
Supplementary Materials for:

Privacy-Preserving Feature Selection with

Secure Multiparty Computation

Xiling Li, Rafael Dowsley, Martine De Cock

1 Introduction

In this document, we describe supplementary materials for the manuscript “Privacy-Preserving Feature
Selection with Secure Multiparty Computation” [2]. We implemented the proposed protocols in the open
source Secure Multiparty Computation (MPC) framework MP-SPDZ.1 To empirically verify the runtime
improvements that can be obtained with our MS-GINI criterion compared to traditional GI, we also created
an implementation of an MPC protocol for computing GI proposed by [1] that is based on oblivious sorting.
To this end, we adapted code made available to us by Mark Abspoel. Three related files are submitted with
this document:

• pp ms gini fs.py: implementation of our protocols

• pp ss gini fs.py: implementation of sorting-based protocols

• icml submission.mpc: script to evaluate the protocols on the data sets described in Section 2

Further details about the experiments are described in Section 4.

2 Data sets

We used three data sets that we obtained online. We refer to the paper [2] for a description of the data
sets and the urls where they can be downloaded. For the experiments, we converted the data into a proper
format for MP-SPDZ in the directory mpspdz data submitted with this document:

• Cognitive load data set: Input-P0-0-COG-DATA and Input-P1-0-COG-LABEL-CLASS

• LSVT data set: Input-P0-0-LSVT-DATA and Input-P1-0-LSVT-LABEL-CLASS

• Speed dating data set: Input-P0-0-SD-DATA and Input-P1-0-SD-LABEL-CLASS

Input-P0-0-*-DATA is data matrix D described in Section 4.1 of the manuscript [2].
Input-P1-0-*-LABEL-CLASS is label-class matrix L described in Section 4.2 of the manuscript [2].

3 Setup of machines

We went through the following steps to set up the environment for the experiments on MS Azure:

• Create multiple virtual machines on Azure (we used Azure F32s V2 machine in this work, e.g. 3
machines for 3-party computation, namely P0, P1 and P2).

• Set up inbound and outbound rules for each machine (e.g. port 5000) to make sure machines can
communicate with each other.

1https://github.com/data61/MP-SPDZ

1

https://github.com/data61/MP-SPDZ


• Clone the MP-SPDZ framework from https://github.com/data61/MP-SPDZ///releases on each
machine.

• Compile the framework as described in https://github.com/data61/MP-SPDZ on each machine.

• Move

– pp ms gini fs.py to */mp-spdz/Compiler/,

– pp ss gini fs.py to */mp-spdz/Compiler/,

– icml submission.mpc to */mp-spdz/Programs/Source/, and

– mpspdz data to */mp-spdz/

on each machine.

• Create a directory named Player-Data on each machine by mkdir mp-spdz/Player-Data.

• Set up an ssl connection by Scripts/setup-ssl.sh 3 on P0.

• P0 distributes .key and .pem files to */mp-spdz/Player-Data of other machines. For example, P1
gets P0.pem, P1.pem, P1.key and P2.pem.

• Execute c rehash Player-Data on each machine to allow ssl to recognize .key and .pem files during
communication.

• Create a file called HOSTS on each machine by including the IP addresses of all computing machines.

4 Experiments

Experiments can be performed for each desired data set in the following manner:

• Edit */mp-spdz/Programs/Source/icml submission.mpc for use of the desired data set and desired
approach.

• Copy the desired data in */mp-spdz/mpspdz_data. For example, to perform experiments for the
“cognitive load” data, we need to execute

– cp mpspdz data/Input-P0-0-COG-DATA Player-Data/Input-P0-0 on P0

– cp mpspdz data/Input-P1-0-COG-LABEL-CLASS Player-Data/Input-P1-0 on P1

• Compile */mp-spdz/Programs/Source/icml_submission.mpc on each machine by

./compile.py -R 64 icml submission

Note that we use k = 64 in this work.

• On each machine, execute

– for passive 3PC:

./replicated-ring-party.x party id -R 64 icml submission -pn 5000 -h P0 ip

– for active 3PC: same as above, with sy-rep-ring-party.x

– for active 4PC: same as above, with rep4-ring-party.x

• The accuracy results in Table 1 in the manuscript [2] can be obtained as follows:

– Matrix D′, selected by Protocol 1, can be used to train a logistic regression model with

sklearn.linear model.LogisticRegression

of scikit-learn.

– Feature selection in-the-clear based on GI, PCC, or MI, and training logistic regression models
over the selected features, can be done directly using Pandas, Numpy and scikit-learn.

2

https://github.com/data61/MP-SPDZ///releases
https://github.com/data61/MP-SPDZ


References

[1] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. Secure training of decision trees with continuous
attributes. In Proceedings on Privacy Enhancing Technologies (PoPETs), pages 167–187, 2021.

[2] Xiling Li, Rafael Dowsley, and Martine De Cock. Privacy-preserving feature selection with secure mul-
tiparty computation. In 38th International Conference on Machine Learning, volume 139 of PMLR,
2021.

3


	Introduction
	Data sets
	Setup of machines
	Experiments

