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Abstract
Fairness and robustness are two important con-
cerns for federated learning systems. In this work,
we identify that robustness to data and model poi-
soning attacks and fairness, measured as the uni-
formity of performance across devices, are com-
peting constraints in statistically heterogeneous
networks. To address these constraints, we pro-
pose employing a simple, general framework for
personalized federated learning, Ditto, that can
inherently provide fairness and robustness bene-
fits, and develop a scalable solver for it. Theoreti-
cally, we analyze the ability of Ditto to achieve
fairness and robustness simultaneously on a class
of linear problems. Empirically, across a suite
of federated datasets, we show that Ditto not
only achieves competitive performance relative to
recent personalization methods, but also enables
more accurate, robust, and fair models relative to
state-of-the-art fair or robust baselines.

1. Introduction
Federated learning (FL) aims to collaboratively learn from
data that has been generated by, and resides on, a number of
remote devices or servers (McMahan et al., 2017). FL stands
to produce highly accurate statistical models by aggregating
knowledge from disparate data sources. However, to deploy
FL in practice, it is necessary for the resulting systems to be
not only accurate, but to also satisfy a number of pragmatic
constraints regarding issues such as fairness, robustness, and
privacy. Simultaneously satisfying these varied constraints
can be exceptionally difficult (Kairouz et al., 2019).

We focus in this work specifically on issues of accuracy,
fairness (i.e., limiting performance disparities across the net-
work (Mohri et al., 2019)), and robustness (against training-
time data and model poisoning attacks). Many prior efforts
have separately considered fairness or robustness in feder-
ated learning. For instance, fairness strategies include using
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minimax optimization to focus on the worst-performing de-
vices (Mohri et al., 2019; Hu et al., 2020) or reweighting the
devices to allow for a flexible fairness/accuracy tradeoff (Li
et al., 2020e; 2021). Robust methods commonly use tech-
niques such as gradient clipping (Sun et al., 2019) or robust
aggregation (Blanchard et al., 2017; Yin et al., 2018).

While these approaches may be effective at either promoting
fairness or defending against training-time attacks in isola-
tion, we show that the constraints of fairness and robustness
can directly compete with one another when training a single
global model, and that simultaneously optimizing for accu-
racy, fairness, and robustness requires careful consideration.
For example, as we empirically demonstrate (Section 4),
current fairness approaches can render FL systems highly
susceptible to training time attacks from malicious devices.
On the other hand, robust methods may filter out rare but
informative updates, causing unfairness (Wang et al., 2020).

In this work, we investigate a simple, scalable technique to
simultaneously improve accuracy, fairness, and robustness
in federated learning. While addressing the competing con-
straints of FL may seem like an insurmountable problem, we
identify that statistical heterogeneity (i.e., non-identically
distributed data) is a root cause for tension between these
constraints, and is key in paving a path forward. In particu-
lar, we suggest that methods for personalized FL—which
model and adapt to the heterogeneity in federated settings
by learning distinct models for each device—may provide
inherent benefits in terms of fairness and robustness.

To explore this idea, we propose Ditto, a scalable feder-
ated multi-task learning framework. Ditto can be seen as
a lightweight personalization add-on for standard global FL.
It is applicable to both convex and non-convex objectives,
and inherits similar privacy and efficiency properties as tra-
ditional FL. We evaluate Ditto on a suite of federated
benchmarks and show that, surprisingly, this simple form of
personalization can in fact deliver better accuracy, robust-
ness, and fairness benefits than state-of-the-art, problem-
specific objectives that consider these constraints separately.
We summarize our contributions below:

• We propose Ditto, a multi-task learning objective for
federated learning that provides personalization while
retaining similar efficiency and privacy benefits as tra-
ditional FL. We provide convergence guarantees for our
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proposed Ditto solver, which incorporate common prac-
tices in cross-device federated learning such as limited
device participation and local updating. Despite its sim-
plicity, we show that Ditto can deliver similar or su-
perior accuracy relative to other common methods for
personalized federated learning.

• Next, we demonstrate that the benefits of Ditto go be-
yond accuracy—showing that the personalized objective
can inherently offer robustness superior to that of com-
mon robust FL methods across a diverse set of data and
model poisoning attacks. On average across all datasets
and attacks, Ditto improves test accuracy by ∼6% (ab-
solute) over the strongest robust baseline.

• Similarly, we show that Ditto can naturally increase
fairness—reducing variance of the test accuracy across
devices by ∼10% while maintaining similar or superior
accuracy relative to state-of-the-art methods for fair FL.

• Finally, we highlight that Ditto is particularly useful
for practical applications where we simultaneously care
about multiple constraints (accuracy, fairness, and ro-
bustness). We motivate this through analysis on a toy
example in Section 3, as well as experiments across a
suite of federated datasets in Section 4.

2. Background & Related Work
Robustness and fairness are two broad areas of research
that extend well beyond the application of federated learn-
ing. In this section we provide precise definitions of the
notions of robustness/fairness considered in this work, and
give an overview of prior work in robustness, fairness, and
personalization in the context of federated learning.

Robustness in Federated Learning. Training-time at-
tacks (including data poisoning and model poisoning) have
been extensively studied in prior work (Biggio et al., 2012;
Gu et al., 2017; Chen et al., 2017; Shafahi et al., 2018; Liu
et al., 2018; Huang et al., 2020; Xie et al., 2020; Wang
et al., 2020; Dumford & Scheirer, 2018; Huang et al., 2020).
In federated settings, a number of strong attack methods
have been explored, including scaling malicious model
updates (Bagdasaryan et al., 2020), collaborative attack-
ing (Sun et al., 2020), defense-aware attacks (Bhagoji et al.,
2019; Fang et al., 2020), and adding edge-case adversar-
ial training samples (Wang et al., 2020). Our work aims
to investigate common attacks related to Byzantine robust-
ness (Lamport et al., 2019), as formally described below.

Definition 1 (Robustness). We are conceptually interested
in Byzantine robustness (Lamport et al., 2019), where the
malicious devices can send arbitrary updates to the server to
compromise training. To measure robustness, we assess the
mean test performance on benign devices, i.e., we consider
model w1 to be more robust than w2 to a specific attack

if the mean test performance across the benign devices is
higher for model w1 than w2 after training with the attack.
We examine three widely-used attacks in our threat model:

• (A1) Label poisoning: Corrupted devices do not have
access to the training APIs and training samples are poi-
soned with flipped (if binary) or uniformly random noisy
labels (Bhagoji et al., 2019; Biggio et al., 2011).

• (A2) Random updates: Malicious devices send random
zero-mean Gaussian parameters (Xu & Lyu, 2020).

• (A3) Model replacement: Malicious devices scale their
adversarial updates to make them dominate the aggregate
updates (Bagdasaryan et al., 2020).

While non-exhaustive, these attacks have been commonly
studied in distributed and federated settings, and explore
corruption at various points (the underlying data, labels,
or model). In terms of defenses, robust aggregation is a
common strategy to mitigate the effect of malicious up-
dates (Blanchard et al., 2017; Pillutla et al., 2019; Sun
et al., 2019; Li et al., 2019; He et al., 2020). Other de-
fenses include gradient clipping (Sun et al., 2019) or nor-
malization (Hu et al., 2020). While these strategies can
improve robustness, they may also produce unfair models
by filtering out informative updates, especially in hetero-
geneous settings (Wang et al., 2020). In our experiments
(Section 4), we compare Ditto with several strong de-
fenses (median, gradient clipping (Sun et al., 2019), Krum,
Multi-Krum (Blanchard et al., 2017), gradient-norm based
anomaly detector (Bagdasaryan et al., 2020), and a new de-
fense proposed herein) and show that Ditto can improve
both robustness and fairness compared with these methods.

Fairness in Federated Learning. Due to the heterogene-
ity of the data in federated networks, it is possible that the
performance of a model will vary significantly across the
devices. This concern, also known as representation dis-
parity (Hashimoto et al., 2018), is a major challenge in FL,
as it can potentially result in uneven outcomes for the de-
vices. Following Li et al. (2020e), we provide a more formal
definition of this fairness in the context of FL below:

Definition 2 (Fairness). We say that a model w1 is more
fair than w2 if the test performance distribution of w1

across the network is more uniform than that of w2, i.e.,
std {Fk(w1)}k∈[K] < std {Fk(w2)}k∈[K] where Fk(·) de-
notes the test loss on device k∈[K], and std{·} denotes
the standard deviation. In the presence of adversaries, we
measure fairness only on benign devices.

We note that there exists a tension between variance and
utility in the definition above; in general, a common goal is
to lower the variance while maintaining a reasonable aver-
age performance (e.g., average test accuracy). To address
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representation disparity, it is common to use minimax opti-
mization (Mohri et al., 2019; Deng et al., 2020) or flexible
sample reweighting approaches (Li et al., 2020e; 2021) to
encourage a more uniform quality of service. In all cases,
by up-weighting the importance of rare devices or data, fair
methods may not be robust in that they can easily overfit to
corrupted devices (see Section 4.3). The tension between
fairness and robustness has been studied in previous works,
though for different notions of fairness (equalized odds)
or robustness (backdoor attacks) (Wang et al., 2020), or in
centralized settings (Chang et al., 2020). Recently, Hu et al.
(2020) proposed FedMGDA+, a method targeting fair and
robust FL; however, this work combines classical fairness
(minimax optimization) and robustness (gradient normal-
ization) techniques, in contrast to the multi-task framework
proposed herein, which we show can inherently provide
benefits with respect to both constraints simultaneously.

Personalized Federated Learning. Given the variability
of data in federated networks, personalization is a natu-
ral approach used to improve accuracy. Numerous works
have proposed techniques for personalized federated learn-
ing. Smith et al. (2017) first explore personalized FL via
a primal-dual MTL framework, which applies to convex
settings. Personalized FL has also been explored through
clustering (e.g., Ghosh et al., 2020; Sattler et al., 2020;
Muhammad et al., 2020), finetuning/transfer learning (Zhao
et al., 2018; Yu et al., 2020), meta-learning (Jiang et al.,
2019; Chen et al., 2018; Khodak et al., 2019; Fallah et al.,
2020; Li et al., 2020a; Singhal et al., 2021), and other forms
of MTL, such as hard model parameter sharing (Agarwal
et al., 2020; Liang et al., 2020) or the weighted combination
method in Zhang et al. (2021). Our work differs from these
approaches by simultaneously learning local and global
models via a global-regularized MTL framework, which
applies to non-convex ML objectives.

Similar in spirit to our approach are works that interpolate
between global and local models (Mansour et al., 2020;
Deng et al., 2021). However, as discussed in Deng et al.
(2021), these approaches can effectively reduce to local min-
imizers without additional constraints. The most closely
related works are those that regularize personalized models
towards their average (Hanzely & Richtárik, 2020; Hanzely
et al., 2020; Dinh et al., 2020), which can be seen as a
form of classical mean-regularized MTL (Evgeniou & Pon-
til, 2004). Our objective is similarly inspired by mean-
regularized MTL, although we regularize towards a global
model rather than the average personalized model. As we
discuss in Section 3, one advantage of this is that it allows for
methods designed for the global federated learning problem
(e.g., optimization methods, privacy/security mechanisms)
to be easily re-used in our framework, with the benefit of
additional personalization. We compare against a range of
personalized methods empirically in Section 4.4, showing

that Ditto achieves similar or superior performance across
a number of common FL benchmarks.

Finally, a key contribution of our work is jointly explor-
ing the robustness and fairness benefits of personalized FL.
The benefits of personalization for fairness alone have been
demonstrated empirically in prior work (Wang et al., 2019;
Hao et al., 2020). Connections between personalization
and robustness have also been explored in Yu et al. (2020),
although the authors propose using personalization methods
on top of robust mechanisms. Our work differs from these
works by arguing that MTL itself offers inherent robustness
and fairness benefits, and exploring the challenges that exist
when attempting to satisfy both constraints simultaneously.

3. Ditto: Global-Regularized Federated
Multi-Task Learning

In order to explore the possible fairness/robustness benefits
of personalized FL, we first propose a simple and scalable
framework for federated multi-task learning. As we will see,
this lightweight personalization framework is amenable to
analyses while also having strong empirical performance.
We explain our proposed objective, Ditto, in Section 3.1
and then present a scalable algorithm to solve it in federated
settings (Section 3.2). We provide convergence guarantees
for our solver, and explain several practical benefits of our
modular approach in terms of privacy and efficiency. Finally,
in Section 3.3, we characterize the benefits of Ditto in
terms of fairness and robustness on a class of linear prob-
lems. We empirically explore the fairness and robustness
properties against state-of-the-art baselines in Section 4.

3.1. Ditto Objective

Traditionally, federated learning objectives consider fitting a
single global model, w, across all local data in the network.
The aim is to solve:

min
w

G(F1(w), . . . FK(w)) , (Global Obj)

where Fk(w) is the local objective for device k, andG(·) is a
function that aggregates the local objectives {Fk(w)}k∈[K]

from each device. For example, in FedAvg (McMahan et al.,
2017), G(·) is typically set to be a weighted average of
local losses, i.e.,

∑K
k=1 pkFk(w), where pk is a pre-defined

non-negative weight such that
∑
k pk = 1.

However, in general, each device may generate data xk via a
distinct distributionDk, i.e., Fk(w) := Exk∼Dk

[fk(w;xk)].
To better account for this heterogeneity, it is common to
consider techniques that learn personalized, device-specific
models, {vk}k∈[K] across the network. In this work we
explore personalization through a simple framework for
federated multi-task learning. We consider two ‘tasks’:
the global objective (Global Obj), and the local objective
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Fk(vk), which aims to learn a model using only the data
of device k. To relate these tasks, we incorporate a regu-
larization term that encourages the personalized models to
be close to the optimal global model. The resulting bi-level
optimization problem for each device k ∈ [K] is given by:

min
vk

hk(vk;w∗) := Fk(vk) +
λ

2
‖vk − w∗‖2

s.t. w∗ ∈ arg min
w

G(F1(w), . . . FK(w))) .
(Ditto)

Here the hyperparameter λ controls the interpolation be-
tween local and global models. When λ is set to 0, Ditto
is reduced to training local models; as λ grows large, it
recovers global model objective (Global Obj) (λ→ +∞).

Intuition for Fairness/Robustness Benefits. In addition
to improving accuracy via personalization, we argue that
Ditto can offer fairness and robustness benefits. To reason
about this, consider a simple case where data are homoge-
neous across devices. Without adversaries, learning a single
global model is optimal for generalization. However, in the
presence of adversaries, learning globally might introduce
corruption, while learning local models may not generalize
well due to limited sample size. Ditto with an appropriate
value of λ offers a tradeoff between these two extremes: the
smaller λ, the more the personalized models vk can deviate
from the (corrupted) global model w, potentially providing
robustness at the expense of generalization. In the hetero-
geneous case (which can lead to issues of unfairness as
described in Section 2), a finite λ exists to offer robustness
and fairness jointly. We explore these ideas more rigorously
in Section 3.3 by analyzing the tradeoffs between accuracy,
fairness, and robustness in terms of λ for a class of linear
regression problems, and demonstrate fairness/robustness
benefits of Ditto empirically in Section 4.

Other Personalization Schemes. As discussed in Sec-
tion 2, personalization is a widely-studied topic in FL. Our
intuition in Ditto is that personalization, by reducing re-
liance on the global model, can reduce representation dis-
parity (i.e., unfairness) and potentially improve robustness.
It is possible that other personalization techniques beyond
Ditto offer similar benefits: We provide some initial, en-
couraging results on this in Section 4.4. However, we specif-
ically explore Ditto due to its simple nature, scalability,
and strong empirical performance. Ditto is closely related
to works that regularize personalized models towards their
average (Hanzely & Richtárik, 2020; Hanzely et al., 2020;
Dinh et al., 2020), similar to classical mean-regularized
MTL (Evgeniou & Pontil, 2004); Ditto differs by regular-
izing towards a global model rather than the average person-
alized model. We find that this provides benefits in terms of
analysis (Section 3.3), as we can easily reason about Ditto

relative to the global (λ→∞) vs. local (λ→ 0) baselines;
empirically, in terms of accuracy, fairness, and robustness
(Section 4); and practically, in terms of the modularity it
affords our corresponding solver (Section 3.2).

Other Regularizers. To encourage the personalized mod-
els vk to be close to the optimal global model w∗, there are
choices beyond the L2 norm that could be considered, e.g.,
using a Bregman divergence-based regularizer or reshaping
the L2 ball using the Fisher information matrix. Under the
logistic loss (used in our experiments), the Bregman diver-
gence will reduce to KL divergence, and its second-order
Taylor expansion will result in an L2 ball reshaped with the
Fisher information matrix. Such regularizers are studied in
other related contexts like continual learning (Kirkpatrick
et al., 2017; Schwarz et al., 2018), multi-task learning (Yu
et al., 2020), or finetuning for language models (Jiang
et al., 2020). However, in our experiments (Section 4.4),
we find that incorporating approximate empirical Fisher
information (Yu et al., 2020; Kirkpatrick et al., 2017) or
symmetrized KL divergence (Jiang et al., 2020) does not
improve the performance over the simple L2 regularized
objective, while adding non-trivial computational overhead.

Remark (Relation to FedProx). We note that the L2

term in Ditto bears resemblance to FedProx, a method
which was developed to address heterogeneity in federated
optimization (Li et al., 2020d). However, Ditto funda-
mentally differs from FedProx in that the goal is to learn
personalized models vk, while FedProx produces a single
global modelw. For instance, when the regularization hyper-
parameter is zero, Ditto reduces to learning separate local
models, whereas FedProx would reduce to FedAvg. In fact,
Ditto is significantly more general than FedProx in that
FedProx could be used as the global model solver in Ditto
to optimize G(·). As discussed above, other regularizers
beyond the L2 norm may also be used in practice.

3.2. Ditto Solver

To solve Ditto, we propose jointly solving for the global
model w∗ and personalized models {vk}k∈[K] in an alter-
nating fashion, as summarized in Algorithm 1. Optimization
proceeds in two phases: (i) updates to the global model, w∗,
are computed across the network, and then (ii) the personal-
ized models vk are fit on each local device. The process of
optimizing w∗ is exactly the same as optimizing for any ob-
jective G(·) in federated settings: If we use iterative solvers,
then at each communication round, each selected device can
solve the local subproblem of G(·) approximately (Line 5).
For personalization, device k solves the global-regularized
local objective minvk hk(vk;wt) inexactly at each round
(Line 6). Due to this alternating scheme, our solver can
scale well to large networks, as it does not introduce addi-
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tional communication or privacy overheads compared with
existing solvers for G(·). In our experiments (all except Ta-
ble 3), we use FedAvg as the objective and solver for G(·),
under which we simply let device k run local SGD on Fk
(Line 5). We provide a simplified algorithm definition using
FedAvg for the w∗ update in Algorithm 2 in the appendix.

Algorithm 1: Ditto for Personalized FL

1 Input: K, T , s, λ, η, w0, {v0k}k∈[K]

2 for t = 0, · · · , T − 1 do
3 Server randomly selects a subset of devices St,

and sends wt to them
4 for device k ∈ St in parallel do
5 Solve the local sub-problem of G(·)

inexactly starting from wt to obtain wtk:
wtk ← UPDATE GLOBAL(wt,∇Fk(wt))

/* Solve hk(vk;wt) */
6 Update vk for s local iterations:

vk = vk − η(∇Fk(vk) + λ(vk − wt))
Send ∆t

k := wtk − wt back
7 Server aggregates {∆t

k}:
wt+1 ← AGGREGATE

(
wt, {∆t

k}k∈{St}
)

8 return {vk}k∈[K] (personalized), wT (global)

We note that another natural choice to solve the Ditto
objective is to first obtain w∗, and then for each device k,
perform finetuning on the local objective minvk hk(vk;w∗).
These two approaches will arrive at the same solutions in
strongly convex cases. In non-convex settings, we observe
that there may be additional benefits of joint optimization:
Empirically, we find that the updating scheme tends to guide
the optimization trajectory towards a better solution com-
pared with finetuning starting from w∗, particularly when
w∗ is corrupted by adversarial attacks (Section 4.4). Intu-
itively, under training-time attacks, the global model may
start from a random one, get optimized, and gradually be-
come corrupted as training proceeds (Li et al., 2020b). In
these cases, feeding in early global information (i.e., before
the global model converges to w∗) may be helpful under
strong attacks.

We note that Ditto with joint optimization requires the
devices to maintain local states (i.e., personalized models)
and carry these local states to the next communication round
where they are selected. Solving Ditto with finetuning
does not need devices to be stateful, while losing the benefits
of alternate updating discussed above.

Modularity of Ditto. From the Ditto objective and
Alg 1, we see that a key advantage of Ditto is its modu-
larity, i.e., that we can readily use prior art developed for

the Global Obj along with the personalization add-on of
hk(vk;w∗), as highlighted in red. This has several benefits:

• Optimization: It is possible to plug in other methods
beyond FedAvg (e.g., Li et al., 2020c; Karimireddy et al.,
2020; Reddi et al., 2021) in Algorithm 1 to update the
global model, and inherit the convergence benefits, if any
(we make this more precise in Theorem 1).

• Privacy: Ditto communicates the same information
over the network as typical FL solvers for the global objec-
tive, thus preserving whatever privacy or communication
benefits exist for the global objective and its respective
solver. This is different from most other personalization
methods where global model updates depend on local
parameters, which may raise privacy concerns (London,
2020).

• Robustness: Beyond the inherent robustness benefits of
personalization, robust global methods can be used with
Ditto to further improve performance (see Section 4.4).

In particular, while not the main focus of our work, we note
that Ditto may offer a better privacy-utility tradeoff than
training a global model. For instance, when training Ditto,
if we fix the number of communication rounds and add
the same amount of noise per round to satisfy differential
privacy, Ditto consumes exactly the same privacy budget
as normal global training, while yielding higher accuracy
via personalization (Section 4). Similar benefits have been
studied, e.g., via finetuning strategies (Yu et al., 2020).

Convergence of Algorithm 1. Note that optimizing the
global model wt does not depend on any personalized mod-
els {vk}k∈[K]. Therefore, w enjoys the same global conver-
gence rates with the solver we use for G. Under this obser-
vation, we present the local convergence of Algorithm 1.

Theorem 1 (Local Convergence of Alg. 1; formal statement
and proof in Theorem 10). Assume for k ∈ [K], Fk is
strongly convex and smooth, under common assumptions,
if wt converges to w∗ with rate g(t), then there exists a
constant C<∞ such that for λ ∈ R, and for k ∈ [K], vtk
converges to v∗k := arg minvk hk(vk;w∗) with rate Cg(t).

Using Theorem 1, we can directly plug in previous conver-
gence analyses for any G(·). For instance, when the global
objective and its solver are those of FedAvg, we can obtain
an O(1/t) convergence rate for Ditto under suitable con-
ditions (Corollary 1). We provide a full theorem statement
and proof of convergence in Appendix B.

3.3. Analyzing the Fairness/Robustness Benefits of
Ditto in Simplified Settings

In this section, we more rigorously explore the fair-
ness/robustness benefits of Ditto on a class of linear prob-
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lems. Throughout our analysis, we assume G(·) is the stan-
dard objective in FedAvg (McMahan et al., 2017).

Point Estimation. To provide intuition, we first examine
a toy one-dimensional point estimation problem. Denote
the underlying models for the devices as {vk}k∈[K], vk ∈
R, and let the points on device k, {xk,1, . . . , xk,n}1, be
observations of vk with random perturbation, i.e., xk,i =
vk+zk,i, where zk,i ∼ N (0, σ2) and are IID. Assume vk ∼
N (θ, τ2), where θ is drawn from the uniform uninformative
prior on R, and τ is a known constant. Here, τ controls the
degree of relatedness of the data on different devices: τ=0
captures the case where the data on all devices are identically
distributed while τ →∞ results in the scenario where the
data on different devices are completely unrelated. The
local objective is minvk Fk(vk) = 1

2 (vk − 1
nk

∑nk

i=1 xk,i)
2.

In the presence of adversaries, we look at a specific type
of label poisoning attack. Let Ka denote the number of
malicious devices, and the ‘capability’ of an adversary is
modeled by τa, i.e., the underlying model of an adversary
follows N (θ, τ2a ) where τ2a > τ2.

We first derive the Bayes estimator (which will be the most
accurate and robust) for the real model distribution by ob-
serving a finite number of training points. Then, we show
that by solving Ditto, we are able to recover the Bayes
estimator with a proper λ∗ (with the knowledge of τ ). In ad-
dition, the same λ∗ results in the most fair solution among
the set of solutions of Ditto parameterized by λ. This
shows that Ditto with a proper choice of λ is Bayes op-
timal for this particular problem instance. In general, in
Theorem 8 (appendix), we prove that

λ∗ =
σ2

n

K

Kτ2 + Ka

K−1 (τ2a − τ2)
.

We see that λ∗ decreases when (i) there are more local
samples n, (ii) the devices are less related (larger τ ), or
(iii) the attacks are stronger (larger number of attackers,
Ka, and more powerful adversaries, τa). Related theorems
(Theorem 6-9) are presented in Appendix A.3.

In Figure 1, we plot average test error, fairness (standard
deviation shown as error bars), and robustness (test error
in the adversarial case) across a set of λ’s for both clean
and adversarial cases. We see that in the solution space
of Ditto, there exists a specific λ which minimizes the
average test error and standard deviation across all devices
at the same time, which is equal to the optimal λ∗ given by
our theory. Figure 2 shows (i) Ditto with λ∗ is superior
than learning local or global models, and (ii) λ∗ should
increase as the relatedness between devices (1/τ ) increases.

1For ease of notation, we assume each device has the same
number of training samples. It is straightforward to extend the
current analysis to allow for varying number of samples per device.

Figure 1. Empirically, the λ∗ given by Theorem 6-9 results in the
most accurate, fair, and robust solution within Ditto’s solution
space. λ∗ is also optimal in terms of accuracy and robustness
among any possible federated estimation algorithms.

Figure 2. Impact of data relatedness across all devices. When 1/τ
is small (less related), local outperforms global; when 1/τ is large
(more related), global is better than local. Ditto (λ∗) achieves the
lowest test error and variance (measured across benign devices).

Linear Regression. All results discussed above can be
generalized to establish the optimality of Ditto on a class
of linear regression problems (with additional assumptions
on feature covariance). We defer readers to Appendix A.2
for full statements and proofs. While our analyses here are
limited to a simplified set of attacks and problem settings,
we build on this intuition in Section 4—empirically demon-
strating the accuracy, robustness, and fairness benefits of
Ditto using both convex and non-convex models, across a
range of federated learning benchmarks, and under a diverse
set of attacks.

4. Experiments
In this section, we first demonstrate that Ditto can inher-
ently offer similar or superior robustness relative to strong
robust baselines (Section 4.1). We then show it results more
fair performance than recent fair methods (Section 4.2).
Ditto is particularly well-suited for mitigating the ten-
sion between these constraints and achieving both fairness
and robustness simultaneously (Section 4.3). We explore
additional beneficial properties of Ditto in Section 4.4.

Setup. For all experiments, we measure robustness via test
accuracy, and fairness via test accuracy variance (or stan-
dard deviation), both across benign devices (see Def. 1, 2).
We use datasets from common FL benchmarks (Caldas
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et al., 2018; Smith et al., 2017; TFF), which cover both
vision and language tasks, and convex and non-convex
models. Detailed datasets and models are provided in Ta-
ble 4 in Appendix C. We split local data on each device
into train/test/validation sets randomly, and measure perfor-
mance on the test data. For each device, we select λ locally
based on its local validation data. We further assume the
devices can make a binary decision on whether the attack is
strong or not. For devices with very few validation samples
(less than 4), we use a fixed small λ (λ=0.1) for strong at-
tacks, and use a fixed relatively large λ (λ=1) for all other
attacks. For devices with more than 5 validation data points,
we let each select λ from {0.05, 0.1, 0.2} for strong attacks,
and select λ from {0.1, 1, 2} for all other attacks. See Ap-
pendix D.2 for details. More advanced tuning methods are
left for future work. Our code, data, and experiments are
publicly available at github.com/litian96/ditto.

4.1. Robustness of Ditto

Following our threat model described in Definition 1, we
apply three attacks to corrupt a random subset of devices.
We pick corruption levels until a point where there is a sig-
nificant performance drop when training a global model. We
compare robustness (Def. 1) of Ditto with various defense
baselines, presenting the results of three strongest defenses

Figure 3. Robustness, i.e., average test accuracy on benign devices
(Definition 1), on Fashion MNIST and FEMNIST. We compare
Ditto with learning a global model and three strong defense
mechanisms (see Appendix D for results on all defense baselines),
and find that Ditto is the most robust under almost all attacks.

in Figure 3. Execution details and full results are reported in
Appendix D.4. As shown in Figure 3, Ditto achieves the
highest accuracy under most attacks, particularly those with
a large fraction of malicious devices. On average across
all datasets and attacks, Ditto results in ∼6% absolute
accuracy improvement compared with the strongest robust
baseline (Appendix D.4). In scenarios where a robust base-
line outperforms Ditto, we have also found that replacing
the global objective and its solver (FedAvg) with a robust
version (e.g., using robust aggregators) can further improve
Ditto, yielding superior performance (Section 4.4).

4.2. Fairness of Ditto

To explore the fairness of Ditto, we compare against
TERM (Li et al., 2021) as a baseline. It is an improved
version of the q-FFL (Li et al., 2020e) objective, which has
been recently proposed for fair federated learning. TERM
also recovers AFL (Mohri et al., 2019), another fair FL
objective, as a special case. TERM uses a parameter t to
offer flexible tradeoffs between fairness and accuracy. In
Table 1, we compare the proposed objective with global,
local, and fair methods (TERM) in terms of test accuracies
and standard deviation. When the corruption level is high,
‘global’ or ‘fair’ will even fail to converge. Ditto results
in more accurate and fair solutions both with and without
attacks. On average across all datasets, Ditto reduces
variance across devices by ∼10% while improving absolute
test accuracy by 5% compared with TERM (on clean data).

4.3. Addressing Competing Constraints

In this section, we examine the competing constraints be-
tween robustness and fairness. When training a single global
model, fair methods aim to encourage a more uniform per-
formance distribution, but may be highly susceptible to
training-time attacks in statistically heterogeneous environ-
ments. We investigate the test accuracy on benign devices
when learning global, local, and fair models. In the TERM
objective, we set t = 1, 2, 5 to achieve different levels of
fairness (the higher, the fairer). We perform the data poison-
ing attack (A1 in Def. 1). The results are plotted in Figure 4.
As the corruption level increases, we see that fitting a global
model becomes less robust. Using fair methods will be more
susceptible to attacks. When t gets larger, the test accuracy
gets lower, an indication that the fair method is overfitting
to the corrupted devices relative to the global baseline.

Next, we apply various strong robust methods under the
same attack, and explore the robustness/accuracy and fair-
ness performance. The robust approaches include: Krum,
multi-Krum (Blanchard et al., 2017), taking the coordinate-
wise median of gradients (‘median’), gradient clipping
(‘clipping’), filtering out the gradients with largest norms
(‘k-norm’), and taking the gradient of the k-th largest loss

https://github.com/litian96/ditto
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Table 1. Average (standard deviation) test accuracy to benchmark performance and fairness (Definition 2) on Fashion MNIST and
FEMNIST. Ditto is either (i) more fair compared with the baselines of training a global model, or (ii) more accurate than the fair
baseline under a set of attacks. We bold the method with highest average minus standard deviation across all methods.

Fashion A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global .911 (.08) .897 (.08) .855 (.10) .753 (.13) .900 (.08) .882 (.09) .857 (.10) .753 (.10) .551 (.13) .275 (.12)
local .876 (.10) .874 (.10) .876 (.11) .879 (.10) .874 (.10) .876 (.11) .879 (.10) .877 (.10) .874 (.10) .876 (.11)
fair (TERM, t=1) .909 (.07) .751 (.12) .637 (.13) .547 (.11) .731 (.13) .637 (.14) .635 (.14) .653 (.13) .601 (.12) .131 (.16)
Ditto .943 (.06) .944 (.07) .937 (.07) .907 (.10) .938 (.07) .930 (.08) .913 (.09) .921 (.09) .902 (.09) .873 (.11)

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global .804 (.11) .773 (.11) .727 (.12) .574 (.15) .774 (.11) .703 (.14) .636 (.15) .517 (.14) .487 (.14) .314 (.13)
local .628 (.15) .620 (.14) .627 (.14) .607 (.14) .620 (.14) .627 (.14) .607 (.14) .622 (.14) .621 (.14) .620 (.14)
fair (TERM, t=1) .809 (.11) .636 (.15) .562 (.13) .478 (.12) .440 (.15) .336 (.12) .363 (.12) .353 (.12) .316 (.12) .299 (.11)
Ditto .834 (.09) .802 (.10) .762 (.11) .672 (.13) .801 (.09) .700 (.15) .675 (.14) .685 (.15) .650 (.14) .613 (.13)

Figure 4. Fair methods can overfit to corrupted devices (possibly
with large training losses) by imposing more weights on them, thus
being particularly susceptible to attacks.

Figure 5. Compared with learning a global model, robust baselines
(i.e., the methods listed in the figure excluding ‘global’ and ‘Ditto’)
are either robust but not fair (with higher accuracy, larger variance),
or not even robust (with lower accuracy). Ditto lies at the lower
right corner, which is our preferred region.

where k is the number of malicious devices (‘k-loss’). For
Krum, multi-Krum, k-norm, and k-loss, we assume that
the server knows the expected number of malicious devices
that are selected each round, and can set k accordingly for
k-norm and k-loss. From Figure 5, we see that robust base-
lines are either (i) more robust than global but less fair, or
(ii) fail to provide robustness due to heterogeneity. Ditto
is more robust, accurate, and fair.

4.4. Additional Properties of Ditto

Personalization. We additionally explore the perfor-
mance of other personalized FL methods in terms of ac-
curacy and fairness, on both clean and adversarial cases. In
particular, we consider objectives that (i) regularize with the
average (L2SGD (Hanzely & Richtárik, 2020)) or the learnt
device relationship matrix (MOCHA (Smith et al., 2017)),
(ii) encourage closeness to the global model in terms of some
specific function behavior (EWC (Kirkpatrick et al., 2017;
Yu et al., 2020) and Symmetrized KL (SKL)), (iii) interpo-
late between local and global models (APFL (Deng et al.,
2021) and mapper (Mansour et al., 2020)), and (iv) have
been motivated by meta-learning (Per-FedAvg (HF) (Fal-
lah et al., 2020)). We provide a detailed description in
Appendix C.

We compare Ditto with the above alternatives, using the
same learning rate tuned on FedAvg on clean data for all
methods except Per-FedAvg, which requires additional tun-
ing to prevent divergence. For finetuning methods (EWC
and SKL), we finetune on each local device for 50 epochs
starting from the converged global model. We report re-
sults of baseline methods using their best hyperparame-
ters. Despite Ditto’s simplicity, in Table 2 below, we
see that Ditto achieves similar or superier test accuracy
with slightly lower standard deviation compared with these
recent personalization methods.

We also evaluate the performance of MOCHA with a convex
SVM model in Table 7 in the appendix. MOCHA is more
robust and fair than most baselines, which is in line with our
reasoning that personalization can provide benefits for these
constraints. Further understanding the robustness/fairness
benefits of other personalized approaches would be an inter-
esting direction of future work.
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Table 2. Ditto is competitive with or outperforms other recent
personalization methods. We report the average (standard devia-
tion) of test accuracies across all devices to capture performance
and fairness (Definition 2), respectively.

Clean 50% Adversaries (A1)

Methods FEMNIST CelebA FEMNIST CelebA
global .804 (.11) .911 (.19) .727 (.12) .538 (.28)
local .628 (.15) .692 (.27) .627 (.14) .682 (.27)
plain finetuning .815 (.09) .912 (.18) .734 (.12) .721 (.28)
L2SGD .817 (.10) .899 (.18) .732 (.15) .725 (.25)
EWC .810 (.11) .910 (.18) .756 (.12) .642 (.26)
SKL .820 (.10) .915 (.16) .752 (.12) .708 (.27)
Per-FedAvg (HF) .827 (.09) .907 (.17) .604 (.14) .756 (.26)
mapper .792 (.12) .773 (.25) .726 (.13) .704 (.27)
APFL .811 (.11) .911 (.17) .750 (.11) .710 (.27)
Ditto .836 (.10) .914 (.18) .767 (.10) .721 (.27)

Augmenting with Robust Baselines. Ditto allows the
flexibility of learning robust w∗ leveraging any previous
robust aggregation techniques, which could further improve
the performance of personalized models. For instance, in the
aggregation step at the server side (Line 7 in Algorithm 1),
instead of simply averaging the global model updates as in
FedAvg, we can aggregate them via multi-Krum, or after
gradient clipping. As is shown in Table 3, Ditto combined
with clipping yields improvements compared with vanilla
Ditto. We present full results on different datasets trying
varying robust methods in Table 6 in the appendix.

Table 3. Augmenting Ditto with robust baselines can further
improve performance.

FEMNIST A1 A2 A3

Methods 20% 80% 20% 80% 10% 20%

global .773 .574 .774 .636 .517 .364
clipping .791 .408 .791 .656 .795 .061
Ditto .803 .669 .792 .681 .695 .650
Ditto + clipping .810 .645 .808 .684 .813 .672

Figure 6. Ditto with joint optimization (Algorithm 1) outper-
forms the alternative local finetuning solver under the strong model
replacement attack.

Comparing Two Solvers. As mentioned in Section 3.2,
another way to solve Ditto is to finetune on
minvk hk(vk;w∗) for each k ∈ [K] after obtaining w∗. We
examine the performance of two solvers under the model
replacement attack (A3) with 20% adversaries. In realistic
federated networks, it may be challenging to determine how
many iterations to finetune for, particularly over a heteroge-
neous network of devices. To obtain the best performance
of finetuning, we solve minvk hk(vk;w∗) on each device
by running different iterations of mini-batch SGD and pick
the best one. As shown in Figure 6, the finetuning solver
improves the performance compared with learning a global
model, while Ditto combined with joint optimization per-
forms the best. One can also perform finetuning after early
stopping; however, it is essentially solving a different objec-
tive and it is difficult to determine the stopping criteria. We
discuss this in more detail in Appendix D.1.

5. Conclusion and Future Work
We propose Ditto, a simple MTL framework, to address
the competing constraints of accuracy, fairness, and robust-
ness in federated learning. Ditto can be thought of as a
lightweight personalization add-on for any global federated
objective, which maintains the privacy and communication
efficiency of the global solver. We theoretically analyze
the ability of Ditto to mitigate the tension between fair-
ness and robustness on a class of linear problems. Our
empirical results demonstrate that Ditto can result in both
more robust and fairer models compared with strong base-
lines across a diverse set of attacks. Our work suggests
several interesting directions of future study, such as ex-
ploring the applicability of Ditto to other attacks such as
backdoor attacks (e.g., Sun et al., 2019); understanding the
fairness/robustness properties of other personalized meth-
ods; and considering additional constraints, such as privacy.
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A. Analysis of the Federated Multi-Task Learning Objective Ditto
Here, we provide theoretical analyses of Ditto, mainly on a class of linear models. In this linear setting, we investigate
accuracy, fairness, and robustness of Ditto. We first discuss some general properties of Ditto for strongly convex
functions in terms of the training performance in Section A.1. We next present our main results on characterizing the benefits
(accuracy, fairness, and robustness) of Ditto on linear regression in Section A.2. Finally, we present results on a special
case of linear regression (federated point estimation problem examined in Section 3.3) in Section A.3.

A.1. Properties of Ditto for Strongly Convex Functions

Let the Ditto objective on device k be
hk(w) = Fk(w) + λψ(w), (1)

where Fk is strongly convex, and

ψ(w) :=
1

2
‖w − w∗‖2, (2)

w∗ := arg min
w

 1

K

∑
k∈[K]

Fk(w)

 . (3)

Let
ŵk(λ) = arg min

w
hk(w). (4)

Without any distributional assumptions on the tasks, we first characterize the solutions of the objective hk(w).

Lemma 1. For all λ ≥ 0,

∂

∂λ
Fk(ŵk(λ)) ≥ 0, (5)

∂

∂λ
ψ(ŵk(λ)) ≤ 0. (6)

In addition, for all k, if Fk(w∗) is finite, then
lim
λ→∞

ŵk(λ) = w∗. (7)

Proof. The proof here directly follows the proof in Hanzely & Richtárik (Theorem 3.1, 2020).

As λ increases, the local empirical training loss Fk(ŵk(λ)) will also increase, and the resulting personalized models will be
closer to the global model. Therefore, λ effectively controls how much personalization we impose. Since for any device
k ∈ [K], training loss is minimized when λ = 0, training separate local models is the most robust and fair in terms of
training performance when we do not consider generalization.

However, in order to obtain the guarantees on the test performance, we need to explicitly model the joint distribution of
data on all devices. In the next section, we explore a Bayesian framework on a class of linear problems to examine the
generalization, fairness, and robustness of the Ditto objective, all on the underlying test data.
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A.2. Federated Linear Regression

We first examine the case without corrupted devices in Section A.2.1. We prove that there exists a λ that results in an
optimal average test performance among all possible federated learning algorithms, which coincides with the optimal λ in
Ditto’s solution space in terms of fairness. When there are adversaries, we analyze the robustness benefits of Ditto in
Section A.2.2. In particular, we show there exists a λ which leads to the highest test accuracy across benign devices (i.e., the
most robust) and minimizes the variance of the test error across benign devices (i.e., the most fair) jointly.

Before we proceed, we first state a technical lemma that will be used throughout the analyses.
Lemma 2. Let θ be drawn from the non-informative uniform prior on Rd. Further, let {φk}k∈[K] denote noisy observations
of θ with additive zero-mean independent Gaussian noises with covariance matrices {Σk}k∈[K]. Let

Σθ :=

 ∑
k∈[K]

Σ−1k

−1 . (8)

Then, conditioned on {φk}k∈[K], we can write θ as

θ = Σθ
∑
k∈[K]

Σ−1k φk + z,

where z is N (0,Σθ) which is independent of {φk}k∈[K].

Lemma 2 is a generalization of Lemma 11 presented in Mahdavifar et al. (2018) (restated in Lemma 3 below) to the
multivariate Gaussian case. The proof also follows from the proof in Mahdavifar et al. (2018).
Lemma 3 (Lemma 11 in Mahdavifar et al. (2018)). Let θ be drawn from the non-informative uniform prior on R. Further, let
{φk}k∈[K] denote noisy observations of θ with additive zero-mean independent Gaussian noises with variances {σ2

k}k∈[K].
Let

1

σ2
θ

:=
∑
k∈[K]

1

σ2
k

. (9)

Then, conditioned on {φk}k∈[K], we can write θ as

θ = σ2
θ

∑
k∈[K]

φk
σ2
k

+ z,

where z is N (0, σ2
θ) which is independent of {φk}k∈[K].

A.2.1. NO ADVERSARIES: DITTO FOR ACCURACY AND FAIRNESS

We consider a Bayesian framework. Let θ be drawn from the non-informative prior on Rd, i.e., uniformly distributed on Rd.
We assume that K devices have their data distributed with parameters {wk}k∈[K]:

wk = θ + ζk, (10)

where ζk ∼ N (0, τ2Id) are I.I.D, and Id denotes the d× d identity matrix. τ controls the degree of dependence between
the tasks on different devices. If τ = 0, then the data on all devices is distributed according to parameter θ, i.e., the tasks are
the same, and if τ →∞, the tasks on different devices become completely unrelated.

We first derive optimal estimators {wk}k∈[K] for each device wk given observations {Xi, yi}i∈[K].
Lemma 4. Assume that we have

y = Xw + z (11)

where y ∈ Rn, X ∈ Rn×d, and w ∈ Rd, and z ∈ Rn. Further assume that z ∼ N (0, σ2Id) and w follows the
non-informative uniform prior on Rd. Let

ŵ = (XTX)−1XT y. (12)

Then, we have ŵ follows a multi-variate normal distribution as follows:

ŵ ∼ N
(
(XTX)−1XT y, σ2(XTX)−1

)
. (13)
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Lemma 5. Let
ŵi := (XT

i Xi)
−1XT

i yi. (14)

Let
Σi := σ2(XT

i Xi)
−1 + τ2Id. (15)

Further, let

Σ
\k
θ :=

 ∑
i∈[K],i6=k

Σ−1i

−1 . (16)

Further let
µ
\k
θ := Σ

\k
θ

∑
i∈[K],i6=k

Σ−1i ŵi (17)

Then, conditioned on {Xi, yi}i∈[K],i6=k, we can write θ as

θ = µ
\k
θ + η,

where η is N (0,Σ
\k
θ ) which is independent of {Xi, yi}i∈[K],i6=k.

Proof. From Lemma 4, we know ŵi is a noisy observation of the underlying wi with additive covariance σ2(XT
i Xi)

−1.
For {wk}k∈[K] defined in our setup, ŵi is a noisy observation of θ with additive zero mean and covariance Σi :=
τ2Id + σ2(XT

i Xi)
−1. The proof completes by applying Lemma 2 to {ŵi}i∈[K],i6=k.

Lemma 6. Let
Σ\kwk

:= Σ
\k
θ + τ2Id. (18)

Further, let

Σwk
:=
(

(Σ\kwk
)−1 + (Σk − τ2Id)−1

)−1
. (19)

Conditioned on {Xi, yi}i∈[K], we have

wk = Σwk
(Σk − τ2Id)−1ŵk + Σwk

(Σ\kwk
)−1µ

\k
θ + ζk, (20)

where ζk ∼ N (0,Σwk
).

Proof. ŵk is a noisy observation of wk with additive noise with zero mean and covariance σ2(XT
k Xk)−1 (which is

Σk − τ2Id). From Lemma 5, we know conditioned on {Xi, yi}i∈[K],i6=k, µ\kθ is a noisy observation of θ with covariance
Σ
\k
θ . Hence, with respect to wk, the covariance is Σ

\k
θ + τ2Id := Σ

\k
wk . The conclusion follows by applying Lemma 2 to ŵk

and µ\kθ .

Let the empirical loss function of the linear regression problem on device k be

Fk(w) =
1

n
‖Xkw − yk‖2 . (21)

Then the estimator ŵk is (XT
k Xk)−1XT yk. Applying the previous lemmas, we obtain an optimal estimator wk given all

training samples from K devices (see (20)). wk is Bayes optimal among all solutions that can be achieved by any learning
method. Next, we examine the Ditto objective and its solution space parameterized by λ.

Let each device solve the following objective

min
w
hk(w) = Fk(w) +

λ

2
‖w − w∗‖2 , s.t. w∗ =

1

K
arg min

w

K∑
k=1

Fk(w). (22)
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The local empirical risk minimizer for each device k is

ŵk(λ) =

(
1

n
X>k Xk + λI

)−1(
1

n
X>k Yk + λw∗

)
(23)

=

(
1

n
X>k Xk + λI

)−1((
1

n
X>k Xk

)
ŵk + λ

K∑
k=1

(X>X)−1X>k Xkŵk

)
(24)

We next prove that for any k ∈ [K], ŵk(λ) with a specific λ can achieve the optimal wk.

Theorem 2. Assume for any 1 ≤ i ≤ K, XT
i Xi = βId for some constant β. Let λ∗ be the optimal λ that minimizes the

test performance on device k, i.e.,

λ∗ = arg min
λ

E
{
Fk(ŵk(λ))| ŵk, µ\kθ

}
. (25)

Then,

λ∗ =
σ2

nτ2
. (26)

Proof. Notice that

arg min
λ

E
{
Fk(ŵk(λ))|ŵk, µ\kθ

}
= arg min

λ
E
{
‖Xkŵk(λ)− (Xkwk + zk)‖2|ŵk, µ\kθ

}
(27)

= arg min
λ

E
{
‖Xk (ŵk(λ)− wk) ‖2|ŵk, µ\kθ

}
(28)

= arg min
λ

E
{
‖wk − ŵk(λ)‖2 |ŵk, µ\kθ

}
. (29)

Plug in XT
k Xk = βI into (20) and (24) respectively, we have the optimal estimator wk is

wk =

(
K − 1

σ2

β +Kτ2
+

β

σ2

)−1
β

σ2
ŵk +

(
K − 1

σ2

β +Kτ2
+

β

σ2

)−1
β

σ2 +Kτ2β

∑
i∈[K],i6=k

ŵi + ζk, (30)

and ŵk(λ) is

ŵk(λ) =

(
n

β + nλ

)(β
n

+
λ

K

)
ŵk +

λ

K

∑
i∈[K],i6=k

ŵi

 . (31)

Taking wk and ŵk(λ) into

λ∗ = arg min
λ

E
{
‖wk − ŵk(λ)‖22 |µ

\k
θ , ŵk

}
(32)

gives λ∗ = σ2

nτ2 , as ŵk(λ∗) is the MMSE estimator of wk given the observations.

Remark 1. We note that by using λ∗ in Ditto, we not only achieve the most accurate solution for the objective, but also
we achieve the most accurate solution of any possible federated linear regression algorithm in this problem, as Ditto with
λ∗ realizes the MMSE estimator for wk.

We have derived an optimal λ∗ = σ2

nτ2 for Ditto in terms of generalization. Recall that we define fairness as the variance
of the performance across all devices (Hashimoto et al., 2018; Li et al., 2020e). Next, we prove that the same λ∗ that
minimizes the expected MSE also achieves the optimal fairness among all Ditto solutions.

Theorem 3. Assume for any 1 ≤ i ≤ K, XT
i Xi = βId for some constant β. Among all possible solutions Ditto

parameterized by λ, λ∗ results in the most fair performance across all devices when there are no adversaries, i.e., it
minimizes the variance of test performance (test loss) across all devices.
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Proof. Denote the variance of test performance (loss) across K devices as varK
{
‖Xkŵk(λ)− yk‖22

}
. Let

Êk{ak} :=
1

K

∑
k∈[K]

ak. (33)

Then

arg min
λ

varK
{
‖Xkŵk(λ)− yk‖22

}
= arg min

λ
varK

{
‖Xkŵk(λ)− (Xkwk + zk)‖22

}
(34)

= arg min
λ

varK
{
‖Xk(ŵk(λ)− wk)‖22

}
(35)

= arg min
λ

varK
{
‖ŵk(λ)− wk‖22

}
(36)

= arg min
λ

ÊK

{(
‖wk − ŵk‖22

)2}− (ÊK {‖wk − ŵk(λ)‖22
})2

. (37)

Note that

wk − ŵk(λ) = ζ + ak, (38)

where

ak = ŵk(λ∗)− ŵk(λ), (39)

and λ∗ = σ2

nτ2 .

We have

ÊK

{(
‖wk − ŵk‖22

)2}− (ÊK {‖wk − ŵk(λ)‖22
})2

(40)

= ÊK


(

d∑
i

(wki − ŵk(λ)i)
2

)2
−

(
ÊK

{
d∑
i

(wki − ŵk(λ)i)
2

})2

(41)

= ÊK


(

d∑
i

(ζi + aki)
2

)2
−

(
ÊK

{
d∑
i

(ζi + aki)
2

})2

, (42)

where wki, ŵk(λ)i, ζi, and aki denotes the i-th dimension of wk, ŵk(λ), ζ, and ak and d is the model dimension.

We next expand the variance by decomposing it into two parts. We note

ÊK


(

d∑
i

(ζi + aki)
2

)2
−

(
ÊK

{
d∑
i

(ζi + aki)
2

})2

(43)

=

d∑
i

Êk
{

(ζi + aki)
4
}
−

d∑
i

(
ÊK

{
(ζi + aki)

2
})2

(44)

+ 2
∑

i,j∈[d],i6=j

ÊK

{
(ζi + aki)

2 (
ζj + akj

)2}− 2
∑

i,j∈[d],i6=j

ÊK

{
(ζi + aki)

2
}
ÊK

{(
ζj + akj

)2}
. (45)
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For any i ∈ [d], we have

E

{
ÊK

{
(ζi + aki)

4
}
−
(
ÊK

{
(ζi + aki)

2
})2∣∣∣∣µ\kθ , ŵk} (46)

= E

{
ÊK

{
ζ4i + 6ζ2i a

2
ki + a4ki

}
−
(
ÊK

{
ζ2i + a2ki

})2∣∣∣∣µ\kθ , ŵk} (47)

= E

{
ÊK

{
ζ4i + 6ζ2i a

2
ki + a4ki

}
−
(
ÊK

{
ζ2i
})2
− 2ÊK

{
ζ2i
}
ÊK

{
a2ki
}
−
(
ÊK

{
a2ki
})2∣∣∣∣µ\kθ , ŵk} (48)

= 3σ4
w + 6σ2

wÊK
{
a2ki
}

+ ÊK
{
a4ki
}
− σ4

w − 2σ2
wÊK

{
a2ki
}
−
(
ÊK

{
a2ki
})2

(49)

= 2σ4
w + 4σ2

wÊK
{
a2ki
}

+ ÊK
{
a4ki
}
−
(
ÊK

{
a2ki
})2

, (50)

where σw is the i-th diagonal of Σwk
which is the same across all k’s and all dimensions, and we have used the fact that we

can swap expectations, and E{ζ4i } = 3σ4
w, given that ζi is Gaussian distributed and Σwk

is a diagonal matrix.

For any i, j ∈ [d], i 6= j, we have

E
{
ÊK (ζi + aki)

2
(ζj + akj)

2
∣∣∣µ\kθ , ŵk}− E { ÊK (ζi + aki)

2
ÊK (ζj + akj)

2
∣∣∣µ\kθ , ŵk} (51)

= Êk{a2kia2kj} − Êk{a2ki}Êk{a2kj}, (52)

where we have used the fact that Σwk
is a diagonal matrix.

Plugging (50) and (52) into (44) and (45) yields

E
{

varK
{
‖ŵk(λ)− wk‖22

}∣∣µ\kθ , ŵk} (53)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+

∑
i

Êk{a4ki} −
∑
i

(
Êk{a2ki}

)2
+ 2

∑
i 6=j

(
Êk{a2kia2kj} − Êk{a2ki}Êk{a2kj}

)
(54)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+

∑
i

Êk{a4ki}+ 2
∑
i 6=j

Êk{a2kia2kj} − (
∑
i

(
Ek{a2ki}

)2
+ 2

∑
i 6=j

Êk{a2ki}Êk{a2kj)}) (55)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+ Êk{(

∑
i

a2ki)
2} − (

∑
i

Êk{a2ki})2 (56)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+

1

K

∑
k

(
∑
i

a2ki)
2 − (

1

K

∑
k

∑
i

a2ki)
2 ≥ 2dσ2

w, (57)

where setting {aki}1≤k≤K,1≤i≤d = 0 achieves the minimum.

Observations. From the optimal λ∗ = σ2

nτ2 for mean test accuracy and variance of the test accuracy, we have the following
observations.

• Test error and variance can be jointly minimized with one λ.

• As n → ∞, λ∗ → 0, i.e., when each local device has an infinite number of samples, there is no need for federated
learning, and training local models is optimal in terms of generalization and fairness.

• As τ →∞, λ∗ → 0, i.e., if the data on different devices (the tasks) are unrelated, then training local models is optimal;
On the other hand, as τ → 0, λ∗ →∞, i.e., if the data across all devices are identically distributed, or equivalently if the
tasks are the same, then training a global model is the best we can achieve.

So far we have proved that the same λ∗ achieves the best performance (expected mean square error) for any device k and
fairness (variance of mean square error) without considering adversaries. In Section A.2.2 below, we analyze the benefits of
Ditto for fairness and robustness in the presence of adversaries.
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A.2.2. WITH ADVERSARIES: DITTO FOR ACCURACY, FAIRNESS, AND ROBUSTNESS

As a special case of data poisoning attacks defined in our threat model (Definition 1), we make the following assumptions
on the adversaries.

Let Ka and Kb ≥ 1 denote the number of malicious and benign devices, respectively, such that K = Ka +Kb.

Definition 3. We say that a device k is a benign device if wk ∼ θ + N (0, τ2Id); and we say a device k is a malicious
device (or an adversary) if wk ∼ θ +N (0, τ2aId) where τa > τ .

As mentioned in Definition 2 and 1, in the presence of adversaries, we measure fairness as the performance variance on
benign devices, and robustness as the average performance across benign devices. We next characterize the benefits of
Ditto under such metrics.
Lemma 7. Let wk be the underlying model parameter of a benign device k. Let

ŵi := (XT
i Xi)

−1XT
i yi, i ∈ [K]. (58)

Let

Σ\kw =
1

(K − 1)2

 ∑
i∈[Kb],i6=k

(
σ2(XT

i Xi)
−1 + τ2Id

)
+

∑
i∈[Ka],i6=k

(
σ2(XT

i Xi)
−1 + τ2aId

) , (59)

and

Σ−1w,a = (σ2(XT
k Xk)−1)−1 + (Σ\kw + τ2Id)

−1. (60)

Conditioned on observations ŵk and ŵK\k := 1
K−1

∑
i 6=k,i∈[K] ŵi, we have

wk = Σw,a(σ2(XT
k Xk)−1)−1ŵk + Σw,a(Σ\kw + τ2Id)

−1ŵK\k + ζk, (61)

where ζk ∼ N (0,Σw,a).

Proof. For malicious devices i ∈ [Ka] and i 6= k, the additive covariance of wi with respect to θ is σ2(XT
i Xi)

−1 + τ2aId.
For benign devices i ∈ [Kb] and i 6= K, the covariance is σ2(XT

i Xi)
−1 + τ2Id. Therefore, the covariance of ŵK\k is Σ

\k
w .

Hence given ŵK\k, wk is Gaussian with covariance Σ
\k
w + τ2Id. ŵK\k can be viewed as a noisy observation of wk with

covariance Σ
\k
w + τ2Id. ŵk is a noisy observation of wk with covariance σ2(XT

k Xk)−1. The proof follows by applying
Lemma 2 to ŵk and ŵK\k.

Theorem 4. Assume for any 1 ≤ i ≤ K, XT
i XI = βId for some constant β. Let k be a benign device. Let λ∗a be the

optimal λ that minimizes the test performance on device k, i.e.,

λ∗ = arg min
λ

E
{
Fk( ŵk(λ))| ŵk, ŵK\k

}
. (62)

Then,

λ∗a =
σ2

n

K

Kτ2 + Ka

K−1 (τ2a − τ2)
. (63)

Proof. We obtain λ∗a following the proof of Theorem 2.

Theorem 5. Among all Ditto solutions parameterized by λ, λ∗a results in the most fair performance across all benign
devices, i.e., it minimizes the variance of test performance (test mean square error) on benign devices.

Proof. Similarly, we look at the variance of the test loss across benign devices:

arg min
λ

E
{

varKb

{
‖Xkŵk(λ)− yk‖22

}}
= arg min

λ
E
{

varKb

{
‖wk(λ)− wk‖22

}}
(64)

= arg min
λ

ÊKb

{(
‖wk − ŵk‖22

)2}− (ÊKb

{
‖wk − ŵk(λ)‖22

})2
. (65)

The rest of the proof is the same as the proof of Theorem 3, except that we set ak = ŵk(λ)− ŵk(λ∗a).
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Remark 2. For any benign device k, the solution we obtain by solving Ditto with λ∗a is the most robust solution one could
obtain among any federated point estimation method given observations ŵk and ŵK\k. λ∗a also results in a most fair model
in the solution space of Ditto parameterized by λ.

Lemma 8. The expected test error minimized at λ∗a is dσ2
w,a; and the variance of the test loss minimized at λ∗a is 2dσ4

w,a,
where σw,a denotes the diagonal element of Σw,a.

Proof. For the expected test performance, we note that

E
{
‖wk − ŵk(λ∗a)‖2

∣∣ ŵK\k, ŵk} = E[‖diag(Σw,k)‖2] = dσ2
w,k. (66)

For variance, as ak = 0 if λ = λ∗a, from (57), we get

varKb

{
‖wk − ŵk(λ∗a)‖2

}
= 2dσ4

w,k. (67)

Observations. From λ∗a, we have the following interesting observations.

• Mean test error on benign devices (robustness) and variance of the performance across benign devices (fairness) can still
be minimized with the same λa in the presence of adversaries.

• As τa →∞, λ∗a → 0, i.e., training local models is optimal in terms of robustness and fairness when adversary’s task may
be arbitrarily far from the the task in the benign devices.

• As τ → 0, if τa > 0, λ∗a <∞, which means that learning a global model is not optimal even with homogeneous data in
the presence of adversaries.

• λ∗a is a decreasing function of the number (Ka) and the capability (τa) of the corrupted devices. In other words, as the
attacks become more adversarial, we need more personalization.

• The smallest test error is σ2
w,a, and the optimal variance is 2σ4

w,a, which are both increasing with Ka (number of
adversarial devices) or τa (the power of adversary) by inspecting (59) and (60). This reveals a fundamental tradeoff
between fairness and robustness.

Discussion. Through our analysis, we prove that Ditto with an appropriate λ is more accurate, robust, and fair compared
with training global or local models on the problem described in A.2. We provide closed-form solutions for λ∗ across
different settings (with and without adversaries), and show that Ditto can achieve fairness and robustness jointly. In the
future, we plan to generalize the current theoretical framework to more general models. In the next section, we present a
special case of the current analysis, a federated point estimation problem, which is also studied in Section 3.3 as a motivating
example.

A.3. The Case of Federated Point Estimation

We consider the one-dimensional federated point estimation problem, which is a special case of linear regression. Similarly,
Let θ be drawn from the non-informative prior on R. We assume that K devices have their data distributed with parameters
{wk}k∈[K].

wk = θ + ζk, (68)

where ζk ∼ N (0, τ2) are IID.

Let each device have n data points denoted by xk = {xk,1, . . . , xk,n}, such that

xk,i = wk + zk,i, (69)

where zk,i ∼ N (0, σ2) and are IID.
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Assume that

Fk(w) =
1

2

w − 1

n

∑
i∈[n]

xk,i

2

, (70)

and denote by ŵk the minimizer of the empirical loss Fk. It is clear that

ŵk =
1

n

∑
i∈[n]

xk,i. (71)

Further, let

w∗ := arg min
w

 1

K

∑
k∈[K]

Fk(w)

 . (72)

It is straightforward calculation to verify that

w∗ =
1

nK

∑
i∈[n]

∑
k∈[K]

xk,i =
1

K

∑
k∈[K]

ŵk. (73)

Lemma 9. Denote by ŵk(λ) the minimizer of hk. Then,

ŵk(λ) =
λ

1 + λ
w∗ +

1

1 + λ
ŵk (74)

=
λ

(1 + λ)K

∑
j 6=k

ŵj +
K + λ

(1 + λ)K
ŵk. (75)

Let

σ2
n :=

σ2

n
, (76)

and
ŵK\k :=

1

K − 1

∑
j 6=k

ŵj . (77)

Lemma 10. Given observations ŵK\k and ŵk, wk is Gaussian distributed and given by

wk =
σ2
w

σ2
n

ŵk +
(K − 1)σ2

w

Kτ2 + σ2
n

ŵK\k + ξ, (78)

where
1

σ2
w

=
1

σ2
n

+
K − 1

Kτ2 + σ2
n

, (79)

and
ξ ∼ N

(
0, σ2

w

)
. (80)

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Lemma 6.

Theorem 6. Let λ∗ be the optimal λ that minimizes the test performance, i.e.,

λ∗ = arg min
λ
E
{

(wk − ŵk(λ))2
∣∣ ŵK\k, ŵk} . (81)

Then,

λ∗ =
σ2
n

τ2
=

σ2

nτ2
. (82)
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Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 2.

Theorem 7. Among all Ditto’s solutions, λ∗ results in the most fair performance across all devices when there are no
adversaries, i.e., it minimizes the variance of test performance (test mean square error).

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 3.

Similarly, the adversarial case presented below (including setups, lemmas, and theorems) is also a special case of the
adversarial scenarios for linear regression.

Let Ka and Kb ≥ 1 denote the number of adversarial and benign devices, respectively, such that K = Ka +Kb.

Definition 4. We say that a device k is a benign device if wk ∼ θ +N (0, τ2); and we say a device k is a malicious device
(or an adversary) if wk ∼ θ +N (0, τ2a ) where τa ≥ τ .

Lemma 11. Let wk be the parameter associated with a benign device. Given observations ŵK\k := 1
K−1

∑
j 6=k ŵj and

ŵk, wk is Gaussian distributed and given by

wk =
σ2
w,a

σ2
n

ŵk +
(K − 1)σ2

w,a

Kτ2 + σ2
n + Ka

K−1 (τ2a − τ2)
ŵK\k + ξa, (83)

where
1

σ2
w,a

=
1

σ2
n

+
K − 1

Kτ2 + σ2
n + Ka

K−1 (τ2a − τ2)
, (84)

and
ξa ∼ N

(
0, σ2

w,a

)
. (85)

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Lemma 7.

Theorem 8. Let wk be a benign device. Let λ∗a be the optimal λ that minimizes the test performance, i.e.,

λ∗a = arg min
λ
E
{

(wk − ŵk(λ))2
∣∣ ŵK\k, ŵk} . (86)

Then,

λ∗a =
σ2

n

K

Kτ2 + Ka

K−1 (τ2a − τ2)
. (87)

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 4.

Theorem 9. Among all solutions of Objective (Ditto) parameterized by λ, λ∗a results in the most fair performance across
all benign devices, i.e., it minimizes the variance of test performance (test mean square error) on benign devices.

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 5.

Lemma 12. The expected test error minimized at λ∗a is σ2
w,a; and the variance of the test performance minimized at λ∗a is

2σ4
w,a.

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Lemma 8.
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B. Algorithm and Convergence Analysis
In this section, we first present the specific algorithm (Algorithm 2) that we use for most of our experiments (all except
for Table 3 and 6). Algorithm 2 is a special case of the more general Ditto solver (Algorithm 1), where we use
minw

∑
k∈[K] pkFk(w) as the global objective and FedAvg as its solver. As before, the Ditto personalization add-on is

highlighted in red. In addition, we prove that personalized models can inherit the convergence rates of the optimal global
model for any G(·) (Theorem 10), and provide convergence guarantees for the special case of Algorithm 2 (Corollary 1).

Algorithm 2: Ditto for Personalized FL in the case of G(·) being FedAvg (McMahan et al., 2017)

1 Input: K, T , s, λ, ηg , ηl, w0, pk, {v0k}k∈[K]

2 for t = 0, · · · , T − 1 do
3 Server randomly selects a subset of devices St, and sends wt to them
4 for device k ∈ St in parallel do
5 Sets wtk to wt and updates wtk for r local iterations on Fk:

wtk = wtk − ηg∇Fk(wtk)

6 Updates vk for s local iterations:
vk = vk − ηl(∇Fk(vk) + λ(vk − wt)

7 Sends ∆t
k := wtk − wt back

8 Server updating wt+1 as

wt+1 ← wt +
1

|St|
∑
k∈St

∆t
k

9 return {vk}k∈[K] (personalized), wT (global)

To analyze the convergence behavior of Algorithm 1 and 2, we first state a list of assumptions below.

• The global model converges with rate g(t), i.e., there exists g(t) such that limt→∞ g(t) = 0, E[‖wt − w∗‖2] ≤ g(t).

• For k ∈ [K], Fk is µ-strongly convex.

• The expectation of stochastic gradients is uniformly bounded at all devices and all iterations, i.e.,

E[‖∇Fk(wt, ξt)‖2] ≤ G2
1. (88)

Let w∗ be defined as
w∗ := min

w
G(F1(w), . . . FK(w)) (89)

i.e., w∗ is the empirically optimal global model for G(·). Let u∗k denote the empirically optimal local model on device k, i.e.,

u∗k = arg min
u

Fk(u). (90)

We introduce an additional assumption on the distance between optimal local models {u∗k}k∈[K] and the optimal global
model w∗ below.

• The L2 distance between the optimal local models and the optimal global model is bounded, i.e., for k ∈ [K],

‖u∗k − w∗‖ ≤M. (91)

This assumption sets an upper bound on the deviation of the local model on device k, with the global model. It can in turn
be viewed as boundedness of heterogeneity of the training data across devices. When local data are farther from being IID,
M tends to be larger. Recall that in the fairness/robustness analysis of Ditto (Appendix A), we model the relatedness
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of underlying models via τ , and E[‖wk − θ‖2] = dτ2 where wk is the underlying model for device k and d is the model
dimension. M is related to τ2 as

E[‖u∗k − w∗‖2] ≤ 2E[‖µ∗k − wk‖2] + 4E[‖wk − θ‖2] + 4E[‖θ − w∗‖2] (92)

→ 4dτ2. (93)

when nk and the total number of samples across all devices are sufficiently large, considering the linear problems we studied.
We later show that for convergence, λ scales with 1/M , which is consistent with λ∗ (for fairness/robustness) scaled with
1/τ2.

Further let

v∗k = arg min
v

hk(v;w∗), (94)

i.e., v∗k is the optimal personalized model for device k. We are interested in the convergence of vk to v∗k. We first characterize
the progress of updating personalized models for one step under a general G(·).
Lemma 13 (Progress of one step). Under assumptions above, let device k get selected with probability pk at each
communication round, with decaying local step-size 2

(t+1)(µ+λ)pk
, at each communication round t, we have

E[‖vt+1
k − v∗k‖2] ≤

(
1− 2

t+ 1

)
E[‖vt − v∗‖2] +

4(G1 + λ(M + G1

µ ))2

(t+ 1)2(µ+ λ)2p2k
+

4λ2

(t+ 1)2(µ+ λ)2p2k
E[‖wt − w∗‖2]

+
8λ(G1 + λ(M + G1

µ ))

(t+ 1)2(µ+ λ)2p2k

√
E[‖wt − w∗‖2] +

4λ

(t+ 1)(µ+ λ)pk

√
E[‖vtk − v∗k‖2]E[‖wt − w∗‖2].

(95)

Proof. Denote g(vtk;wt) as the stochastic gradient of hk(vtk;wt). Let It indicate if device k is selected at the t-th round,
and E[It] = pk.

E[‖vt+1
k − v∗k‖2] = E[‖vtk − ηItg(vtk;wt)− v∗k‖2] (96)

= E[‖vtk − v∗k‖2] + η2E[‖Itg(vtk;wt)‖2] + 2ηE〈Itg(vtk;wt), v∗k − vtk〉 (97)

≤ (1− (µ+ λ)ηpk)E[‖vtk − v∗k‖2] + η2E[‖g(vtk;wt)‖2] + 2ηpkE[h(v∗k;wt)− h(vtk;wt)] (98)

≤ (1− (µ+ λ)ηpk)E[‖vtk − v∗k‖2]

+ η2E[‖g(vtk;w∗)‖2] + η2λ2E[‖wt − w∗‖2] + 2η2λE[‖g(vtk;w∗)‖‖wt − w∗‖]
+ 2ηpk(h(v∗k;w∗)− E[h(vtk;w∗)]) + 2ηpkλE[‖vtk − v∗k‖‖wt − w∗‖]. (99)

Further, note that

E[‖vtk − u∗k‖2] ≤ 1

µ2
E[‖∇Fk(vtk)‖2] ≤ G2

1

µ2
, (100)

E[‖vtk − w∗‖2] = E[‖vtk − u∗k + u∗k − w∗‖2] (101)

≤ E[‖vtk − u∗k‖2] + E[‖u∗k − w∗‖2] + 2E[‖vtk − u∗k‖‖u∗k − w∗‖] (102)

≤ G2
1

µ2
+M2 +

2MG1

µ
, (103)

E[‖g(vtk;w∗)‖2] = E[‖∇Fk(vtk) + λ(vtk − w∗)‖2] (104)

≤ G2
1 + λ2(

G1

µ
+M)2 + 2G1λ(

G1

µ
+M). (105)

Plug it into (99),

E[‖vt+1
k − v∗k‖2] ≤ (1− (µ+ λ)ηpk)E[‖vtk − v∗k‖2] + η2(G1 + λ(M +

G1

µ
))2 + η2λ2E[‖wt − w∗‖2]

+ 2η2λ(G1 + λ(M +
G1

µ
))
√

E[‖wt − w∗‖2] + 2ηpkλ
√
E[‖vtk − v∗k‖2]E[‖wt − w∗‖2]. (106)

where the last step is due to E[XY ] ≤
√
E[X2]E[Y 2]. The Lemma then holds by taking η = 2

(t+1)(µ+λ)pk
.
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Lemma 13 relates E[‖vt+1
k − v∗k‖2] with E[‖vtk − v∗k‖2] and E[‖wtk − w∗‖2]. Based on this, we prove that personalized

models can inherit the convergence rate of the global model wt for any G(·).

Theorem 10 (Relations between convergence of global and personalized models). Under the assumptions above, if
there exists a constant A such that g(t+1)

g(t) ≥ 1 − g(t)
A , then there exists C < ∞ such that for any device k ∈ [K],

E[‖vtk − v∗k‖2] ≤ Cg(t) with a local learning rate η = 2g(t)
A(µ+λ)pk

.

Proof. We proceed the proof by induction. First, for any constant C >
E[‖v0k−v

∗
k‖

2]
g(0) , E[‖v0k − v∗k‖2] ≤ Cg(0). If

E[‖vtk − v∗k‖2] ≤ Cg(t) holds, then for t+ 1, from Lemma 13,

E[‖vtk+1 − v∗k‖2] ≤
(

1− 2g(t)

A

)
Cg(t)

+
g(t)2

A

4

Ap2k

(
(G1 + λ(M + G1

µ ))2

(µ+ λ)2
+ g(t) +

2(G1 + λ(M + G1

µ ))
√
g(t)

µ+ λ

)
+ g(t)2

4λ
√
C

(µ+ λ)

(107)

≤
(

1− 2g(t)

A

)
Cg(t) +

Cg(t)2

A
(108)

holds for some C <∞. Hence,

E[‖vtk+1 − v∗k‖2] ≤
(

1− 2g(t)

A

)
Cg(t) +

Cg(t)2

A
(109)

=

(
1− g(t)

A

)
Cg(t) (110)

≤ Cg(t+ 1), (111)

completing the proof.

Discussions. Theorem 10 also suggests how the percentage/power of malicious devices can affect convergence rates. The
percentage/power of adversaries impacts both the optimal global solution w∗, and the convergence rate of the global model
g(t). (i) For w∗, it affects M in Eq (91)—the distance between the local model on a benign device and the global model.
This in turn affects λ in Eq (95) and (107), and the constant C. λ can scale inversely proportional to M , which is consistent
with our fairness/robustness analysis where λ∗ should decrease as the increase of τ2. (ii) For g(t), the modularity of Ditto
allows for decoupling the convergence of personalized models and the global model (as demonstrated by this theorem), and
we can plug in any previous algorithms and their analysis on the convergence rate g(t) as a function of malicious devices.

As a direct result of Theorem 10, we could state a result for Ditto when the global objective is FedAvg.

Corollary 1 (Convergence of personalized models). Under the assumptions above, if the global objective G(·) is FedAvg,
then under Algorithm 2, for k ∈ [K],

E[‖vtk − v∗k‖2] = O(1/t). (112)

Proof. From Li et al. (2020f) Theorem 2, we know the global model for FedAvg converges at a rate of O(1/t), i.e.,

E[‖wt − w∗‖2] ≤ D′

t+B
‖w1 − w∗‖2 ≤ D

t+ 1
, (113)

where D,D′, B are constants. Setting g(t) = D
t+1 and A = D in Theorem 10, it follows that E[‖vtk − v∗k‖2] = O(1/t).



Ditto: Fair and Robust Federated Learning Through Personalization

C. Experimental Details
C.1. Datasets and Models

We summarize the datasets, corresponding models, and tasks in Table 4 below. We evaluate the performance of Ditto with
both convex and non-convex models across a set of FL benchmarks. In our datasets, we have both image data (FEMNIST,
CelebA, Fashion MNIST), and text data (StackOverflow).

Table 4. Summary of datasets.

Datasets # Devices Data Partitions Models Tasks
Vehicle (Duarte & Hu, 2004)2 23 natural (each device is a vehicle) linear SVM binary classification
FEMNIST (Cohen et al., 2017) 205 natural (each device is a writer) CNN 62-class classification
CelebA (Liu et al., 2015) 515 natural (each device is a celebrity) CNN binary classification
Fashion MNIST (Xiao et al., 2017) 500 synthetic (assign 5 classes to each device) CNN 10-class classification
StackOverflow (TFF)3 400 natural (each device is a user) logistic regression 500-class tag prediction
FEMNIST (skewed) (Cohen et al., 2017) 100 synthetic (assign 5 classes to each device) CNN 62-class classification

FEMNIST is Federated EMNIST, which is EMNIST (Cohen et al., 2017) partitioned by the writers of digits/characters
created by a previous federated learning benchmark (Caldas et al., 2018). We have two versions of FEMNIST in this
work under different partitions with different levels of statistical heterogeneity. The manually-partitioned version is more
heterogeneous than the naturally-partitioned one, as we assign 5 classes to each device. We show that the benefits of Ditto
can be more significant on the skewed FEMNIST data (Table 10). All results shown in the main text are based on the natural
partition. We downsample the number of data points on each device (following the power law) for Vehicle. For FEMNIST,
CelebA, and StackOverflow, we randomly sample devices (users) from the entire dataset. We use the full version of Fashion
MNIST (which has been used in previous FL works (Bhagoji et al., 2019)), and assign 5 classes to each device.

C.2. Personalization Baselines

We elaborate on the personalization baselines used in our experiments (Table 2) which allow for partial device participation
and local updating. We consider:

• MOCHA (Smith et al., 2017), a primal-dual framework for multi-task learning. It jointly learns the model parameters
and a device relation matrix, and applicable to convex problems.

• APFL (Deng et al., 2021), which proposes to interpolate between local and global models for personalization. While it
can reduce to solving local problems (without constraints on the solution space) as pointed out in (Deng et al., 2021), we
find that in neural network applications, it has some personalization benefits, possibly due to the joint optimization solver.

• Elastic Weight Consolidation (EWC), which takes into account the Fisher information when finetuning from the optimal
global model (Kirkpatrick et al., 2017; Yu et al., 2020). The local objective is minw Fk(w) + λ

2

∑
iFii · (w[i]− w∗[i])2

where [i] denotes the index of parameters and Fii denotes the i-th diagonal of the empirical Fisher matrix F estimated
using a data batch.

• L2SGD, which regularizes personalized models towards their mean (Hanzely & Richtárik, 2020). The proposed
method requires full device participation once in a while. However, to remain consistent with the other solvers, we
use their objective but adopt a different solver with partial device participation—each selected local device solving
minw Fk(w) + λ

2 ‖w − w̄‖
2 where w̄ is the current mean of all personalized models w̄ = 1

N

∑N
k=1 wk.

• Mapper, which is one of the three personalization methods proposed in Mansour et al. (2020) that needs the minimal
amount of meta-information. Similar to APFL, it is also motivated by model interpolation.

• Per-FedAvg (HF) (Fallah et al., 2020) which applies MAML (Finn et al., 2017) to personalize federated models with an
Hessian-product approximation to approximate the second-order gradients.

2http://www.ecs.umass.edu/˜mduarte/Software.html
3https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/

stackoverflow/load_data.

http://www.ecs.umass.edu/~mduarte/Software.html
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data.
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data.
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• Symmetrized KL constrains the symmetrized KL divergence between the prediction of finetuned mod-
els and that of the initialization. Specifically, in our setting, the local objective is minw Fk(w) +
λ
2 (DKL(f(w)||f(w∗)) +DKL(f(w∗)||f(w))) where DKL(P ||Q) is the KL-divergence between P and Q, and f(·)
denotes the softmax probability for classification.

D. Additional and Complete Experiment Results
D.1. Comparing with Finetuning

As discussed in Section 3.2, finetuning on hk for each device k is a possible solver for Ditto. In non-convex cases,
however, starting from a corrupted w∗ may result in inferior performance compared with Algorithm 1. We provide a simple
example to illustrate this point. To perform finetuning, we run different numbers of epochs of mini-batch SGD on the
Ditto objective for each device in the network, and pick the best one. As shown in Figure 7 below, finetuning at round
5,000 will not result in a good final accuracy. We observe that one could also stop at early iterations and then finetune.
However, it is difficult to do so in practice based on the training or validation data alone, as shown in Figure 9.

Figure 7. ‘Ditto, joint’ achieves high test accuracy on be-
nign devices. The performance can also be good if we first
early stop at some specific points and then finetune.

Figure 9. Finetuning is not very practical as it is difficult to determine
when to stop training the global model by looking at the training loss (left)
or validation accuracy (right) on all devices (without knowing which are
benign).

D.2. Tuning λ

We assume that the server does not have knowledge of which devices are benign vs. malicious, and we have each device
locally select and apply a best λ from a candidate set of three values based on their validation data. For benign devices, this
means they will pick a λ based on their clean validation signal. For malicious devices, how they perform personalization (i.e.,
selecting λ) does not affect the corrupted global model updates they send, which are independent of λ. We further assume
the devices have some knowledge of how ‘strong’ the attack is. We define strong attacks as (i) all of model replacement
attacks (A3) where the magnitude of the model updates from malicious devices can scale by > 10×, and (ii) other attacks
where more than half of the devices are corrupted. In particular, for devices with very few validation samples (less than 4),
we use a fixed small λ (λ=0.1) for strong attacks, and use a fixed relatively large λ (λ=1) for all other attacks. For devices
with more than 5 validation data points, we let each select λ from {0.05, 0.1, 0.2} for strong attacks, and select λ from
{0.1, 1, 2} for all other attacks. For the StackOverflow dataset, we tune λ from {0.01, 0.05, 0.1} for strong attacks, and
{0.05, 0.1, 0.3} for all other attacks. We directly evaluate our hyperparameter tuning strategy in Table 5 below—showing
that this dynamic tuning heuristic works well relative to an ideal, but more unrealistic strategy that picks the best λ based on
knowledge of which devices are benign vs. malicious (i.e., by only using the validation data of the benign devices).
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Table 5. Results (test accuracy and standard deviation) of using dynamic λ’s. ‘Best λ’ refers to the results of selecting the best (fixed) λ
based on average validation performance on benign devices (assuming the server knows which devices are malicious).

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

best λ 0.836 (.10) 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.650 (.14)
dynamic λ’s 0.834 (.09) 0.802 (.10) 0.762 (.11) 0.672 (.13) 0.801 (.09) 0.700 (.15) 0.675 (.14) 0.685 (.15) 0.650 (.14) 0.613 (.13)
Fashion A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.946 (.06) 0.944 (.08) 0.935 (.07) 0.925 (.07) 0.943 (.08) 0.930 (.07) 0.912 (.08) 0.914 (.09) 0.903 (.09) 0.873 (.09)
dynamic λ’s 0.943 (.06) 0.944 (.07) 0.937 (.07) 0.907 (.10) 0.938 (.07) 0.930 (.08) 0.913 (.09) 0.921 (.09) 0.902 (.09) 0.872 (.11)
CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

best λ 0.914 (.18) 0.828 (.22) 0.721 (.27) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0 708 (.29) 0.699 (.28) 0.694 (.27) 0.689 (.28)
dynamic λ’s 0.911 (.16) 0.820 (.26) 0.714 (.28) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0.706 (.28) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Vehicle A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.882 (.05) 0.862 (.05) 0.841 (.09) 0.851 (.06) 0.884 (.05) 0.872 (.06) 0.879 (.04) 0.872 (.06) 0.829 (.08) 0.827 (.08)
dynamic λ’s 0.872 (.05) 0.857 (.06) 0.827 (.08) 0.834 (.05) 0.872 (.06) 0.867 (.07) 0.848 (.04) 0.839 (.08) 0.824 (.08) 0.822 (.09)
StackOverflow A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.315 (.16) 0.325 (.16) 0.315 (.17) 0.313 (.15) 0.314 (.16) 0.350 (.16) 0.312 (.14) 0.316 (.17) 0.321 (.17) 0.327 (.17)
dynamic λ’s 0.317 (.17) 0.323 (.18) 0.314 (.16) 0.359 (.16) 0.326 (.17) 0.317 (.17) 0.301 (.17) 0.318 (.17) 0.319 (.17) 0.311 (.17)

D.3. Ditto Augmented with Robust Baselines

In Section 4.4, we demonstrate that the performance of Ditto can be further improved when it is combined with robust
baselines (e.g., learning a robust w∗ via robust aggregation). Here, we report full results validating this claim in Table 6
below.

Table 6. Ditto augmented with robust baselines (full results).

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.773 (.11) 0.727 (.12) 0.574 (.15) 0.774 (.11) 0.703 (.14) 0.636 (.15) 0.517 (.14) 0.487 (.14) 0.364 (.13)
clipping 0.791 (.11) 0.736 (.11) 0.408 (.14) 0.791 (.11) 0.736 (.13) 0.656 (.13) 0.795 (.11) 0.060 (.05) 0.061 (.05)
Ditto 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.650 (.14)
Ditto + clipping 0.810 (.11) 0.762 (.11) 0.645 (.13) 0.808 (.11) 0.757 (.11) 0.684 (.13) 0.813 (.13) 0.707 (.15) 0.672 (.14)
CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.810 (.22) 0.535 (.26) 0.228 (.21) 0.869 (.22) 0.823 (.23) 0.656 (.26) 0.451 (.27) 0.460 (.29) 0.515 (.31)
multi-Krum 0.882 (.22) 0.564 (.26) 0.107 (.19) 0.887 (.21) 0.891 (.20) 0.617 (.30) 0.512 (.27) 0.529 (.27) 0.430 (.26)
Ditto 0.828 (.22) 0.721 (.27) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0.708 (.29) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Ditto + multi-Krum 0.875 (.20) 0.722 (.26) 0.733 (.27) 0.903 (.20) 0.902 (.21) 0.885 (.23) 0.713 (.28) 0.709 (.28) 0.713 (.28)

D.4. Ditto Complete Results

In Section 4.1, we present partial results on three strong attacks on two datasets. Here, we provide full results showing the
robustness and fairness of Ditto on all attacks and all datasets compared with all defense baselines. We randomly split
local data on each device into 72% train, 8% validation, and 20% test sets, and report all results on test data. We use a
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learning rate of 0.01 for StackOverflow, 0.05 for Fashion MNIST and 0.1 for all other datasets; and batch size 16 for CelebA
and Fashion MNIST, 32 for FEMNIST and Vehicle, and 100 for StackOverflow. For every dataset, we first run FedAvg on
clean data to determine the number of communication rounds. Then we run the same number of rounds for all attacks on
that dataset.

For our robust baselines, ‘median’ means coordinate-wise median. For Krum, multi-Krum, k-norm, and k-loss, we assume
the server knows the expected number of malicious devices when aggregation. In other words, for k-norm, we filter out the
updates with the k largest norms where k is set to the expected number of malicious devices. Similarly, for k-loss, we only
use the model update with the k+1-th largest training loss. For gradient clipping, we set the threshold to be the median of
the gradient norms coming from all selected devices at each round. FedMGDA+ has an additional ε hyperparameter which
we select from {0, 0.1, 0.5, 1} based on the validation performance on benign devices. For the finetuning (only on neural
network models) baseline, we run 50 epochs of mini-batch SGD on each device on the local objective Fk starting from w∗.
We see that Ditto can achieve better fairness and robustness in most cases. In particular, on average of all datasets and all
attack scenarios, Ditto (with dynamic λ’s) achieves 6% absolute accuracy improvement compared with the strongest
robust baseline. In terms of fairness, Ditto is able to reduce the variance of test accuracy by 10% while improving the
average accuracy by 5% relative to state-of-the-art methods for fair FL (without attacks).

Table 7. Full results (average and standard deviation of test accuracy across all devices) on the Vehicle dataset with linear SVM. On this
convex problem, we additionally compare with another primal-dual MTL method MOCHA (Smith et al., 2017), which suggests the
fairness/robustness benefits of other MTL approaches.

Vehicle A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global 0.866 (.16) 0.847 (.08) 0.643 (.10) 0.260 (.27) 0.866 (.18) 0.840 (.21) 0.762 (.27) 0.854 (.17) 0.606 (.08) 0.350 (.19)
local 0.836 (.07) 0.835 (.08) 0.840 (.09) 0.857 (.09) 0.835 (.08) 0.840 (.09) 0.857 (.09) 0.840 (.07) 0.835 (.08) 0.840 (.09)
fair 0.870 (.08) 0.721 (.06) 0.572 (.08) 0.404 (.13) 0.746 (.12) 0.704 (.15) 0.706 (.20) 0.775 (.13) 0.628 (.25) 0.448 (.11)
median 0.863 (.16) 0.861 (.18) 0.676 (.11) 0.229 (.31) 0.864 (.18) 0.838 (.21) 0.774 (.28) 0.867 (.17) 0.797 (.07) 0.319 (.17)
Krum 0.852 (.17) 0.853 (.19) 0.830 (.22) 0.221 (.32) 0.851 (.19) 0.828 (.22) 0.780 (.31) 0.867 (.17) 0.866 (.18) 0.588 (.14)
multi-Krum 0.866 (.16) 0.867 (.18) 0.839 (.20) 0.220 (.32) 0.867 (.18) 0.839 (.22) 0.770 (.31) 0.868 (.17) 0.836 (.08) 0.406 (.15)
clipping 0.864 (.16) 0.865 (.17) 0.678 (.34) 0.234 (.30) 0.865 (.18) 0.839 (.22) 0.764 (.27) 0.868 (.17) 0.789 (.07) 0.315 (.17)
k-norm 0.866 (.16) 0.867 (.17) 0.838 (.21) 0.222 (.32) 0.867 (.18) 0.839 (.22) 0.778 (.31) 0.867 (.17) 0.844 (.09) 0.458 (.16)
k-loss 0.850 (.05) 0.755 (.03) 0.732 (.09) 0.217 (.31) 0.852 (.06) 0.840 (.07) 0.825 (.09) 0.866 (.17) 0.692 (.08) 0.328 (.16)
FedMGDA+ 0.860 (.16) 0.835 (.09) 0.674 (.14) 0.270 (.26) 0.860 (.18) 0.843 (.22) 0.794 (.26) 0.836 (.17) 0.757 (.07) 0.676 (.17)
MOCHA 0.880 (.04) 0.848 (.07) 0.832 (.08) 0.829 (.10) 0.846 (.06) 0.843 (.07) 0.833 (.10) 0.862 (.06) 0.844 (.07) 0.834 (.07)

Ditto, λ=0.1 0.845 (.07) 0.841 (.08) 0.841 (.09) 0.851 (.06) 0.844 (.07) 0.848 (.08) 0.866 (.05) 0.838 (.07) 0.829 (.08) 0.827 (.08)
Ditto, λ=1 0.875 (.05) 0.859 (.06) 0.821 (.07) 0.776 (.08) 0.875 (.06) 0.870 (.07) 0.879 (.04) 0.860 (.07) 0.813 (.07) 0.757 (.08)
Ditto, λ=2 0.882 (.05) 0.862 (.05) 0.800 (.07) 0.709 (.12) 0.884 (.05) 0.872 (.06) 0.869 (.04) 0.872 (.06) 0.791 (.06) 0.690 (.09)
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Table 8. Full results (average and standard deviation of test accuracy across all devices) on FEMNIST.

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.804 (.11) 0.773 (.11) 0.727 (.12) 0.574 (.15) 0.774 (.11) 0.703 (.14) 0.636 (.15) 0.517 (.14) 0.487 (.14) 0.364 (.13)
local 0.628 (.15) 0.620 (.14) 0.627 (.14) 0.607 (.13) 0.620 (.14) 0.627 (.14) 0.607 (.13) 0.622 (.14) 0.621 (.14) 0.620 (.14)
fair 0.809 (.11) 0.636 (.15) 0.562 (.13) 0.478 (.12) 0.440 (.15) 0.336 (.12) 0.363 (.12) 0.353 (.12) 0.316 (.12) 0.299 (.11)
median 0.733 (.14) 0.627 (.15) 0.576 (.15) 0.060 (.04) 0.673 (.14) 0.645 (.14) 0.564 (.15) 0.628 (.14) 0.573 (.15) 0.577 (.16)
Krum 0.717 (.16) 0.059 (.05) 0.096 (.07) 0.091 (.07) 0.604 (.14) 0.062 (.25) 0.024 (.02) 0.699 (.15) 0.719 (.13) 0.648 (.14)
multi-Krum 0.804 (.11) 0.790 (.11) 0.759 (.11) 0.115 (.07) 0.789 (.11) 0.762 (.11) 0.014 (.02) 0.529 (.14) 0.664 (.15) 0.561 (.14)
clipping 0.805 (.11) 0.791 (.11) 0.736 (.11) 0.408 (.14) 0.791 (.11) 0.736 (.13) 0.656 (.13) 0.795 (.11) 0.060 (.05) 0.061 (.05)
k-norm 0.806 (.11) 0.785 (.11) 0.760 (.12) 0.060 (.05) 0.788 (.10) 0.765 (.11) 0.011 (.02) 0.060 (.04) 0.647 (.15) 0.562 (.15)
k-loss 0.762 (.11) 0.606 (.13) 0.599 (.13) 0.596 (.13) 0.432 (.12) 0.508 (.13) 0.572 (.14) 0.060 (.04) 0.009 (.02) 0.006 (.01)
FedMGDA+ 0.803 (.12) 0.794 (.12) 0.730 (.12) 0.057 (.04) 0.793 (.12) 0.753 (.12) 0.671 (.14) 0.798 (.11) 0.794 (.12) 0.791 (.11)
finetuning 0.815 (.09) 0.778 (.11) 0.734 (.12) 0.671 (.13) 0.764 (.11) 0.695 (.18) 0.646 (.14) 0.688 (.13) 0.671 (.14) 0.655 (.13)

Ditto, λ=0.01 0.800 (.15) 0.709 (.15) 0.683 (.17) 0.642 (.13) 0.701 (.14) 0.684 (.14) 0.645 (.14) 0.650 (.14) 0.628 (.14) 0.650 (.14)
Ditto, λ=0.1 0.827 (.10) 0.794 (.11) 0.755 (.13) 0.666 (.14) 0.786 (.13) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.640 (.14)
Ditto, λ=1 0.836 (.10) 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.691 (.17) 0.575 (.17) 0.642 (.12) 0.595 (.14) 0.554 (.15)

Table 9. Full results (average and standard deviation of test accuracy across all devices) on Fashion MNIST.

Fashion MNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global 0.911 (.08) 0.897 (.08) 0.855 (.10) 0.753 (.13) 0.900 (.08) 0.882 (.09) 0.857 (.10) 0.753 (.10) 0.551 (.13) 0.275 (.12)
local 0.876 (.10) 0.874 (.10) 0.876 (.11) 0.879 (.10) 0.874 (.10) 0.876 (.11) 0.879 (.10) 0.877 (.10) 0.874 (.10) 0.876 (.11)
fair 0.909 (.07) 0.751 (.12) 0.637 (.13) 0.547 (.11) 0.731 (.13) 0.637 (.14) 0.635 (.14) 0.653 (.13) 0.601 (.12) 0.131 (.16)
median 0.884 (.09) 0.853 (.10) 0.818 (.12) 0.606 (.17) 0.885 (.09) 0.883 (.09) 0.864 (.10) 0.856 (.09) 0.829 (.11) 0.725 (.15)
Krum 0.838 (.13) 0.864 (.11) 0.818 (.13) 0.768 (.15) 0.847 (.12) 0.870 (.11) 0.805 (.13) 0.868 (.11) 0.866 (.11) 0.640 (.18)
multi-Krum 0.911 (.08) 0.907 (.08) 0.889 (.10) 0.793 (.12) 0.849 (.10) 0.827 (.12) 0.095 (.12) 0.804 (.11) 0.860 (.09) 0.823 (.13)
clipping 0.913 (.07) 0.905 (.08) 0.875 (.10) 0.753 (.12) 0.904 (.08) 0.886 (.09) 0.856 (.11) 0.901 (.08) 0.844 (.11) 0.477 (.13)
k-norm 0.911 (.08) 0.908 (.08) 0.888 (.10) 0.118 (.08) 0.906 (.08) 0.893 (.09) 0.096 (.07) 0.765 (.14) 0.854 (.10) 0.828 (.12)
k-loss 0.898 (.08) 0.856 (.09) 0.861 (.10) 0.851 (.31) 0.876 (.09) 0.866 (.11) 0.870 (.10) 0.538 (.14) 0.257 (.13) 0.092 (.13)
FedMGDA+ 0.915 (.08) 0.907 (.08) 0.874 (.10) 0.753 (.13) 0.911 (.08) 0.900 (.09) 0.873 (.10) 0.914 (.08) 0.904 (.08) 0.869 (.10)
finetuning 0.945 (.06) 0.946 (.07) 0.935 (.07) 0.922 (.08) 0.945 (.07) 0.930 (.08) 0.923 (.08) 0.915 (.08) 0.871 (.11) 0.764 (.15)

Ditto, λ=0.1 0.929 (.09) 0.920 (.09) 0.909 (.10) 0.897 (.10) 0.921 (.09) 0.914 (.09) 0.905 (.08) 0.914 (.09) 0.903 (.09) 0.873 (.09)
Ditto, λ=1 0.946 (.06) 0.944 (.08) 0.935 (.07) 0.925 (.07) 0.943 (.08) 0.930 (.07) 0.912 (.08) 0.887 (.09) 0.831 (.10) 0.740 (.12)
Ditto, λ=2 0.945 (.06) 0.942 (.06) 0.935 (.07) 0.917 (.07) 0.936 (.07) 0.923 (.08) 0.906 (.08) 0.871 (.09) 0.785 (.11) 0.606 (.14)

Table 10. Full results (average and standard deviation of test accuracy across all devices) on FEMNIST (skewed).

FEMNIST (skewed) A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.720 (.24) 0.657 (.28) 0.585 (.30) 0.435 (.23) 0.688 (.26) 0.631 (.24) 0.589 (.26) 0.023 (.11) 0.038 (.18) 0.039 (.18)
local 0.915 (.18) 0.903 (.21) 0.937 (.18) 0.902 (.19) 0.903 (.21) 0.937 (.18) 0.902 (.19) 0.881 (.21) 0.912 (.18) 0.903 (.21)
fair 0.716 (.22) 0.644 (.29) 0.545 (.29) 0.421 (.22) 0.348 (.22) 0.321 (.16) 0.242 (.15) 0.010 (.11) 0.042 (.10) 0.037 (.17)
median 0.079 (.12) 0.086 (.12) 0.031 (.06) 0.044 (.08) 0.075 (.12) 0.109 (.13) 0.323 (.25) 0.060 (.10) 0.020 (.09) 0.033 (.07)
Krum 0.457 (.37) 0.360 (.35) 0.061 (.22) 0.127 (.27) 0.424 (.38) 0.051 (.08) 0.147 (.22) 0.434 (.36) 0.472 (.36) 0.484 (.35)
multi-Krum 0.725 (.25) 0.699 (.29) 0.061 (.22) 0.271 (.21) 0.712 (.29) 0.705 (.30) 0.584 (.28) 0.633 (.30) 0.556 (.30) 0.526 (.28)
clipping 0.727 (.28) 0.678 (.28) 0.604 (.34) 0.401 (.26) 0.726 (.26) 0.711 (.26) 0.645 (.24) 0.699 (.29) 0.674 (.28) 0.640 (.28)
k-norm 0.716 (.28) 0.691 (.30) 0.396 (.36) 0.005 (.08) 0.724 (.26) 0.721 (.29) 0.692 (.35) 0.612 (.29) 0.599 (.30) 0.565 (.28)
k-loss 0.587 (.21) 0.526 (.29) 0.419 (.36) 0.127 (.27) 0.555 (.23) 0.550 (.26) 0.093 (.16) 0.003 (.08) 0.009 (.07) 0.006 (.05)
finetuning 0.948 (.11) 0.942 (.13) 0.959 (.10) 0.946 (.10) 0.949 (.16) 0.918 (.21) 0.621 (.11) 0.788 (.25) 0.740 (.27) 0.751 (.26)

Ditto, λ=0.01 0.947 (.15) 0.945 (.18) 0.955 (.20) 0.946 (.13) 0.942 (.18) 0.949 (.15) 0.944 (.14) 0.902 (.20) 0.895 (.23) 0.888 (.20)
Ditto, λ=0.1 0.948 (.10) 0.945 (.14) 0.959 (.12) 0.936 (.09) 0.945 (.13) 0.948 (.10) 0.888 (.18) 0.936 (.16) 0.827 (.23) 0.812 (.24)
Ditto, λ=1 0.902 (.15) 0.899 (.15) 0.907 (.15) 0.861 (.14) 0.899 (.18) 0.818 (.22) 0.423 (.41) 0.880 (.15) 0.730 (.28) 0.736 (.28)
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Table 11. Full results (average and standard deviation of test accuracy across all devices) on CelebA.

CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.911 (.19) 0.810 (.22) 0.535 (.26) 0.228 (.21) 0.869 (.22) 0.823 (.23) 0.656 (.26) 0.451 (.27) 0.460 (.29) 0.515 (.31)
local 0.692 (.27) 0.690 (.27) 0.682 (.27) 0.681 (.26) 0.690 (.27) 0.682 (.27) 0.681 (.26) 0.692 (.27) 0.693 (.27) 0.690 (.27)
fair 0.905 (.17) 0.724 (.27) 0.509 (.27) 0.195 (.21) 0.790 (.26) 0.646 (.27) 0.646 (.27) 0.442 (.27) 0.426 (.28) 0.453 (.28)
median 0.910 (.18) 0.872 (.22) 0.494 (.28) 0.126 (.18) 0.901 (.20) 0.864 (.20) 0.617 (.30) 0.885 (.20) 0.891 (.19) 0.870 (.21)
Krum 0.775 (.25) 0.810 (.25) 0.641 (.25) 0.377 (.10) 0.790 (.25) 0.699 (.25) 0.584 (.27) 0.780 (.25) 0.728 (.25) 0.685 (.30)
multi-Krum 0.911 (.19) 0.882 (.22) 0.564 (.26) 0.107 (.19) 0.887 (.21) 0.891 (.20) 0.617 (.30) 0.512 (.27) 0.529 (.27) 0.430 (.26)
clipping 0.909 (.18) 0.866 (.19) 0.485 (.29) 0.126 (.20) 0.897 (.20) 0.842 (.21) 0.665 (.26) 0.901 (.20) 0.883 (.21) 0.853 (.23)
k-norm 0.908 (.18) 0.870 (.22) 0.537 (.28) 0.105 (.17) 0.874 (.23) 0.909 (.18) 0.664 (.25) 0.506 (.28) 0.577 (.27) 0.449 (.28)
k-loss 0.873 (.19) 0.584 (.28) 0.550 (.31) 0.169 (.21) 0.595 (.28) 0.654 (.28) 0.683 (.26) 0.543 (.33) 0.458 (.33) 0.455 (.34)
FedMGDA+ 0.909 (.19) 0.853 (.21) 0.508 (.28) 0.473 (.34) 0.907 (.19) 0.889 (.21) 0.782 (.26) 0.865 (.23) 0.805 (.26) 0.847 (.21)
finetuning 0.912 (.18) 0.814 (.24) 0.721 (.28) 0.691 (.29) 0.850 (.24) 0.800 (.25) 0.747 (.24) 0.665 (.28) 0.668 (.27) 0.673 (.28)

Ditto, λ=0.1 0.884 (.24) 0.716 (.27) 0.721 (.27) 0.724 (.28) 0.727 (.26) 0.708 (.28) 0.706 (.28) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Ditto, λ=1 0.911 (.16) 0.820 (.26) 0.714 (.28) 0.675 (.29) 0.872 (.22) 0.826 (.26) 0.708 (.29) 0.629 (.29) 0.667 (.28) 0.685 (.28)
Ditto, λ=2 0.914 (.18) 0.828 (.22) 0.698 (.27) 0.654 (.28) 0.862 (.21) 0.791 (.26) 0.623 (.31) 0.585 (.29) 0.647 (.27) 0.655 (.29)

Table 12. Full results (average and standard deviation of test accuracy across all devices) on StackOverflow.

StackOverflow A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.155 (.13) 0.153 (.13) 0.156 (.16) 0.169 (.18) 0.147 (.12) 0.009 (.03) 0.013 (.01) 0.000 (.00) 0.000 (.00) 0.000 (.00)
local 0.311 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15)
fair 0.154 (.13) 0.155 (.14) 0.153 (.13) 0.141 (.10) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.148 (.12) 0.152 (.13) 0.167 (.11)
median 0.002 (.00) 0.001 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.001 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00)
Krum 0.154 (.13) 0.150 (.13) 0.041 (.04) 0.002 (.00) 0.158 (.13) 0.151 (.13) 0.167 (.12) 0.153 (.13) 0.154 (.14) 0.138 (.15)
clipping 0.154 (.13) 0.157 (.13) 0.149 (.13) 0.163 (.17) 0.152 (.13) 0.001 (.01) 0.001 (.01) 0.155 (.12) 0.161 (.14) 0.120 (.16)
k-norm 0.154 (.13) 0.156 (.12) 0.100 (.08) 0.002 (.00) 0.086 (.11) 0.042 (.03) 0.001 (.00) 0.149 (.15) 0.144 (.15) 0.155 (.13)
k-loss 0.155 (.13) 0.160 (.12) 0.164 (.13) 0.129 (.14) 0.136 (.11) 0.145 (.11) 0.156 (.14) 0.148 (.14) 0.159 (.13) 0.156 (.13)
FedMGDA+ 0.155 (.12) 0.154 (.13) 0.152 (.13) 0.165 (.13) 0.147 (.13) 0.160 (.14) 0.101 (.09) 0.155 (.13) 0.158 (.12) 0.154 (.13)

Ditto, λ=0.05 0.315 (.16) 0.325 (.16) 0.315 (.17) 0.313 (.15) 0.314 (.16) 0.350 (.16) 0.312 (.14) 0.316 (.17) 0.321 (.17) 0.327 (.17)
Ditto, λ=0.1 0.309 (.17) 0.318 (.17) 0.315 (.17) 0.293 (.13) 0.309 (.17) 0.316 (.16) 0.307 (.14) 0.319 (.17) 0.302 (.17) 0.305 (.17)
Ditto, λ=0.3 0.255 (.18) 0.298 (.18) 0.288 (.17) 0.304 (.16) 0.283 (.17) 0.233 (.18) 0.321 (.20) 0.252 (.17) 0.261 (.19) 0.269 (.17)


