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Abstract

We introduce a new balanced assignment of ex-

perts (BASE) layer for large language models that

greatly simplifies existing high capacity sparse

layers. Sparse layers can dramatically improve

the efficiency of training and inference by routing

each token to specialized expert modules that con-

tain only a small fraction of the model parameters.

However, it can be difficult to learn balanced rout-

ing functions that make full use of the available

experts; existing approaches typically use routing

heuristics or auxiliary expert-balancing loss func-

tions. In contrast, we formulate token-to-expert

allocation as a linear assignment problem, allow-

ing an optimal assignment in which each expert

receives an equal number of tokens. This opti-

mal assignment scheme improves efficiency by

guaranteeing balanced compute loads, and also

simplifies training by not requiring any new hyper-

parameters or auxiliary losses. Code is publicly

released.1

1. Introduction

Sparse expert models enable sparse computation by spread-

ing model capacity across a set of experts, while ensuring

that only a small subset of the experts are used for each

input (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus

et al., 2021). Sparse models can often realize the strong per-

formance gains that come with training very large models,

while also alleviating much of the associated computational,

financial and environmental costs (Strubell et al., 2019).

However, such models are notoriously difficult to train; the

experts must be carefully balanced so that they can spe-

cialize to different parts of the input space. In this paper,

we present a simple, efficient, and performant method for

expert-based sparsity in language models, built around the

use of a linear assignment algorithm to explicitly balance
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Figure 1. Overview of a BASE layer. Each worker contains a

separate expert module. During training, we compute a balanced

assignment of tokens such that each worker sends an equal number

of tokens to each expert. By softly mixing in the expert module,

experts can learn to specialize for particular types of tokens.

the assignment of tokens to experts during training.

The mostly widely used Sparse Expert models are mixtures

of experts (MoE) models (Shazeer et al., 2017; Lepikhin

et al., 2020) that learn a gating function to route each to-

ken to a few experts, which creates a challenging, discrete

latent variable learning problem. In practice, carefully tun-

ing and the introduction of extra loss functions with new

hyperparameters is required to avoid imbalanced or degen-

erate experts. Recently, the Switch transformer (Fedus et al.,

2021) simplified the framework by routing tokens to only a

single expert, improving stability and efficiency overall but

again using custom auxiliary losses that require tuning, and

requiring capacity factors to prevent too many tokens being

assigned to a single expert. We show that it is possible to

go even further. We also assign a single expert per token

but are the first to algorithmically balance the assignment

with no extra model modifications, providing more formal

guarantees of balanced compute while simplifying both the

implementation and optimization.

We introduce a simple and effective solution for routing to-

kens to experts during training, which we use to estimate a

new Balanced Assignment of Sparse Experts (BASE) layer.

To ensure balanced routing in the BASE layer, we formulate

a linear assignment problem that maximizes token-expert

affinities while ensuring that each expert receives an equal

https://github.com/pytorch/fairseq/
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number of tokens. This approach ensures that the assign-

ment will be balanced, and therefore each expert will operate

at maximum capacity, while also eliminating load-balancing

loss functions and capacity factors from previous work. We

also show how to learn expert specialization by using a mod-

ified residual connection that softly mixes in each expert

contribution—again without requiring an additional loss

term or routing tokens to multiple experts. While comput-

ing balanced assignments incurs non-trivial overhead, we

find that using even a single large BASE layer is remarkably

effective—reduced expert communication produces faster

gradient computations—and that performance increases as

more BASE layers are added, providing an overall favorable

cost-accuracy tradeoff.

Extensive experiments with models of up to 110B param-

eters demonstrate large performance gains over standard

data and model parallel training strategies. Our approach

also matches or exceeds the efficiency and performance of

previous sparse expert approaches (Lepikhin et al., 2020;

Fedus et al., 2021), when controlling for computation bud-

get, despite its relative simplicity. Taken together, these

results demonstrate the first drop-in conditional compute

layer that can be easily added to any model with no new

hyperparameters or training loss modifications.

2. Background: Training with Multiple

Workers

NLP has recently become dominated by ever larger lan-

guage models (Devlin et al., 2018; Lewis et al., 2019; Liu

et al., 2019; Radford et al., 2019; Raffel et al., 2019). Train-

ing large language models would take infeasibly long on

any existing single device, with many models trained for

thousands of GPU-days (Brown et al., 2020). Instead, it is

standard to distribute computation over multiple workers.

We briefly review the main existing strategies.

2.1. Dense Models

In dense models, every parameter is used in processing every

input. Training is distributed over multiple workers using

data parallism or model parallelism.

Data Parallel Training In data parallel training, multiple

workers maintain a copy of the same model. Each worker

runs the model on a different subset of the training batch,

then gradients are communicated and all workers perform

the same update. This approach increases the number of

examples processed per second, and only requires a single

communication step between workers per update. However,

the maximum model size that can be trained is bounded by

the memory of a single worker device—limiting models to

roughly 1.5B parameters in our setup.

Model Parallel Training Model parallel training allows

models to be larger than can be run on a single worker

(Shoeybi et al., 2019), by distributing the compute for each

input over multiple workers. Model parameters are also dis-

tributed over workers, which then communicate with each

other while processing each input. Given a fixed number

of workers, using model parallel training will reduce the

amount of compute available for data parallelism, and cor-

respondingly also the number of examples processed per

second.

2.2. Sparse Expert Layers

Sparse models differ from dense models in only using a

small subset of their parameters on any given input. Recent

work has explored adding capacity to language models by

adding sparse expert layers (Shazeer et al., 2017; Lepikhin

et al., 2020; Fedus et al., 2021). During inference, before

an expert layer, each token is assigned and routed to a small

subset of the workers. The workers then applies a token-

wise operation, using parameters that are not shared across

other workers. The resulting representation is then returned

to the original worker, to continue the forward pass.

During training, this results in four routing steps per expert

layer—before and after each expert layer, in both the for-

ward and backward pass. These communication steps can

add significantly to the training cost, as workers can idle

while waiting for communication to complete.

Balancing of experts, so that each processes a roughly equal

proportion of tokens, is crucial for several reasons. If one

expert is assigned too many tokens, the worker could run out

of memory. Additionally, the expert layer processing speed

is limited by the slowest worker; imbalanced assignment

slows down training. Furthermore, the parameters of rarely

used experts are likely to be less well trained, which may

reduce performance.

Previous work has achieved balancing by adding a new term

in the loss function that explicitly encourages balancing—

this loss term must be carefully weighted so that it does

not overwhelm primary loss (Lepikhin et al., 2020; Fedus

et al., 2021). However, such a loss does not guarantee bal-

ancing. Stable training also requires additional measures

such as enforcing hard upper limits on the number of tokens

processed by each expert after which the rest are simply

ignored (Shazeer et al., 2017). This approach can be ineffi-

cient, as some workers are underutilized, and many tokens

are unprocessed by the layer.

3. BASE Layers

BASE layers achieve balanced assignment of tokens to ex-

perts through a three stage process. Firstly, we compute

the score for assigning each token representation to each
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1 def base_layer(features, expert_centroids, expert_id, expert_network):

2 # Send each token to a random worker, by sorting in a random order

3 shuffle_sort = random_permutation(len(features))

4 shuffled_features = all2all(features[shuffle_sort])

5 # Compute which token goes to which expert

6 token_expert_affinities = shuffled_features @ expert_centroids.T

7 sort_by_expert = balanced_assignment(token_expert_affinities)

8 # Swap these tokens for the right ones for our expert

9 routed_features = all2all(shuffled_features[sort_by_expert])

10 # Mix in the expert network based on how appropriate it is for these tokens

11 α = torch.sigmoid(routed_features @ self.expert_centroids[expert_id])

12 routed_features += α * expert_network(routed_features)

13 # Undo routing and balanced assignment

14 shuffled_features = all2all(routed_features)[inverse_sort(sort_by_expert)]

15 # Return to original worker and ordering

16 return all2all(shuffled_features)[inverse_sort(shuffle_sort)]

Figure 2. Implementation of a BASE layer, with E experts and an input sequence of T features. Here, all to all routes the tth row of its

input to the ⌊ tE

T
⌋th worker. balanced assignment takes a matrix of size T × E and returns an T -dimensional vector that can be used to

sort tokens by their assigned expert index.

expert, compute a balanced assignment maximizing these

scores, then route the token features to an expert. Secondly,

we compute a position-wise expert function, and compute

a weighted sum of the layers input and output. Finally, we

return the output to the original worker. Figure 2 shows

overall pseudo code for the approach.

3.1. Parameterization

BASE layers contain E experts, each defined by a position-

wise function fe(·) and an expert embedding we ∈ RD,

where D is the model dimension. In practice, we parameter-

ize fe(·) using a stack of residual feedforward layers. Given

a token ht at timestep t in a sequence of tokens 0..T , and

token-to-expert assignment index at ∈ 0..E, the network

returns the following value:

σ(ht · wat
)fat

(ht) + ht, (1)

If the network fat
is able to improve the representation of

ht, by lowering the loss of the final prediction for that token,

then gradient descent will increase the value of ht · wat
.

Conversely, if the expert network is unhelpful, then the

ht · wat
will receive a negative gradient. Consequently, an

expert e can learn to specialize for particular types of tokens

by adjusting we to be close to similar token representations

where fe(·) is most beneficial.

3.2. Token to Expert Assignment

We assign tokens to experts using different methods during

training and testing. During training, we maximize model

throughput by assigning an equal number of tokens to each

expert. At test time, we simply assign each token to its

highest scoring expert.

3.2.1. ASSIGNMENT DURING TRAINING

During training, we assign an equal number of tokens to

each expert, so that each worker is fully utilized and each

worker takes about the same time to finish its assigned load.

Each token t is assigned to an expert at, aiming to maximize

the token-expert affinities under the constraints that each

expert is assigned the same number of tokens.

Linear Assignment Problem Formally, we solve the fol-

lowing linear assignment problem. Given T tokens with

representations ht and E experts with embeddings we, we

assign each token to an expert via the assignment index

at ∈ 0..E:

maximize
∑

t

ht · wat

subject to ∀e

T∑

t=0

1at=e =
T

E

(2)

Numerous algorithms exist for this problem. We use the auc-

tion algorithm described in Bertsekas (1992), which is more

easily parallelizable on GPUs than the Hungarian Algorithm

(Kuhn, 1955). Pseudo-code is given in the Appendix.

Sharding Computing the optimal assignment for all to-

kens across all workers is expensive, so we distribute the

computation across multiple workers. We decompose the

assignment problem of all ET tokens across all workers into

E smaller problems using T tokens. This decomposition

can be implemented by each worker solving an assignment

problem over its own input batch. Each worker then sends

T/E tokens to each other worker, with an all2all operation.
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Shuffling Tokens within each worker’s training sequence

are highly correlated with each other; for example they will

normally be part of the same domain. These correlations

may make it difficult for experts to specialize for particular

domains. We therefore add an additional random routing

step, where each worker first sends an equal number of each

tokens to each other worker randomly. Then, each worker

solves a linear assignment problem as before with its sample

of tokens, and routes these to the correct experts.

3.2.2. ASSIGNMENT DURING TESTING

At test time, it is not possible to use the assignment strat-

egy described in §3.2.1, as balancing the assignment leaks

information about tokens in the future context. Instead,

we simply greedily assign the one best expert. While un-

balanced assignments are less efficient, during inference

memory costs are greatly reduced due to not needing to

store gradients, activations and optimizer states. In practice,

we show that our approach naturally learns a reasonably

balanced assignment during training (§5.1).

3.3. Gradient Clipping

A common practice in training deep language models is to

scale gradients if their l2 norm is greater than a threshold.

All workers must compute the same norm, or else scaled

gradients for shared parameters will be inconsistent across

workers. To avoid additional communication steps to com-

pute norms globally across all expert parameters, we simply

compute the gradient norms locally based only on the shared

parameters, but rescale all gradients.

4. Experiments

4.1. Experimental Setup

Task We focus our experiments on language modelling,

as recent work such as GPT3 (Brown et al., 2020) offers

perhaps the clearest demonstration in machine learning of

the power of large scale models.

Metrics We focus exclusively on comparing compute ef-

ficiency, which we define as the best model performance

(here, perplexity) that can be achieved by training with a

given number of GPUs and wall-clock time. This metric is

different from other commonly used metrics, such as sample

efficiency (which measures the number of tokens the model

trains on, but not the cost of processing samples) or FLOP-

efficiency (which measures the number of floating-point

operations performed during training, but does not account

for communication costs). As plentiful data is available for

training language models, but computation is expensive, we

believe that compute efficiency best captures the constraints

of real world training. Therefore, we compare models using

a fixed number of GPUs for the same runtime.

Training Hyperparameters We train all models for ap-

proximately 2.5 days. All models use similar hyperpa-

rameters of 2000 warm-up steps, and the Adam optimizer

(Kingma & Ba, 2014). We tune learning rates for each

model separately, and linearly decay the learning rate dur-

ing training. Each worker processes two sequences of length

1024, and gradients are accumulated over 8 updates. We

clip gradients if their l2 norm exceeds 0.1 (§3). Learning

rates are tuned in the range {0.5, 0.75, 1.0} × 10−4, taking

the highest value that avoids divergence.

Hardware Unless otherwise stated, models are trained on

128 32GB V100 GPUs connected with Infiniband.2

Data We train on a corpus of approximately 100B tokens,

comprising the training corpus of RoBERTa (Liu et al.,

2019), combined with the English portion of the CC100 cor-

pus (Conneau et al., 2019). We use the byte-pair encoding

(Sennrich et al., 2015) from GPT2 (Radford et al., 2019),

which has a vocabulary of 51200.

Model Architectures We size all models to the maximum

size that can process the sequences within GPU memory

constraints. All models follow a standard transformer ar-

chitecture (Vaswani et al., 2017), with a model dimension

of 2048, feed-forward hidden states of size 8096 and 24

Transformer Decoder blocks. We use 16 attention heads,

ReLU activation functions and no dropout. LayerNorm (Ba

et al., 2016) is applied to the inputs of each residual block

(Xiong et al., 2020) and to the outputs of the transformer.

BASE layer architecture We implement the BASE layer

as a stack of feedforward blocks. Each block follows the

standard transformer structure: layer normalization, a pro-

jection to 4 times the input dimension, a ReLU nonlin-

earity, a projection to the input dimension, and a resid-

ual connection to the block input. We vary the number of

BASE layers; BASE×N uses a BASE layer after each of

the ⌊ L

N+1
⌋ . . . ⌊ NL

N+1
⌋th transformer layers. When using

multiple BASE layers, we reduce their size to keep the to-

tal number of parameters roughly constant; BASE×N use

⌊ 10

N
⌋ sublayers, for a total of roughly 44B parameters. We

use one expert per GPU per BASE layer.

4.2. Comparison with Dense Models

We first compare with dense models, in which all parameters

are shared across all workers. We compare with data parallel

and model parallel training, using the intra-layer model

2As communication between workers is a significant overhead
for model parallel and sparse expert approaches, it is possible that
different results would be achieved on other networking hardware.
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Figure 3. Comparing BASE layers with dense model training, using different numbers of GPUs. There is a clear trend of increased model

sizes being more effective with larger compute budgets. BASE layers show strong performance at all the compute budgets we consider.

parallelism approach introduced in Shoeybi et al. (2019).

Our data parallel baseline contains 1.5B parameters, and the

2-way and 4-way model parallel baselines contain roughly

3B and 6B parameters respectively. We use three different

compute budgets: 8, 32 and 128 GPUs for approximately

2.5 days.

Results are shown in Figure 3. We generally find that larger

models perform better with higher compute budgets, and

that simple data parallel training performs best at the small-

est compute budget. With larger compute budgets, BASE

layers outperform both data parallel and model parallel train-

ing by a wide margin.

Relatively high compute budgets are required before model

parallelism outperforms data parallel training, with the first

gains appearing after training on 128 GPUs for 2 days. This

is partly due to model parallel training requiring a reduced

batch size given the same computational resources.

In contrast, BASE layers match the performance of data

parallel training on our 8 GPU experiments, and achieve

increasingly large gains in higher compute regimes.

4.3. Comparison with Sparse Experts Models

We also compare performance with our re-implementations

of two recent sparse layer methods: Sparsely Gated Mix-

tures of Experts (Shazeer et al., 2017; Lepikhin et al., 2020)

and Switch (Fedus et al., 2021). The primary difference be-

tween these approaches is that a Sparsely Gated MoE layer

routes tokens to multiple experts (top-2 experts in our ex-

periments), whereas a Switch layer routes tokens to a single

expert. We set the weight associated with the load balancing

loss to 0.01 in our experiments, and set the capacity factor

for Sparsely Gated MoE and Switch layers to 2.0 and 1.0

respectively. Following previous work, we replace every

other shared feed-forward layer in the Transformer archi-

tecture with a Sparsely Gated MoE or Switch layer, unless
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Figure 4. Comparison with other Sparse Experts approaches. De-

spite its simplicity, BASE achieves strong performance relative to

Sparsely Gated MoE models and Switch transformers.

otherwise specified. With 128 experts in each expert layer,

our Sparsely Gated MoE and Switch models have 52.5B

parameters (1B shared parameters) each, while our BASE

model has 44.4B parameters (1.3B shared parameters).

As in Fedus et al. (2021), we find that Switch computes more

updates per second than Sparsely Gated MoE (see Table 2).

However, we find that Sparsely Gated MoE is more compute

efficient in our experiments as shown in Figure 4.

A comparison with BASE is also shown in Figure 4. De-

spite its simplicity, BASE achieves similar performance to

the Sparsely Gated MoE model and converges to a better

validation perplexity than Switch. This result suggests that

algorithmic load balancing is a competitive alternative to

load balancing loss functions, and that even a single expert
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Figure 5. Comparison of different sizes of BASE layers, by chang-

ing the ratio of parameters allocated to shared vs. expert layers.

layer can be highly effective.

4.4. Ablations

Results in Section 4 show that BASE layers match or ex-

ceed the compute-efficiency of previous dense and sparse

approaches. To better understand these results, we analyze

key design decisions in our model in more detail.

BASE Layer Size A key choice in any sparse experts

model is the allocation of capacity to shared components

versus experts. We experiment with adjusting the number

of sublayers in each expert, and scale the number of shared

layers accordingly to maximize GPU usage.

We test three versions:

• Small Expert: 1.5B shared parameters, 135M param-

eters per expert, 18.8B total parameters

• Standard Expert: 1.3B shared parameters, 335M pa-

rameters per expert, 44B total parameters

• Large Expert: 840M shared parameters, 911M pa-

rameters per expert, 117B total parameters

Figure 5 shows that good performance can be achieved with

all sizes, indicating that this choice needs little tuning.

BASE Layer Position We also consider the most effec-

tive place in a model to insert BASE layers into a trans-

former with L layers. We test three configurations:

• BASE: After the L

2
th layer, as in our other experiments.
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Figure 6. Comparison of different numbers and positions of BASE

layers. The best performance is achieved by interleaving 3 BASE

layers throughout the transformer stack.

• BASE Top: After the Lth layer, acting as a classifier.

• BASE ×N : Using N BASE layers of 1

N
the size, after

layers L

N+1
. . . NL

N+1
th layers of the transformer.

Figure 6 compares results for different configurations. We

find similar performance from three different placements

of BASE, suggesting a reasonable level of robustness. In

particular, the strong performance of BASE Top may enable

it to be used on top of pre-trained language models to further

increase their capacity.

Comparison of Routing Method with Sparsely Gated

MoE Our approach differs from previous work on sparse

experts in both the architecture and assignment method. To

more carefully analyse the benefits of our routing method,

we compare with an implementation of Sparsely Gated MoE

that uses a more similar architecture to ours: a single, large

expert midway through the transformer stack.

Results are shown in Figure 7. Sparsely Gated MoE per-

forms less well in this setting. Sparsely Gated MoE benefits

from interleaving expert layers with shared layers, and a sin-

gle Sparsely Gated MoE layer with deep experts works less

well than BASE. Future work should explore more efficient

approximate routing schemes for BASE layers, to enable

potential compute efficiency gains from interleaving expert

and shared layers.
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Figure 7. Comparing routing strategies using similar architectures.

Here, all models use a single large expert at layer L/2. BASE

maintains strong performance in this setting, which reduces the

communication overhead between workers, and may be advanta-

geous with less efficient networking.

5. Analysis

We also report further experiments that provide more quali-

tative analyses of overall model behavior with BASE layers.

5.1. Expert Balancing

A key difference between our model and other recent pro-

posals is that we algorithmically balance token/expert as-

signments during training, instead of adding an additional

loss function to balance assignments. However, both use

greedy assignments at test time.

We investigate whether our model learns a balanced assign-

ment without an explicit balancing loss. Figure 8 shows

the percentage of tokens assigned to each expert, sorted

from most used to least used. Unsurprisingly, the top-1

assignment from BASE is less balanced than those from

models with explicit balancing loss terms. However it is

notably more balanced than the 2nd expert in the Sparsely

Gated MoE model, and confirms that reasonably balanced

assignments can be learnt without balancing losses.

5.2. Expert Specialization

We also analyse how experts learn to specialize. Observing

sample passages, we find that many assignment decisions

appear to depend primarily on very local syntactic informa-

tion. In particular, we found that the token input at timestep

t is often highly indicative of the expert assigned at time t.
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Figure 8. Expert Balancing in different Sparse Expert approaches

across 128 experts, as measured on the validation set. Results for

Sparsely Gated MoE and Switch are an average across all expert

layers. BASE layers learn a reasonably balanced routing with no

auxiliary balancing loss.

Table 1 shows the most frequent previous input token when

selected experts are chosen. We see clusters corresponding

to quantities (5), numbers (42), possessives (125), subword

fragments (101), and clusters of related verbs (72, 74, 126),

nouns (23,27,36,43,76,84,96,98,105) and adjectives (9,81).

These tokens may tend to have similar distributions over

next tokens. This analysis suggests the model primarily

assigns experts based on fairly superficial signals, and may

motivate even simpler techniques for future work.

5.3. Efficiency

While we focus on evaluating the compute efficiency of

models, we note that there are substantial differences in the

speed at which models process tokens. Table 2 shows the

number of tokens processed per second by different models

during training, using 128 GPUs. Simple data parallel train-

ing is unsurprisingly the fastest, but BASE layers compute

updates faster than other approaches due to reduced commu-

nication between workers. For the same compute efficiency,

models which process tokens more slowly are more sample

efficient, and may be preferable in lower data regimes.

6. Related Work

Shazeer et al. (2017); Lepikhin et al. (2020) introduce

sparsely gated mixtures of experts layers, demonstrating

how large sparse models can be trained efficiently by rout-

ing inputs to appropriate specialist workers. Fedus et al.

(2021) show the design can be simplified by routing tokens
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Expert Top 5 Proceeding Tokens

5 year, years, billion, million, tonnes

8 people, who, Man, everyone, one

9 electronic, local, public, national, outdoor

23 funding, budget, benefits, pressure, price

27 Mustang, State, Center, ation, Grande

34 to, will, should, it, may

36 business, bank, financial, science, school

42 two, 50, 1, 80, 000

43 Bank, Development, ., Construction, Plant

62 work, started, involved, working, launched

72 is, was, be, been, were

74 going, go, come, back, return

76 painting, case, song, statement, discussion

81 new, major, bad, larger, grand

84 Ret, Inspect, Pl, Pos, Architect

96 US, UNESCO, government, state, UN

98 waiver, procedures, warrant, status, loans

101 B, T, W, H, k

105 app, Windows, Microsoft, board, 10

125 his, ’s, its, their, our

126 said, says, means, noting, out

Table 1. Most frequent previous words for selected experts, show-

ing that some experts assignment decisions are made based on very

local contexts. For many other experts, the assignment decision

depends on longer context, and is harder to visualize.

to only a single worker. We further simplify the framework,

by eliminating balancing loss functions, and showing the

effectiveness of using only a single expert layer.

Sparse training is a line of work where traditional architec-

tures are trained with sparse instead of dense layers and the

number of parameters allowed during training is restricted

to a percentage of the dense layers (Dettmers & Zettlemoyer,

2019; Evci et al., 2020; Mostafa & Wang, 2019). Unlike our

approach, these networks have fine-grained sparsity patterns

which reduce overall FLOPS but make it difficult to achieve

runtime benefits on modern accelerators like GPUs, which

require contiguous memory segments for efficient process-

ing. Since experts consist of sizable contiguous memory

segments, our approach can utilize GPUs effectively.

Perhaps the most common use of sparse layers is in adding

language-specific layers to machine-translation systems

(Bapna et al., 2019; Fan et al., 2020), or task-specific lay-

ers to pre-trained language models (Houlsby et al., 2019).

Here, the expert assignment problem is hard coded, based

on the task being solved or the language being translated.

We instead explore learnable routing, which is applicable to

problems where such structure is not available.

Other papers have explored alternative methods for adding

Model Tokens per Second

Data Parallel 600k

Model Parallel ×2 224k

Sparsely Gated MoE 292k

Switch 469k

BASE 545k

BASE ×2 475k

Table 2. Number of tokens processed per second during training

by different models. BASE computes updates faster than other ap-

proaches that divide models over multiple workers, due to reduced

communication overheads. This allows a 43B parameter model to

be trained at 90% of the speed of a 1.5B data parallel baseline.

very high capacity layers to neural language models. For

example, Lample et al. (2019) introduce a large memory

layer that supports efficient sparse queries. Khandelwal et al.

(2019) show large gains from augmenting a language model

with a nearest neighbour classifier over the training set,

which recent work has also shown is applicable to machine

translation (Khandelwal et al., 2020).

An orthogonal strand of work has improved the efficiency

of transformer attention mechanisms, often by making them

sparse (Child et al., 2019; Correia et al., 2019; Roy et al.,

2020). We instead develop a sparse version of the other ma-

jor component of the transformer, the feed forward network.

7. Conclusion

We introduced a simple sparse BASE layer, which can be

used to increase the capacity of any neural model, with little

increase in training cost or complexity. We demonstrate

strong performance relative to both dense models and previ-

ously proposed sparse models. Future work should explore

more efficient implementations for computing balanced as-

signments, to further improve training speed.
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