SGD and soft constraint approaches. Further uses of our
general framework are left for future work.

Table 2. Minimum val. loss on Penn Treebank data (batchsize
1024) (Marcus et al., 1993) and Wikitext-2 (batchsize 128) (Merity
et al., 2017) using a transformer trained using c-CoLA-ud or SGD-
m. Hyperpar. c-CoLA-ud: h = 0.4, r = 0.5, rL = 0.1, rN =
1, rA = 1, ⌧ = 0, � = 0.5 (Treebank) and � = 1 (Wikitext-2),
where the subscripts L,N,A represent the radii belonging to the
linear, norm and self- attention layers respectively. The transformer
trained using c-CoLA-ud obtains lower validation losses. Studies
with weight decay are provided in the supplement.

Optimizer Penn Treebank Wikitext-2
c-CoLA-ud 4.81 5.09

SGD h = 0.1
mom = 0.7 4.87 5.13
mom = 0.8 4.83 5.13
mom = 0.9 4.84 5.13

SGD h = 0.2
mom = 0.7 4.83 5.13
mom = 0.8 4.83 5.14
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Figure 5. Same set-up as for Figure 4. MLPs with varying numbers of hidden layers (HL) were trained using o-CoLA-od with h = 0.1
(right-most) and using SGD with a penalty term added to the loss (results are presented in the 1st three columns with varying stepsizes
h and penalty strengths �). Results are averaged over 10 runs. We illustrate that the use of a penalty-based soft constraint introduces
an undesirable stiffness into the system, needing the stepsize to be lowered to improve performance and to allow for the use of larger
penalty strengths. The soft constraint approach is unable to reach the same performance as our o-CoLA-od method (right-most) and its
performance is heavily dependent on the choice of penalty strength and step size.

Figure 6. Train (left) & test (middle) loss and test accuracy (right) averaged over 5 runs of a ResNet-34 with BatchNorm trained using
SGD-m vs. o-CoLA-ud with ⌧ = 0 on CIFAR-10. For SGD we initially use h = 0.1 and decay by a factor 10 every 50 epochs (indicated
by the vertical black dotted lines). We set momentum = 0.9 and present results with and without WD. o-CoLA-ud (with � = 0.5) did not
use WD. Its learning rate was re-scaled to match the parameters of SGD-m and used the same LR schedule. The o-CoLA-ud method
without weight decay strongly outperforms SGD-m without weight decay.

Figure 7. Test loss (left) and test accuracy (right) averaged over 5 runs of a 1000-node SHLP trained using SGD-m vs. c-CoLA-ud on
Fashion-MNIST (batchsize 128, number of training data samples reduced to 10K). After a line search we chose the best performing
hyperparameter setting for SGD, namely h = 0.1,mom = 0.8, and varied the amount of weight decay (WD). Standard deviations are
provided in the supplement. Hyperparameters c-CoLA-ud: h = 0.3, � = 1, r0 = 0.05, r1 = 0.1, ⌧ = 0. Due to the small training
dataset size both methods quickly reached 100% training accuracy, but c-CoLA-ud is superior in its test loss and test accuracy.
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Lelièvre, T. and Stoltz, G. Partial differential equations
and stochastic methods in molecular dynamics. Acta
Numerica, 25:681–880, 2016.
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Lelièvre, T., Stoltz, G., and Zhang, W. Multiple projection
MCMC algorithms on submanifolds. arXiv:2003.09402,
2020.

Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R., and Ja-
cobsen, J. Preventing gradient attenuation in Lipschitz
constrained convolutional networks. NeurIPS, 2019.

Loshchilov, I. and Hutter, F. Stochastic gradient descent
with warm restarts. ICLR, 2017.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313–330,
1993.

Marinari, E. and Parisi, G. Simulated tempering: a new
Monte Carlo scheme. Europhysics Letters, 1992.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. ICLR, 2017.

Neyshabur, B., Tomioka, R., and Srebro, N. In search of the
real inductive bias: On the role of implicit regularization
in deep learning. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings, 2015.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310–1318, 2013.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. 2017.

Pavliotis, G. A. Stochastic processes and applications: dif-
fusion processes, the Fokker-Planck and Langevin equa-
tions, volume 60. Springer, 2014.

Pennington, J., Schoenholz, S., and Ganguli, S. Resurrecting
the sigmoid in deep learning through dynamical isometry:
theory and practice. In Advances in Neural Information
Processing Systems, pp. 4785–4795, 2017.

Pennington, J., Schoenholz, S., and Ganguli, S. The emer-
gence of spectral universality in deep networks. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 1924–1932, 2018.

Persson, P. The level set method. Lecture notes MIT 16.920J
/ 2.097J / 6.339J, Numerical Methods for Partial Differ-
ential Equations, October 2006.
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