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Abstract
Spectral method is a commonly used scheme to
cluster data points lying close to Union of Sub-
spaces, a task known as Subspace Clustering. The
typical usage is to construct a Random Geome-
try Graph first and then apply spectral method to
the graph to obtain clustering result. The latter
step has been coined the name Spectral Cluster-
ing. As far as we know, in spite of the significance
of both steps in spectral-method-based Subspace
Clustering, all existing theoretical results focus on
the first step of constructing the graph, but ignore
the final step to correct false connections through
spectral clustering. This paper establishes a the-
ory to show the power of this method for the first
time, in which we demonstrate the mechanism of
spectral clustering by analyzing a simplified algo-
rithm under the widely used semi-random model.
Based on this theory, we prove the efficiency of
Subspace Clustering in fairly broad conditions.
The insights and analysis techniques developed in
this paper might also have implications for other
random graph problems.

1. Introduction
1.1. Motivation

Union of Subspaces (UoS) model serves as an important
model in statistical machine learning. Briefly speaking, UoS
models those high-dimensional data, encountered in many
real-world problems, which lie close to low-dimensional
subspaces corresponding to several classes to which the
data belong, such as hand-written digits (Hastie & Simard,
1998), face images (Basri & Jacobs, 2003), DNA microar-
ray data (Parvaresh et al., 2008), and hyper-spectral im-
ages (Chen et al., 2011), to name just a few. A fundamental
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task in processing data points in UoS is to cluster these data
points, which is known as Subspace Clustering (SC). Appli-
cations of SC has spanned all over science and engineering,
including motion segmentation (Costeira & Kanade, 1998;
Kanatani, 2001), face recognition (Wright et al., 2008), and
classification of diseases (McWilliams & Montana, 2014)
and so on. We refer the reader to the tutorial paper (Vidal,
2011) for a review of the development of SC.

Considering the wide applications of SC, numerous algo-
rithms have been developed for subspace clustering (Tip-
ping & Bishop, 1999; Tseng, 2000; Vidal et al., 2005;
Yan & Pollefeys, 2006; Elhamifar & Vidal, 2009; Peng
et al., 2018; Meng et al., 2018), together with computation-
efficient scheme (Li & Gu, 2017; Li et al., 2020; Xu et al.,
2020). Arguably, spectral method is the most popular and
efficient method for solving SC, which obtains the clus-
tering result by applying the spectral clustering (Ng et al.,
2002; Von Luxburg, 2007) on the constructed random graph
(or the adjacent matrix equivalently), named as Union of
Subspaces-based Random Geometry Graph (UoS-RGG), de-
pending on the relative position among data points, referring
to Sparse Subspace Clustering (SSC) and its variants (El-
hamifar & Vidal, 2009; Liu et al., 2012; Dyer et al., 2013;
Heckel & Bölcskei, 2015; Chen et al., 2017).

In spite of the spectral method that practically works well for
many applications, theoretical analysis is lacked for the per-
formance of clustering results. The fundamental difficulty
in the analysis of spectral method for SC may be the change
of view required in treating UoS-RGG (or general Random
Geometry Graph, RGG), which has non-independent edges,
in contrast with the traditional approach to analyzing clus-
tering algorithms via Stochastic Block Model (SBM) which
assumes independent edges. Section 1.2 offers a detailed
discussion of this difficulty, as well as a survey of the exist-
ing attempts in theoretical aspects. We therefore propose
the critical question that this paper aims to explore:

• Why does spectral method work for RGG or UoS-
RGG?

This paper focuses on the analysis on the spectral method
for UoS-RGG. We consider a naive and prototypical SC
algorithm (Algorithm 1) here, and prove this algorithm,
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though oversimplified, can still deliver an almost correct
clustering result even when the subspaces are quite close to
each other and when the number of samples is far less than
the subspace dimension (see Theorem 1). To the best of our
knowledge, this is the first ever theory established to demon-
strate that spectral clustering method can efficiently correct
false connections between clusters for SC. It not only consti-
tutes the first theoretical guarantee for accuracy of spectral
method for subspace clustering, but also provides the in-
teresting insight that the widely-conjectured oversampling
requirement for subspace clustering is redundant, and that
subspace clustering is quite robust in existence of closely
aligned subspaces. We also verify our results by numerical
experiments in Section 4. Although our theoretical results
is proved only for the simplified algorithm we choose, it
should be quite convincing that more carefully-designed
random graph for SC would give even better performance
than what we guarantee here, and our proof could serve as a
prototype to the analysis of these algorithms.

1.2. Related Works and Challenges

We now briefly review the literature on the adjacent ma-
trix and spectral method and discuss their shortcomings.
Since this paper mainly deals with theory, we shall focus on
theoretical aspects of existing results.

1.2.1. ANALYSIS OF RANDOM GRAPHS FOR UOS

To analyze the random graphs associated to UoS model
in an abstract setting without referring to any specific al-
gorithms, most researches focus on the Subspace Detec-
tion Property (Soltanolkotabi et al., 2012; Liu et al., 2012;
Soltanolkotabi et al., 2014; Heckel & Bölcskei, 2015, SDP,),
a property which indicates that there are no edge connec-
tions between the data points in different subspaces, but are
many connections between the data points in the same sub-
space. Under some technical conditions on the parameters
of SC, the random graphs constructed by a variety of SC
algorithms have been proved to enjoy SDP. Readers may
consult Section 3 in Soltanolkotabi et al. (2014) for details.

There are, however, two main deficiencies of SDP which
render SDP hard to use in further analysis. The first one is
that SDP does not imply a correct clustering result for spec-
tral method. Actually, one can easily construct a counter-
example where SDP holds but the clustering result is unsat-
isfying. The second one is that SDP requires too restrictive
conditions on affinity between subspaces and sampling rate
to hold. These conditions are provably unnecessary, as will
be demonstrated in Section 3 of this paper.

1.2.2. ANALYSIS OF SPECTRAL METHOD FOR RANDOM
GRAPHS

Compared with SDP, a more concrete approach to analyze
SC algorithm is to investigate the performance of spectral
method on random graphs associated to UoS model. To this
end, analysis of spectral method for general random graphs
(not necessarily associated to UoS model) is relevant. Note
that the spectral method is explored deeply in the literature
of community detection, which is an important problem in
statistics, computer vision, and image processing (Abbe,
2017). Stochastic Block Model (SBM) is a widely used
theoretical model in this field, which we briefly introduce
as follows. For simplicity, we consider the two-block case,
where the vertices of random graph are divided into two
“blocks”, i.e. sets of vertices that ought to be closely-related,
each of size of N/2. Then each edge of random graph is
independently generated from the following distribution: for
p > q > 0, vertices xi and xj are connected with probabil-
ity p if xi,xj belong to the same block, and with probability
q if they belong to different blocks. Given an instance of
this graph, we would like to identify the two blocks. Re-
cently, a series of theoretical works are devoted to analyze
the performance of spectral method on this problem in dif-
ferent settings (Coja-Oghlan, 2010; Vu, 2014; Chin et al.,
2015; Abbe et al., 2017), and extensions (Sankararaman &
Baccelli, 2018). We refer the reader to (Chen et al., 2020)
for a summary of analysis of spectral method.

As far as we know, all existing results make essential use of
the independence of different edges, which is unfortunately
not the case in SC algorithms. In fact, it is a generic and
natural phenomenon in RGG that when xi,xj and xi,xk
are connected, the probability that xj ,xk are connected will
be higher, hence the independence assumption does not hold
for RGG.

With this fundamental gap in mind, it is crucial to develop a
theory for RGG to provide a rigorous theoretical guarantee
for SC algorithms.

2. Preliminaries and Problem Formulation
The generative model for data points in UoS we adapt
in this paper is the semi-random model introduced in
Soltanolkotabi et al. (2012), which assumes that the sub-
spaces are fixed with points distributed uniformly at random
on each subspace. This is arguably the simplest model pro-
viding a good starting point for a theoretical investigation.
We begin with the two-cluster case to demonstrate the mech-
anism of spectral method. These assumptions are made only
to simplify the exposition and are by no means crucial to the
analysis. In fact, the above simplest case already captures
the essential point of the problem. We shall show momentar-
ily that by investigating this simple case we will develop all
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Algorithm 1 Thresholding inner-product subspace cluster-
ing (TIP-SC)
Require: Normalized data set {xi}1≤i≤N , threshold τ .

1: Construct Adjacent Matrix A:
2: Aij = 1 if i 6= j, |〈xi,xj〉| ≥ τ , or Aij = 0 other-

wise.
3: Apply Spectral Method on A:
4: Calculate W , the eigenspace corresponding to the

top two eigenvalues of A.
5: Use sgn(w) as clustering result, where w is the vec-

tor in W perpendicular to the projection of all-ones
vector in W .

the ideas and techniques required for handling the general
case. Without much effort, the results obtained here can be
generalized to more subspaces with different dimensions
and samples, which will be discussed briefly in Section 6.

Specifically, assume that the data consists of two clusters,
corresponding to two fixed subspaces S1, S2 in Rn, each
with N/2 data points uniformly sampled from the unit
spheres Sd−11 and Sd−12 respectively in S1 and S2 Here
d is the subspace dimension and n is the ambient dimen-
sion. The goal of SC is to cluster the normalized data points
{xi}1≤i≤N .

Given the general description of SC, we turn our attention to
a simple prototypical SC algorithm detailed in Algorithm 1,
which we call Thresholding Inner-Product Subspace Clus-
tering (TIP-SC). Considering that the angle between the
data points in the same subspaces would be smaller statisti-
cally, we construct for some threshold τ ∈ (0, 1) the random
graph by computing its adjacent matrix A, whereAij = 1 if
i 6= j, |〈xi,xj〉| ≥ τ , and Aij = 0 otherwise. The TIP-SC
algorithm concludes with applying the spectral clustering
method on A. The construction method of the adjacent ma-
trix A is very close to TSC proposed in Heckel & Bölcskei
(2015), and hence is ought to enjoy similar performance.
We refer to Heckel & Bölcskei (2015) for a thorough evalu-
ation of simulated and practical performances of this kind
of construction method.

The main task of this paper is to prove this simple algorithm
can achieve a high clustering accuracy under fairly general
condition, which will be done in the next section.

Notations. Let U1,U2 denote the orthonormal bases for
the subspaces S1, S2, respectively, and λ1 ≥ . . . ≥ λd ≥ 0
denote the singular values of U>1 U2. We also use S and
S′ to denote the subspaces to which xi does and doesn’t
belong, respectively. Then xi = Uai where U denotes
the orthonormal bases for S, ai

ind.∼ N (0, 1dId) ∈ Rd, and
ai = ai/‖ai‖ denotes its normalization. We use p, q to
represent the probability that Aij = 1 for j 6= i,xj ∈ S

and xj ∈ S′, respectively. Conditioned on xi, let pi denote
the probability of Aij = 1 for j 6= i,xj ∈ S, and qi denote
the probability of Aij = 1 for j,xj ∈ S′. Denote

aff :=

√∑
i λ

2
i

d
,

κ := 1− aff2,

ρ :=
N

2d
.

Let u,v ∈ RN with ui = 1√
N

, and vi = 1√
N

, if xi ∈ S1,
and vi = − 1√

N
, if xi ∈ S2, then v is the ground truth.

W denotes the eigenspace corresponding to the top two
eigenvalues of A, and w denotes the vector in W , which is
perpendicular to the projection of u in W .

Further, aN = O(bN ) and aN . bN mean that |aN/bN | <
c for some constant c > 0; aN = Ω(bN ) and aN & bN
mean that |aN/bN | > c for some constant c > 0; aN ∼ bN
means that c1 < |aN/bN | < c2 for some constant c1, c2 >
0.

3. Error Rate of TIP-SC Algorithm
This section presents our main theoretical results concerning
the performance of TIP-SC. By the perturbation analysis of
A from EA, the success of spectral method for SBM has
been proved in various statistical assumptions. However,
such analysis is insufficient to establish our result, since for
UoS-RGG, the independence condition doesn’t hold, which
is the crux leading to the failure of the existing methods for
analyzing spectral method on random graph. As a substitute,
we discover the conditional independence property for A,
based on which we prove that the clustering result of TIP-
SC is almost correct under some mild condition on affinity
and sampling rate, which is explained in the following theo-
rem through the clustering error rate, the proportion of the
number of data points which are erroneously labelled.

Theorem 1. Choosing τ = O
(

1√
d

)
such that p = O(1),

there exists some numerical constant c > 0, such that
whenever κ > c 1

4√
d

, the clustering error rate of TIP-SC

is less than O
(

1
κ2 ( logN

N + log d
d )
)

with probability at least

1−O( 1
N10 ).

Parameter selection is often critical for the success of al-
gorithms. The above result suggests that a dense graph
(p = O(1)) is usually a good choice, which is quite differ-
ent with SDP.

In this regime, the above result indicates that the algorithm
works correctly in fairly broad conditions compared with
existing analysis for SC. A fascinating insight revealed by
the above theorem is that even when the number of samples



Theory of Spectral Method for Union of Subspaces-Based Random Geometry Graph

N � d, we can succeed to cluster the data set, which
demonstrates the commonly accepted opinion that ρ > 1 is
necessary for SC is partially inaccurate.

To clarify the condition on κ, namely on affinity, assume
these two subspaces overlap in a smaller subspace of dimen-
sion s, but are orthogonal to each other in the remaining di-
rections. In this case, the affinity between the two subspaces
is equal to

√
s/d. Our assumption on κ indicates that sub-

spaces can have intersections of almost all dimensions, i.e.,
s = (1−o(1))d. In contrast, previous works (Soltanolkotabi
et al., 2012; 2014) imposes that the overlapping dimension
should obey s = o(1)d, so that the subspaces are practi-
cally orthogonal to each other. In addition, under a slightly
stronger condition, i.e., aff = O(1), we can prove the clus-
tering error rate of TIP-SC can be exponentially small, i.e.,
O(e−d), which is stated in Theorem 3.

In the noisy case, we assume each data point is of the form

y = x + z, (1)

where x denotes the clean data used in the above theorem,
and z ∼ N (0, σ

2

n I) is an independent stochastic noise term.
We have the following robustness guarantee for TIP-SC.

Theorem 2. Choosing τ = O
(

1√
d

)
such that p = O(1),

there exists some numerical constant c, σ∗ > 0, such that
whenever κ > c 1

4√
d

and σ < σ∗, the clustering error rate

of TIP-SC is less than O
(

(1+σ2d/n)2

κ2 ( logN
N + log d

d )
)

with

probability at least 1−O( 1
N10 ).

The proof is similar to that of Theorem 1, and both are
deferred to Section 5.

4. Numerical Experiments
In this section, we perform numerical experiments validating
our main results. We evaluate the algorithm and theoretical
results based on the clustering accuracy. The impacts of
κ, ρ, p, q on the clustering accuracy are demonstrated. Be-
sides, we also show the efficiency of TIP-SC in the presence
of noise.

According to the definition of semi-random model, to save
computation and for simplicity, the data are generated by
the following steps.

1) Given d� n and aff =
√
s/d, define ei ∈ Rn, whose

entries are zero but the i-th entry is one. Let U1 =
[e1, e2, . . . , ed] be the orthonormal basis for subspace
for S1, and U2 = [ed−s+1, ed−s+2, . . . , e2d−s] be the
orthonormal basis for subspace for S2, such that the
affinity between S1 and S2 is

√
s/d.

2) Given N = ρd, generate N vectors a1,a2, . . . ,aN ∈
Rd independently from N (0, 1dI). Let xi = U1

ai

‖ai‖

p
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Figure 1. The relation between p and q, when d = 100, n =
5000, κ = 1−

√
1/2 (s = d/2), ρ = 1.

for 1 ≤ i ≤ N/2 and xi = U2
ai

‖ai‖ for N/2 + 1 ≤
i ≤ N .

3) In the presence of noise, given σ > 0, generate N ran-
dom noise terms z1, z2, . . . ,zN ∈ Rn independently
from N (0, σ

2

n I). Let the normalized data of xi + zi
be the input of Algorithm 1.

Since there are too many factors we need to consider, we al-
ways observe the relation between two concerned quantities,
while keep others being some predefined typical values, i.e.,
d∗ = 100, n∗ = 5000, κ∗ = 1−

√
1/2 (s∗ = d/2), ρ∗ = 1,

and τ is chosen to be τ∗ such that the connection rate
p+q
2 = 0.2. We conduct the experiments in noiseless sit-

uations, except the last one which tests the robustness of
Algorithm 1. Moreover, the curves are plotted by 100 trials
in each experiment, while the mean and the standard devia-
tion are represented by line and error bar, respectively. We
can find that the randomness is eliminated in all experiments
when the error rate is small.

It is obvious that p will decrease simultaneously if q de-
creases by increasing τ , which is also demonstrated in Fig-
ure 1. Combining the result of the second experiment (c.f.
Figure 2), we can find that it is better to make p, q both large
than to choose q = 0, although q = 0 is suggested by SDP,
which is consistent with our result, while shows that SDP is
somewhat inadequate for SC.

In the third and fourth experiments, we inspect the impacts
of affinity and sampling rate on the performance of TIP-SC.
From Figure 3 and Figure 4, the claim that SC works well
in fairly broad conditions is verified. In addition, according
to (1), we have

SNR = 10 log
1

σ2
,

then the last experiment (c.f. Figure 5) shows that the algo-
rithm is robust even though SNR is low.
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Figure 2. This figure demonstrates the clustering error rate versus
the connection rate ( p+q

2
) in a general interval, when d = 100, n =

5000, κ = 1−
√

1/2(s = d/2), ρ = 1.
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Figure 3. This figure demonstrates the clustering error rate versus
the affinity in a general interval, when d = 100, n = 5000, ρ =
1, p+q

2
= 0.2.

5. Proof of Main Results
5.1. Proof of Theorem 1

Recall the definition of u,v,w,W in Section 2, and notice
that analyzing the error rate, denoted by γ, is equivalent to
studying the difference between w and v. Without loss of
generality we may assume that 〈w,v〉 > 0, thus the error
rate is exactly

γ =
1

4

∥∥∥∥ 1√
N

sgn(w)− v

∥∥∥∥2
2

.

To estimate γ, it suffices to bound the distance between u,v
and W .

By simple geometric consideration, we have
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Figure 4. This figure demonstrates the clustering error rate versus
the sampling rate ρ in a general interval, when d = 100, n =
5000, κ = 1−

√
1/2 (s = d/2), p+q

2
= 0.2.
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Figure 5. This figure demonstrates the clustering error rate versus
the SNR in a general interval, when d = 100, n = 5000, κ =
1−

√
1/2 (s = d/2), ρ = 1, p+q

2
= 0.2.

∥∥∥∥ 1√
N

sgn(w)− v

∥∥∥∥
2

≤ 2‖Pwv − v‖2
≤ 2(‖PW v − v‖2 + ‖Pwv − PW v‖2)

= 2(‖PW v − v‖2 + |〈PWu,v〉|)
≤ 2(‖PW v − v‖2 + ‖PWu− u‖2)

≤ 2‖v − PW v‖2 + 4‖u− PWu‖2,

where PWu denote the normalization of PWu. Moreover,
for any λ,x, we have

‖Ax− λx‖2 ≥ (λ− λ3(A))‖x− PWx‖2,

where λ3(A) denotes the third largest eigenvalue of A.



Theory of Spectral Method for Union of Subspaces-Based Random Geometry Graph

Summing up, for λ1, λ2 > λ3(A),

γ =
1

4

∥∥∥∥ 1√
N

sgn(w)− v

∥∥∥∥2
2

.
‖Au− λ1u‖22
(λ1 − λ3(A))2

+
‖Av − λ2v‖22
(λ2 − λ3(A))2

,

Considering that E〈Au,u〉 = p(N/2 − 1) + qN/2, we
expect λ1 = p(N/2−1)+qN/2 is a good choice. Similarly,
choose λ2 = p(N/2− 1)− qN/2.

From above discussion, to estimate γ we need to:

• Prove ‖Au−λ1u‖2 and ‖Av−λ2v‖2 are sufficiently
small (see Lemma 1 and Lemma 2).

• Prove λ1 − λ3(A) and λ2 − λ3(A) are sufficiently
large, which is equivalent to showing p − q is large
enough (see Lemma 1) and λ3(A) is small enough (see
Lemma 3).

Before proceeding, we analyze the adjacent matrix A based
on the conditional independence property, and provide prob-
ability estimations used in the proof of Theorem 1. Specif-
ically, this refers to if conditioned on xi, i ∈ S for some
subset S of [N ], Aij , for j ∈ Sc, are functions of xj , re-
spectively, and then are independent from each other.

Moreover, recalling the definition of xi,ai, if conditioned
on xi, i ∈ S, Aij , for j ∈ Sc are nearly identically dis-
tributed, and for some j ∈ Sc, Aij , for i ∈ S are nearly
independent from each other, which will be explained and
employed many times in the following analysis.

With above intuitions, we will provide some key lemmas
for the analysis of spectral method.

Lemma 1. Choose τd = O(1), then p = Ω(1). Moreover,
there exists some constant c > 0, such that if κ = 1−aff2 >

c
√

log d
d ,

p− q & κ,

and
1

N

∑
i

(qi − q)2 .
log d

d
.

Proof. The proof can be found in Li & Gu (2019).

Having finished the calculation about the probability of each
entry, we now turn to the overall properties of A.

Lemma 2. Conditioned on xi, for any t > 0

P

∣∣∣∣∣∣ 1

N/2− 1

∑
j:xj∈S

Aij − p

∣∣∣∣∣∣ > t

 < e
− t2(N/2−1)

p+1
3
t ,

and

P

∣∣∣∣∣∣ 1

N/2

∑
j:xj∈S′

Aij − qi

∣∣∣∣∣∣ > t

 < e
− t2N/2

qi+
1
3
t .

Proof. The proof can be found in Li & Gu (2019).

In the next lemma, we will analyze the eigenvalue of A.

Lemma 3. With probability at least 1− 1
N10 ,

λ3(A) < c

√
Np logN +

N2p2√
d
,

where λ3(A) denotes the third largest eigenvalue of A.

Proof. The proof can be found in Li & Gu (2019).

Now, we have all the ingredients for the proof of Theorem 1.

Proof of Theorem 1. We begin with some inequalities for
estimating the error. We have

‖Au−
( (N−2)p

2
+
Nq

2

)
u‖22

=
1

N

∑
i

( ∑
j:xj∈S

Aij −
(N−2)p

2
+

∑
j:xj∈S′

Aij −
Nq

2

)2
≤ 3

N

∑
i

( ∑
j:xj∈S

Aij −
(N−2)p

2

)2
+

3

N

∑
i

( ∑
j:xj∈S′

Aij −
Nqi

2

)2
+

3

N

∑
i

(Nqi
2
− Nq

2

)2
.

According to Lemma 2, for all 1 ≤ i ≤ N , we have, with
probability at least 1− 1

N10 ,( ∑
j:xj∈S

Aij − p(N/2− 1)

)2

. N logN,

and ( ∑
j:xj∈S′

Aij − qiN/2
)2

. N logN.

On the other hand, Lemma 1 gives,

3

N

∑
i

(qiN/2− qN/2)2 . ρN log d.

Summing up, we have, with probability at least 1− 1
N10 ,

‖Au− (p(N/2− 1) + qN/2)u‖22 . N(logN + ρ log d).

Similarly, with probability at least 1− 1
N10 ,

‖Av − (p(N/2− 1)− qN/2)v‖22 . N(logN + ρ log d).
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According to Lemma 3, with probability at least 1− 1
N10 ,

the third largest eigenvalue of A satisfies

λ3(A) .

√
Np logN +

N2p2√
d

= O

(
N
4
√
d

)
.

With these estimations at hand, recall

γ .
‖Au− (p(N/2− 1) + qN/2)u‖22
|p(N/2− 1) + qN/2− λ3(A)|2

+
‖Av − (p(N/2− 1)− qN/2)v‖22
|p(N/2− 1)− qN/2− λ3(A)|2

.

Lemma 1 gives p± q & 1− aff2, then we have

γ .

√N(logN + ρ log d)

N
(

1− aff2 − 1
4√
d

)
2

∼ logN + ρ log d

κ2N
.

We conclude the proof.

5.2. Proof of Theorem 2

Robustness analysis can be completed by following the
similar analysis method. We provide the differences in the
analysis of noise, while omit the details.

Here, we only need to pay attention to the changes of
Lemma 1, Lemma 2, and Lemma 3, when adding noise.
Notice that the noise terms do not destroy the wonderful
conditional independence property, then it’s obvious that
except the estimation for p− q, all other bounds still hold in
a similar way. Through simple calculation, the contribution
of noise has the form

p− q & κ

1 + σ2d/n
.

Taking this change into account, we can get the result easily.

6. Extension to Multi-cluster Case
Here, assume that the data consists of L clusters, corre-
sponding to L fixed subspaces S1, S2, . . . , SL in Rn, with
dimension d1, d2, . . . , dL respectively. There are Nl data
points uniformly sampled from the unit spheres Sdl−11 in
Sl for 1 ≤ l ≤ L. Then, we aim to cluster the normalized
data points {xi}1≤i≤N for N = N1 +N2 + . . .+NL. In
addition, TIP-SC, detailed in Algorithm 1, refers to the fol-
lowing procedure here. For some threshold τ ∈ (0, 1) the
random graph by computing its adjacent matrix A, where
Aij = 1 if i 6= j, |〈xi,xj〉| ≥ τ , and Aij = 0 otherwise.
Then we apply the spectral clustering method on A, which
is also done by two steps with slightly difference.

• Calculate W , the eigenspace corresponding to the top
L eigenvalues of A.

• Use k-means to cluster {PWAi}1≤i≤N , where PW

denote the projection matrix onto W , and Ai denotes
the i-th column of A.

The main task of this section is to prove this algorithm is
efficient for the multi-cluster case, which is completed by
showing that ‖PWAi − PWAj‖2 is small if xi,xj are
from the same subspace, and ‖PWAi − PWAj‖2 is large
otherwise. This is stated in the following.

Before proceeding, let’s introduce some notations used in
this section. We use qij to represent the connection proba-
bility for two different points x ∈ Si and y ∈ Sj . Denote

aff := max
1≤i 6=j≤L

√ ∑
i λ

2
i

min{di, dj}
,

For some data sets X , let Rinter(X ) denote the maximal
projection distance of ‖PW (Ai−Aj)‖2 when xi,xj ∈ X
are from different subspaces, and Rinner(X ) denote the
minimal projection distance of ‖PW (Ai − Aj)‖2 when
xi,xj ∈ X are from the same subspace.

Theorem 3. Choosing τ = O

(
1√

max1≤l≤L dl

)
such

that pl = O(1) for all 1 ≤ l ≤ L, there exists
some numerical constant c > 0 depending only on
L,max di/min di,maxNi/minNi, such that whenever
aff < c, with probability at least 1 − O( 1

N10 ), we have
Rinter(X ) > 4Rinner(X ) with |X | = (1−O(e−d))N , and
the TIP-SC will deliver a nearly correct clustering result. In
addition, in the noisy case, the result still holds if σ < σ∗

for some numerical constant σ∗ > 0.

In the multi-cluster case, we expose a more strict condi-
tion, i.e., aff = O(1), ignoring some factor with respect
to L,max di/min di,maxNi/minNi. This assumption is
still more generous than previous work, since there is no
need to force data points in different subspaces to be discon-
nected. The detailed dependence on the above parameters
and improvement condition for aff are beyond our scope,
which we leave as future work. To avoid repetition, we
will introduce the proof for the above result briefly, whose
details are omitted due to the similarity with the two-cluster
case.

Proof sketch. We consider the noiseless case, and the
noisy case can be analyzed similarly. Let A? := EA whose
entry is qij determined by its corresponding subspaces, and
W ? denote the eigenspace corresponding to the top L eigen-
values of A?. The assumption on aff makes mini qii

maxi6=j qij
> C

for some constant C > 0. Then the following facts hold for
most data points ((1−O(e−d))N ).

• If xi,xj are from the same subspace, we have with
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probability at least 1− 1
N10 ,

‖PW ?(Ai −Aj)‖22 � N,

while if they are from different subspaces,

‖PW ?(Ai −Aj)‖22 & N,

• Under the affinity condition, we have λL(A?) � N ,
and ‖A−A?‖op . N

4√
d

with probability at least 1−
1
N10 through the same analysis as Lemma 3. Then,∣∣∣‖PW (Ai −Aj)‖2 − ‖PW ?(Ai −Aj)‖2

∣∣∣
≤ ‖PW − PW ?‖op‖Ai −Aj‖2

.
‖A−A?‖op

λL(A?)− ‖A−A?‖op
·
√
N

.

√
N√
d
.

Putting everything together leads to Rinter > 4Rinner,
which implies that k-means can succeed.

7. Conclusion
This paper establish a theory to analyze spectral method for
Random Geometry Graph constructed by data points from
Union of Subspaces. Based on this theory, we demonstrate
the efficiency of Subspace Clustering in fairly broad condi-
tions. To the best of our knowledge, the clustering accuracy
of spectral method for SC has not been shown in the prior
literature. The insights and analysis techniques developed
in this paper might also have implications for other Random
Geometry Graph.

Moving forward, one issue is to understand UoS-RGG con-
structed by more complex strategy, such as SSC. Addition-
ally, ideally one would desire an exact recovery by spectral
method, which needs entrywise analysis. We leave these to
future investigation.
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