
Tightening the Dependence on Horizon in the Sample Complexity of Q-Learning

A. Analysis: finite-horizon MDPs
In this section, we present the proof of Theorem 3 — a more general version of Theorem 2 — which accounts for the full
ε-range.

Theorem 3. Consider any ε ∈
(
0, 1

1−γ
]
. Theorem 2 continues to hold if

T ≥ c3H
4
(

log3 T
)(

log |S||A|Tδ

)

min{ε2, ε} (27)

for some sufficiently large universal constant c3 > 0.

A.1. Preliminaries

Let us first introduce several vector and matrix notations that are adopted for the finite-horizon case.

Vector and matrix notation. We use vector rh ∈ R|S||A| to represent the reward function rh at step h. The vectors
V π
h ∈ R|S|, V ?

h ∈ R|S|, Qπ
h ∈ R|S||A| and Q?

h ∈ R|S||A| are defined in an analogous manner. Let Qt,h ∈ R|S||A|
(resp. Vt,h ∈ R|S|) be the estimate Qt,h (resp. Vt,h) in the t-th iteration at step h, namely

Qt,h = (1− ηt)Qt−1,h + ηt(rh + Pt,hVt,h+1), ∀1 ≤ h ≤ H, (28a)
Vt,h = max

a
Qt,h, ∀1 ≤ h ≤ H. (28b)

Here, the maximum in (28b) is taken in an entry-wise manner (cf. (8)). We also use matrix Ph ∈ R|S||A|×|S| to represent
the probability transition kernel Ph at step h. Moreover, let the matrix Pt,h ∈ {0, 1}|S||A|×|S| be

Pt,h
(
(s, a), s′

)
:=

{
1, if s′ = st,h(s, a),

0, otherwise.
(29)

Similar to the infinite-horizon case, let us first collect a couple of basic facts that will be useful in the proof.

Ranges ofQt,h and Vt,h. We shall start with some simple bounds forQt,h and Vt,h. Lemma 3 (below) demonstrates that
the estimates for the Q-function and the value function are bounded as long as they are properly initialized.

Lemma 3. Suppose that 0 ≤ ηt ≤ 1 for all t ≥ 0. Assume thatQ0
H+1 = V 0

H+1 = 0. Then for all t ≥ 0 and 1 ≤ h ≤ H+1,
one has

0 ≤ Qt,h ≤ (H + 1− h)1 and 0 ≤ Vt,h ≤ (H + 1− h)1. (30)

Proof. We can use the induction argument to prove this. First, our initialization obeys (30) for t = 0 and h = H + 1. Next,
suppose that (30) is true for t− 1 and h+ 1. By the update rule (19), it is straightforward to compute

Qt,h = (1− ηt)Qt−1,h + ηt(rh + Pt,hVt,h+1) ≥ 0,

and

Qt,h = (1− ηt)Qt−1,h + ηt(rh + Pt,hVt,h+1)

≤ (1− ηt)‖Qt−1,h‖∞1 + ηt(‖rh‖∞ + ‖Pt,h‖1‖Vt,h+1‖∞)1

≤ (1− ηt)(H + 1− h)1 + ηt
(
1 + (H − h)

)
1 = (H + 1− h)1.

where we use the facts rh ≤ 1 and P t
h is a probability transition kernel. In addition, since V th(s) := maxaQ

t
h(s, a) for all

t ≥ 0, 1 ≤ h ≤ H + 1 and s ∈ S, it is easy to see that 0 ≤ Vt,h ≤ (H + 1− h)1. This completes the proof for (30).

It immediately follows from Lemma 3 that for all t ≥ 0 and 1 ≤ h ≤ H + 1,

−H1 ≤ −Q?
h ≤ Qt,h −Q?

h ≤ Qt,h ≤ H1.
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Combined with the fact ‖Q?‖∞ ≤ H , one further has

max
t≥0, 1≤h≤H+1

‖Qt,h −Q?‖∞ ≤ H.

This suggests we can focus on the case where ε ≤ H and the claimed iteration number in (27) satisfies

T =
c3H

4 log3 T log |S||A|Tδ

min{ε2, ε} ≥ c3H
4 log3 T log |S||A|Tδ

ε
≥ c3H3 log3 T log

|S||A|T
δ

. (31)

Several facts regarding the learning rates. Next, we present a few useful bounds regarding the learning rates η(t)i
defined in the same way as (25). From the assumption (11a) and the bound (31), it is easily seen that the step size obeys

H log2 T

2c1T
≤ 1

1 + c1T
H log2 T

≤ ηt ≤
1

1 + c2t
H log2 T

≤ H log2 T

c2t
. (32)

Let us set
β :=

c4
H

(33)

for some sufficiently small constant c4 > 0. In what follows, we present two upper bounds of η(t)i for any t ≥ T
c2 logH .

• For any 0 ≤ i ≤ (1− β)t, one know from (32) and T ≥ H2 (cf. (11b)) that

η
(t)
i ≤

(
1− H log2 T

2c1T

)βt
≤
(

1− H log2 T

2c1T

) c4T

c2H(logH)

<
1

2T 2
(34)

where the last step holds provided c1c2 ≤ c4/4.

• Turning to i > (1− β)t ≥ t/2, we can use the condition t ≥ T
c2 logH to bound

η
(t)
i ≤ ηi ≤

H log2 T

c2i
<

2H log2 T

c2t
≤ 2H log2 T

T/ logH
≤ 2H log3 T

T
. (35)

Moreover, the sum of η(t)i continues to satisfy

t∑

i=0

η
(t)
i =

t∏

j=1

(1− ηj) + η1

t∏

j=2

(1− ηj) + η2

t∏

j=3

(1− ηj) + · · ·+ ηt−1(1− ηt) + ηt = 1. (36)

A.2. Proof of Theorem 3

We are now in the position to prove Theorem 3. For convenience of notation, we shall define

∆t,h := Qt,h −Q?
h.

In addition, let πt denote the policy such that for any state-action-horizon pair (s, a, h),1

πt(a | s, h) :=

{
1, if a = min

{
a′ |Qt,h(s, a′) = maxa′′ Qt,h(s, a′′)

}
,

0, else.
(37)

Namely, for any s ∈ S and 1 ≤ h ≤ H + 1, the policy πt chooses the smallest indexed action that achieves the largest
Q-value in the estimate Qt,h(s, ·). It immediately follows that

Qt,h
(
s, πt(s, h)

)
= Vt,h(s) and PhVt,h+1 = P πt

h Qt,h+1 ≥ P π
hQt,h+1 for any π, (38)

where P π is defined in (14).
1If there is only a single action that satisfies Qt,h(s, a′) = maxa′′ Qt,h(s, a

′′), then πt(a | s, h) = 1 if and only if a =
argmina′ Qt,h(s, a

′) and 0 otherwise.
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A.2.1. KEY DECOMPOSITION

We first make the following elementary decomposition:

∆t,h = Qt,h −Q?
h = (1− ηt)Qt−1,h + ηt(rh + Pt,hVt,h+1)−Q?

h

= (1− ηt)(Qt−1,h −Q?
h) + ηt(rh + Pt,hVt,h+1 −Q?

h)

= (1− ηt)∆t−1,h + ηt(Pt,hVt,h+1 − PhV ?
h+1)

= (1− ηt)∆t−1,h + ηt
{
Ph(Vt,h+1 − V ?

h+1) + (Pt,h − Ph)Vt,h+1

}
. (39)

Similar to (22), one can use (38) to control the quantity Ph(Vt,h+1 − V ?
h+1) by

Ph(Vt,h+1 − V ?
h+1) = P πt

h Qt,h+1 − P π?

h Q?
h+1 ≤ P πt

h Qt,h+1 − P πt
h Q

?
h+1 = P πt

h ∆t,h+1, (40a)

Ph(Vt,h+1 − V ?
h+1) = P πt

h Qt,h+1 − P π?

h Q?
h+1 ≥ P π?

h Qt,h+1 − P π?

h Q?
h+1 = P π?

h ∆t,h+1, (40b)

Combining (40) with (39) yields

∆t,h ≤ (1− ηt)∆t−1,h + ηt
{
P πt
h ∆t,h+1 + (Pt,h − Ph)Vt,h+1

}
;

∆t,h ≥ (1− ηt)∆t−1,h + ηt
{
P π?

h ∆t,h+1 + (Pt,h − Ph)Vt,h+1

}
.

We can then apply this relation recursively to reach

∆t,h ≤ η(t)0 ∆0,h +
t∑

i=1

η
(t)
i (P πi

h ∆i,h+1 + (Pi,h − Ph)Vi,h+1), (41a)

∆t,h ≥ η(t)0 ∆0,h +
t∑

i=1

η
(t)
i (P π?

h ∆i,h+1 + (Pi,h − Ph)Vi,h+1). (41b)

In the following, we shall use (41) to upper and lower bound ∆t,h individually.

A.2.2. UPPER BOUNDING ∆t,h

Let us first upper bound ∆t,h for t ≥ T
c2 logH . In view of (41a), we further decompose its right-hand side as

∆t,h ≤ η(t)0 ∆0,h +

(1−β)t∑

i=1

η
(t)
i

(
P πi
h ∆i,h+1 + (Pi,h − Ph)Vi,h+1

)

︸ ︷︷ ︸
=: ζt,h

+
t∑

i=(1−β)t+1

η
(t)
i (Pi,h − Ph)Vi,h+1

︸ ︷︷ ︸
=: ξt,h

+
t∑

i=(1−β)t+1

η
(t)
i P

πi
h ∆i,h+1 (42)

where we recall that β := c4
H defined in (33).

Step 1: bounding ζt,h. From the upper bounds (34) for η(t)i , it is straightforward to control ζt,h as follows:

‖ζt,h‖∞ ≤ η(t)0 ‖∆0,h‖∞ + t max
i≤(1−β)t

η
(t)
i max

1≤i≤(1−β)t

(
‖P πi

h ∆i,h+1‖∞ + ‖Pi,hVi,h+1‖∞ + ‖PhVi,h+1‖∞
)

≤ η(t)0 ‖∆0,h‖∞ + t max
i≤(1−β)t

η
(t)
i max

1≤i≤(1−β)t

{
‖P πi

h ‖1‖∆i,h+1‖∞ +
(
‖Pi,h‖1 + ‖Ph‖1

)
‖Vi,h+1‖∞

}

(i)
= η

(t)
0 ‖∆0,h‖∞ + t max

i≤(1−β)t
η
(t)
i max

1≤i≤(1−β)t

(
‖∆i,h+1‖∞ + 2 ‖Vi,h+1‖∞

)

(ii)

≤ 1

2T 2
·H +

1

2T 2
· t · 3H

≤ 2H

T
.

Here, (i) relies on ‖P πi
h ‖1 = ‖Pi,h‖1 = ‖Ph‖1 = 1 since they are all probability transition matrices; (ii) holds due to (34).
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Step 2: bounding ξt,h. Observe that ξt,h is a sum of martingale differences, namely

ξt,h =

t∑

i=(1−β)t+1

zi,h with zi,h := η
(t)
i (Pi,h − Ph)Vi,h+1,

where the zi,h’s satisfy
E [zi,h |Vi,h+1, · · · ,V0,h+1] = 0.

This suggests we can invoke Freedman’s inequality (see Lemma 4) to control ξt,h for any t such that T
c2 logH ≤ t ≤ T .

• First, it is straightforward to bound

B := max
(1−β)t<i≤t

‖zi,h‖∞ ≤ max
(1−β)t<i≤t

‖η(t)i (Pi,h − Ph)Vi,h+1‖∞

≤ max
(1−β)t<i≤t

η
(t)
i

(
‖Pi,h‖1 + ‖Ph‖1

)
‖Vi,h+1‖∞ ≤

4H2 log3 T

T
. (43)

where the last step arises from (35), Lemma 3, and the fact ‖Pi,h‖1 = ‖Ph‖1 = 1.

• Next, recall the notation VarP (z) in (16). One can compute

Wt :=
t∑

i=(1−β)t+1

Var
(
zi,h |Vi,h+1, · · · ,V0,h+1

)
=

t∑

i=(1−β)t+1

(
η
(t)
i

)2
VarPh

(
Vi,h+1

)

≤
(

max
(1−β)t≤i≤t

η
(t)
i

)( t∑

i=(1−β)t+1

η
(t)
i

)
max

(1−β)t≤i<t
VarPh

(
Vi,h+1

)

≤ 2H log3 T

T
max

(1−β)t≤i<t
VarPh

(
Vi,h+1

)
, (44)

where the last inequality relies on (35) and (36).

• Additionally, we can use Lemma 3 to further boundWt

∣∣Wt

∣∣ ≤ 2H log3 T

T
·H21 =

2H3 log3 T

T
1 =: σ21.

In particular, we know that
σ2

2K
≤ 2H log3 T

T
(45)

where K := d2 logHe .

With the above bounds in place, we apply the Freedman inequality in Lemma 4 and the union bound to find: with probability
at least 1− δ

TH ,

|ξt,h| ≤
√

8
(
Wt +

σ2

2K
1
)

log
|S||A|THK

δ
+
(4

3
B log

|S||A|THK
δ

)
· 1

(i)

≤

√

16
(
Wt +

2H log3 T

T
1
)

log
|S||A|T

δ
+
(

3B log
|S||A|T

δ

)
· 1

(ii)

≤

√
32H

(
log3 T

)(
log |S||A|Tδ

)

T

(
max

(1−β)t≤i<t
VarPh

(
Vi,h+1

)
+ 1
)

+
12H2

(
log3 T

)(
log |S||A|Tδ

)

T
1

Here, (i) arises from (45) and log |S||A|THKδ ≤ 2 log |S||A|Tδ (which holds due to (31)); (ii) makes use of the relation (43)
and (44).
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Step 3: using the bounds on ζt,h and ξt,h to control ∆t,h. Let us define

ϕt,h := c5
H log3 T log |S||A|Tδ

T

(
max
t
2≤i<t

VarPh(Vi,h+1) + 1

)
(46)

for some sufficiently large constant c5 > 0. In view of bounds for ζt,h and ξt,h, the following holds with probability
exceeding 1− δ: for all 2t

3 ≤ k ≤ t and 1 ≤ h ≤ H ,

|ζk,h|+ |ξk,h| ≤
√
ϕt,h. (47)

Inserting (47) into (42) reveals

∆t,h ≤
√
ϕt,h +

t∑

i=(1−β)t+1

η
(t)
i P

πi
h ∆i,h+1. (48)

We now define a sequence
{
α
(t)
i

}
i

as follows

α
(t)
i :=

η
(t)
i∑t

j=(1−β)t+1 η
(t)
j

, 0 ≤ i ≤ t.

It is easy to check that for any t, the sequence
{
α
(t)
i

}
i

satisfies

α
(t)
i ≥ η

(t)
i and

t∑

i=(1−β)t+1

α
(t)
i = 1 (49)

where the first inequality results from (36). This enables us to rewrite (48) as

∆k,h ≤
√
ϕt,h +

k∑

ih=(1−β)k+1

η
(k)
i1
P
πi1
h ∆i1,h+1 =

k∑

ih=(1−β)k+1

(
α
(k)
ih

√
ϕt,h + η

(k)
ih
P
πih
h ∆ih,h+1

)
. (50)

for all 2t/3 ≤ k ≤ t. By the definition of β (cf. (33)), one has (1−β)t ≥ 2t/3. We can then exploit this relation recursively
to obtain

∆t,h ≤
t∑

ih=(1−β)t+1

(
α
(t)
ih

√
ϕt,h + η

(t)
ih
P
πih
h ∆ih,h+1

)

≤
t∑

ih=(1−β)t+1

{
α
(t)
ih

√
ϕt,h + η

(t)
ih
P
πih
h

ih∑

ih+1=(1−β)ih+1

(
α
(ih)
ih+1

√
ϕt,h+1 + η

(ih)
ih+1

P
πih+1

h+1 ∆ih+1,h+2

)}

(i)

≤
t∑

ih=(1−β)t+1

α
(t)
ih

√
ϕt,h +

t∑

ih=(1−β)t+1

ih∑

ih+1=(1−β)ih+1

α
(t)
ih
α
(ih)
ih+1

P
πih
h

√
ϕt,h+1

+
t∑

ih=(1−β)t+1

ih∑

ih+1=(1−β)ih+1

η
(t)
ih
η
(ih)
ih+1

h+1∏

k=h

P
πik
k ∆ih+1,h+2

(ii)
=

t∑

ih=(1−β)t+1

ih∑

ih+1=(1−β)ih+1

α
(t)
ih
α
(ih)
ih+1

{√
ϕt,h + P

πih
h

√
ϕt,h+1

}

+
t∑

ih=(1−β)t+1

ih∑

ih+1=(1−β)ih+1

η
(t)
ih
η
(ih)
ih+1

h+1∏

k=h

P
πik
k ∆ih+1,h+2, (51)

where (i) relies on η(t)ih ≤ α
(t)
ih

in (49), and (ii) holds since
∑ih
ih+1=(1−β)ih+1 α

(ih)
ih+1

= 1 by (49).
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Our proof strategy is applying (50) recursively to control ∆t,h for all 1 ≤ h ≤ H . Towards this, we need some preparation
beforehand. First, let us define

α{ik}Hk=h := α
(t)
ih
α
(ih)
ih+1

. . . α
(iH−1)
iH

≥ 0, 1 ≤ h ≤ H (52)

for any t ≥ ih ≥ ih+1 ≥ · · · ≥ iH . By (49), one has

α{ik}Hk=h ≥ η
(t)
ih
η
(ih)
ih+1

. . . η
(iH−1)
iH

. (53)

Next, let us define the index set

It,h :=
{

(ih, · · · , iH) | (1− β)t ≤ ih ≤ t− 1, (1− β)ij ≤ ij+1 ≤ ij − 1, ∀h ≤ j < H
}
, (54)

which satisfies ∑

(ih,··· ,iH)∈It,h
α{ik}Hk=h = 1. (55)

In addition, as β := c4/H for some sufficiently small constant c4 > 0, we know that

(1− β)H =
(

1− c4
H

)H
≥ 2

3
,

and consequently
ih ≥ ih+1 ≥ · · · ≥ iH ≥ (1− β)Ht ≥ 2t/3 for all (ih, · · · , iH) ∈ It,h.

With these in place, we now invoke the relation (50) in a recursive manner to obtain

∆t,h ≤
∑

(ih,··· ,iH)∈It,h
α{ik}Hk=h

{
√
ϕt,h +

H∑

j=h+1

j−1∏

k=h

P
πik
k

√
ϕt,j

}

≤ max
(ih,··· ,iH)∈It,h

{ H∑

j=h

j−1∏

k=h

P
πik
k

√
ϕt,j

}
(56)

for all t ≥ T
c2 log 1

1−γ
. Here, the last step arises from the fact that

∑
(ih,··· ,iH)∈It,h α{ik}Hk=h = 1 (cf. (55)). One can upper

bound the entrywise square of the quantity in curly braces as follows

∣∣∣∣
H∑

j=h

j−1∏

k=h

P
πik
k

√
ϕt,j

∣∣∣∣
2 (i)

≤
∣∣∣∣
H∑

j=h

√√√√
j−1∏

k=h

P
πik
k ϕt,j

∣∣∣∣
2 (ii)

≤ H

H∑

j=h

j−1∏

k=h

P
πik
k ϕt,j

(iii)

. H

H∑

j=h

j−1∏

k=h

P
πik
k

H log3 T log |S||A|Tδ

T

(
max
t
2≤i<t

VarPj (Vi,j+1) + 1

)

(iv)

≤ H2
(

log3 T
)(

log |S||A|Tδ

)

T

H∑

j=h

j−1∏

k=h

P
πik
k max

t
2≤i<t

VarPj (Vi,j+1) +
H3
(

log3 T
)(

log |S||A|Tδ

)

T
1

(v)

.
H4
(

log3 T
)(

log |S||A|Tδ

)

T

(
1 + max

t
2≤i≤t,k>h

‖∆i,k‖∞
)
1. (57)

where (i) arises from the Jensen inequality and the fact
∏j−1
k=hP

πik
k is a probability transition matrix; (ii) relies on the

Cauchy-Schwarz inequality; (iii) is due to the definition of ϕt,h; (iv) holds since
∏j−1
k=hP

πik
k 1 = 1; (v) is valid as long as

Lemma 4 holds.

Lemma 4. One has

H∑

j=h

j−1∏

k=h

P
πik
k max

t
2≤i<t

VarPj (Vi,j+1) . H2
(

1 + max
t
2≤i≤t, k>h

‖∆i,k‖∞
)
1. (58)
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Proof. See Section A.2.5.

Plugging (57) back into (56) reveals that the following holds simultaneously for all t ≥ T
c2 logH with probability at least

1− δ:

∆t,h .

√√√√H4
(

log3 T
)(

log |S||A|Tδ

)

T

(
1 + max

t
2≤i≤t,k>h

‖∆i,k‖∞
)

1. (59)

A.2.3. LOWER BOUNDING ∆t,h

In this section, we proceed to lower bound ∆t,h. Invoking a similar argument for (56) and replacing πi with π?, we can
derive

∆t,h ≥ − max
(ih,··· ,iH)∈It,h

{ H∑

j=h

j−1∏

k=h

P π?

k

√
ϕt,j

}
.

One can further apply an analogous argument for (57) to bound the right-hand side as follows

∣∣∣∣
H∑

j=h

j−1∏

k=h

P π?

k

√
ϕt,j

∣∣∣∣
2

.
H4
(

log3 T
)(

log |S||A|Tδ

)

T

(
1 + max

t
2≤i≤t,k>h

‖∆i,k‖∞
)
1.

Consequently, we find that with probability at least 1− δ,

∆t,h & −

√√√√H4
(

log3 T
)(

log |S||A|Tδ

)

T

(
1 + max

t
2≤i≤t,k>h

‖∆i,k‖∞
)
1 (60)

holds simultaneously for all t ≥ T
c2 logH .

A.2.4. COMBINING OUR UPPER AND LOWER BOUNDS ON ∆t,h

Taking (59) and (60) together, we know that with probability greater than 1− 2δ,

‖∆t,h‖∞ .

√√√√H4
(

log3 T
)(

log |S||A|Tδ

)

T

(
1 + max

t
2≤i≤t,k>h

‖∆i,k‖∞
)
, (61)

holds simultaneously for all t ≥ T
c2 logH . As a result, the claim in Theorem 2 immediately follows from the same argument

for the infinite-horizon case in Appendix 4.2.3, which we omit for the sake of conciseness.

A.2.5. PROOF OF LEMMA 4

We shall invoke a similar argument for Li et al. (2021a, Lemma 5) to establish Lemma 4. For the sake of conciseness, we
omit some details of proof.

To begin with, we can argue analogously as for Li et al. (2021a, (64)) to show that for any 1 ≤ j ≤ H ,

max
t
2≤i<t

VarPj (Vi,j+1)− VarPj (V
?
j+1) ≤ 4H max

t
2≤i<t

‖∆i,j+1‖∞1. (62)

As a consequence, one can bound the left-hand side of (58) by

H∑

j=h

j−1∏

k=h

P
πik
k max

t
2≤i<t

VarPj (Vi,j+1) ≤
H∑

j=h

j−1∏

k=h

P
πik
k VarPj (V

?
j+1) + 4H2 max

t
2≤i≤t,k>h

‖∆i,k‖∞1. (63)
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Now it remains to control the first term on the right-hand side of (63). Towards this, we can first bound similarly as in Li
et al. (2021a, (67)) to obtain

VarPj (V
?
j+1) = Pj(V

?
j+1 ◦ V ?

j+1)− (PjV
?
j+1) ◦ (PjV

?
j+1)

≤
(
P
πij
j (Q?

j+1 ◦Q?
j+1)−Q?

j ◦Q?
j

)
+ 2Q?

j ◦ rj + 4H max
t
2≤i<t

‖∆i,j+1‖∞1. (64)

With the estimate for VarPj (V
?
j+1) in place, one can invoke the same argument for Li et al. (2021a, (68)) to reach

H∑

j=h

j−1∏

k=h

P
πik
k VarPj (V

?
j+1) ≤

H∑

j=h

j−1∏

k=h

P
πik
k

(
P
πij
j (Q?

j+1 ◦Q?
j+1)−Q?

j ◦Q?
j

)

+
H∑

j=h

j−1∏

k=h

P
πik
k

(
2Q?

j ◦ rj + 4H max
t
2≤i<t

‖∆i,j+1‖∞1
)

≤ 4H2
(
1 + 4 max

t
2≤i≤t,k>h

‖∆i,k‖∞
)
1.

Plugging the above bounds back into (64) immediately establishes the claimed bound (58).

B. Freedman’s inequality
The analysis of this work relies heavily on Freedman’s inequality (Freedman, 1975), which is an extension of the Bernstein
inequality and allows one to establish concentration results for martingales. For ease of presentation, we include a
user-friendly version of Freedman’s inequality as follows.

Theorem 4. Suppose that Yn =
∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and E
[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1.

Define

Wn :=
n∑

k=1

Ek−1
[
X2
k

]
,

where we write Ek−1 for the expectation conditional on {Xj}j:j<k. Then for any given σ2 ≥ 0, one has

P
{
|Yn| ≥ τ and Wn ≤ σ2

}
≤ 2 exp

(
− τ2/2

σ2 +Rτ/3

)
. (65)

In addition, suppose that Wn ≤ σ2 holds deterministically. For any positive integer K ≥ 1, with probability at least 1− δ
one has

|Yn| ≤
√

8 max
{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
. (66)

Proof. See (Freedman, 1975; Tropp, 2011) for the proof of (65). As an immediate consequence of (65), one has

P

{
|Yn| ≥

√
4σ2 log

2

δ
+

4

3
R log

2

δ
and Wn ≤ σ2

}
≤ δ. (67)

Next, we turn attention to (66). Consider any positive integer K. As can be easily seen, the event

HK :=

{
|Yn| ≥

√
8 max

{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ

}
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is contained within the union of the following K events

HK ⊆
⋃

0≤k<K
Bk,

where we define

Bk :=

{
|Yn| ≥

√
4σ2

2k−1
log

2K

δ
+

4

3
R log

2K

δ
and

σ2

2k
≤Wn ≤

σ2

2k−1

}
, 1 ≤ k ≤ K − 1,

B0 :=

{
|Yn| ≥

√
4σ2

2K−1
log

2K

δ
+

4

3
R log

2K

δ
and Wn ≤

σ2

2K−1

}
.

Invoking inequality (67) with σ2 set to be σ2

2k−1 and δ set to be δ
K , we arrive at P {Bk} ≤ δ/K. Taken this fact together with

the union bound gives

P {HK} ≤
K−1∑

k=0

P {Bk} ≤ δ.

This concludes the proof.


