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In Section A, we provide details on the derivation of LM-RFF, Lloyd’s algorithm for the construction and the exact quantizers
as the output. In Section B, we present more analytical figures and results from Section 4 of the main paper. In Section C,
we provide more details of the numerical experiments. Finally, all missing proofs are included in Section D.

A. Lloyd-Max (LM) Quantization: Derivation and Properties
We provide a detailed derivation of Lloyd-Max (LM) quantization scheme and its properties, which would be useful to our
analysis. Recall that our proposed LM-RFF quantizers minimize the distortion defined as

DQ =

∫
S

(Q(z)− z)2f(z)dz,

where f(z) is the signal distribution. Also, our b-bit fixed quantizer Q has borders t0 < ... < tM and reconstruction levels
µ1 < ... < µM , with M = 2b. Since the sine and cosine function are bounded within [−1, 1], we have t0 = −1 and tM = 1.
Thus the distortion is

DQ =

M∑
i=1

∫ ti

ti−1

(z − µi)2f(z)dz.

Lloyd’s algorithm finds a stationary point of above system. By setting the derivative of DQ w.r.t. µi to 0

∂DQ

∂µi
= −2

∫ ti

ti−1

(z − µi)f(z)dz = 0,

we obtain

µi =

∫ ti
ti−1

zf(z)dz∫ ti
tt−1

f(z)dz
.

We do the same thing for ti (i.e., setting ∂DQ
∂ti

= 0) and get

ti =
µi + µi+1

2
.

The following two useful properties hold for LM quantizers.

Property 1. E[z] = E[Q(z)].

Property 2. E[Q(z)z] = E[Q(z)2].

Proof. For Property 1, we have

E[Q(z)] =

M∑
i=1

∫ ti

ti−1

∫ ti
ti−1

zf(z)dx∫ ti
ti−1

f(z)dz
f(z)dz

=

M∑
i=1

∫ ti

ti−1

∫ ti

ti−1

zf(z)dz = E[z]. (9)
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For Property 2, similarly we have

E[Q(z)z] =

M∑
i=1

∫ ti

ti−1

∫ ti
ti−1

zf(z)dx∫ ti
ti−1

f(z)dz
zf(z)dz

=

M∑
i=1

∫ ti

ti−1

(
∫ ti
ti−1

zf(z)dx)2

(
∫ ti
ti−1

f(z)dz)2
f(z)dz = E[Q(z)2].

A.1. Details of LM-RFF Quantizer Construction

For completeness, we summarize our derivations introduced previously as the concrete steps for constructing LM-RFF in
Algorithm 1. In our implementation, the algorithm terminates when the total absolute change in borders and reconstruction
levels in two consecutive iterations is smaller than 10−5. This convergence threshold can be set arbitrarily. In most cases,
the running time of LM-RFF construction should be negligibly small.

For practitioners to use LM-RFF straightforwardly, we present the output LM-RFF quantizers with b = 1, 2, 3, 4 in Table 2.

Algorithm 1 Construction of LM-RFF quantizer
Input: Density fZ(z) (Theorem 2.1, (4)), number of bits b
Output: LM-RFF quantizer t = [t0, ..., t2b ], µ = [µ1, ..., µ2b ]

Fix t0 = −1, t2b = 1
While true

For i = 1 to 2b

Update µi by µi =

∫ ti
ti−1

zfZ(z)dz∫ ti
ti−1

fZ(z)dz

End For
For i = 1 to 2b − 1

Update ti by ti = µi+µi+1

2
End For

Until Convergence

Table 2. Constructed borders and reconstruction levels of LM-RFF quantizers, b = 1, 2, 3, 4, keeping three decimal places. Since the
quantizers are symmetric about 0, we only present the positive part for conciseness.

b Borders Reconstruction Levels
1 {0, 1} {0.637}
2 {0, 0.576, 1} {0.297, 0.854}
3 {0, 0.286, 0.563, 0.819, 1} {0.144, 0.428, 0.699, 0.939}
4 {0, 0.142, 0.283, 0.421, 0.557, 0.687, 0.811, 0.922, 1} {0.071, 0.213, 0.353, 0.49, 0.624, 0.751, 0.87, 0.974}
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B. More Analytical Figures in Section 4
B.1. More Figures on Mean and Variance of LM-RFF

In Figure 12, we present more figures on the bias of LM quantized estimators, corresponding to Theorem 4.2, Theorem 4.3.
Same as in the main paper, we see that the proposed surrogates (Observations 4.1 and 4.2) align well with true biases. As b
increases, the bias vanishes towards 0.
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Figure 12. Observation 4.1 and Observation 4.2 (black dash curves) vs. empirical bias (blue curves) of LM-RFF. Red dots are the biases
given in the theorems at specific ρ values.
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In Figure 13, we provide more plots on variance of proposed LM-RFF estimators at more γ levels. As we expect, the
variances of LM-RFF quantized estimators converge to the corresponding full-precision estimators as the number of bits b
increases, i.e., V ar[K̂Q]→ V ar[K̂], V ar[K̂n,Q]→ V ar[K̂n], as b→∞.
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Figure 13. Variance (scaled by m) of LM-RFF and LM-RFF Norm. estimators with different γ and bits b. The dashed curves are the
variances of full-precision counterparts.
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B.2. Additional Example on the Monotonicity of LM-RFF Mean Estimation

In Lemma 4.5, we provide the concrete formula for computing the derivatives of E[g1(zx)g2(zy)] w.r.t. ρ, where g1 and
g2 are two continuous functions, and zx and zy are the RFFs. In Theorem 4.6, we extend the result to discrete functions
including LM-RFF quantizers. In Figure 14, we provide an additional example that validates Lemma 4.5 and Theorem 4.6,
by approximating discrete LM-RFF quantization functions using continuous functions. Let Q(x) be the 1-bit LM-RFF
quantizer. We use continuous function g̃(x) = µ2 · sign(x)(1− e−50|x|) as the surrogate to compute the “derivative” of
Q. Here µ2 = 0.697 from Table 2 is the reconstruction level of 1-bit LM-RFF quantizer. We can draw similar conclusion
as Figure 6 in the main paper: the derivative w.r.t. ρ is non-negative, and the theory matches the truth. Recall that in
Theorem 4.6, with larger γ, monotonicity is guaranteed for larger ρ (Remark 4.1). In Figure 14, we see consistent pattern:
for example, for γ = 0.5, we observe clearly the positive derivative on ρ ∈ [0, 1], while for γ = 5, the derivative is almost
zero until ρ is around 0.8.
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Figure 14. Validation of Lemma 4.5 and Theorem 4.6 at multiple γ. Black curves are the function value (expectation), and red lines are
the theoretical derivatives. Here Q is the 1-bit LM-RFF quantizer. The derivative is approximated by the continuous approximation
g̃(x) = µ2sign(x)(1− e−50|x|), where µ2 is the positive reconstruction level of Q.
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C. More Experimental Details
In this section, we provide more implementation details of our empirical study.

Dataset description. For kernel SVM, BASEHOCK and PCMAC provided by ASU database (Li et al., 2016) are two
subsets from the 20 NewsGroup dataset which are binary text datasets, each containing samples from 2 classes out of 20
categories. For both datasets, we process the samples by instance normalization. For kernel logistic regression, we use
two popular datasets from LIBSVM library (Chang and Lin, 2011). The Webspam dataset, a benchmark dataset for spam
detection, contains 175,000 training and test samples each, classified into “spam” and “not spam”, where some negative
samples are manually created by traversing some normal websites such as news articles. Unigram representation is adopted
with 254 dimensions. Each sample is normalized to unit norm. The CoverType dataset predicts forest cover type from
cartographic variables. We make a random 50/50 split to get the training and test set. We diretly train on the raw data
without normalization. According to Theorem 2.1, our LM-RFF quantizer would work as well in this more general setting
where data instances have arbitrary l2 norms, which is justified by our numerical results.

Model training. We formally define the objective functions, and the tuned regularization parameters, of the learning
problems in our experiments. We present linear models since our low-precision training is applied to linear learners. Suppose
we have a dataset {ui ∈ Rd, yi}n1 . For binary SVM classifier, assume yi ∈ {−1,+1} are the labels. Linear SVM solves the
optimization problem

min
w,b

1

2
‖w‖2 + C

n∑
i=1

max(0, 1− yi(wTui + b)),

where C is the penalization parameter. In logistic regression (with l2 penalty), the problem is to solve

min
β

1

2

n∑
i=1

log(1 + e−yiu
T
i β) +

λ

2
‖β‖2.

For ridge regression, the response yi is real-valued. We minimize the squared error with l2 regularization,

min
β

1

2

n∑
i=1

(yi − uTi β)2 +
λ

2
‖β‖2,

where λ is a hyper-parameter controlling the penalization. All above three loss functions are convex, so Stochastic Gradient
Descent (SGD) with appropriate stepsize finds the global minimizer. In linear learning, we train the models with input as the
original data. In our approximated kernel learning setting, we solve the above three problems with the input vectors ui as
the random Fourier features (or the corresponding quantized RFFs).

The parameter γ for the Gaussian kernel is tuned over a fine grid from 0.001 to 100. For SVM experiments, the tuning
parameter C for linear SVM is searched over a fine grid from 0.001 to 1000. For ridge regression, the penalization parameter
λ is selected in the log-scale from {0, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1}. We also tune the learning rate over a fine grid from
0.00001 to 0.1. These tuning procedures are applied to every single run using different compression method, b and m. For
SVM experiments, we implement the popular LIBLINEAR (Chang and Lin, 2011) toolkit in MATLAB 2019a software.
For KLR and KRR, we run SGD using PyTorch since it has well designed computing architecture for gradient-based
optimization methods. For KLR runs we train for at least 50 epochs, and for KRR we train at least 100 epochs. The training
is terminated after the test accuracy becomes stable (i.e., no more improvement for many epochs).
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D. Proofs
D.1. Theorem 2.1

The following Lemma is a result of the convolution of normal and uniform distributions.

Lemma D.1. Suppose X ∼ N(0, 1) and τ ∼ uniform(0, 2π) are independent, γ > 0. Then

γX + τ ∼ 1

2π

[
Φ(

2π − y
γ

)− Φ(−y
γ

)

]
.

Proof. We have the convolution of uniform and Gaussian distribution as

fY (y) =

∫ ∞
−∞

P (b = u, γX = y − u)du

=
1

2π

∫ 2π

0

1√
2πγ

e
− (y−u)2

2γ2 du =
1

2π

[
Φ(

2π − y
γ

)− Φ(−y
γ

)

]
.

Proof. (of Theorem 2.1) Denote Y = γX + τ . We have

P
(
Z ≤ z

)
=

∞∑
k=−∞

P
(

2kπ + cos−1 z ≤ Y ≤ 2(k + 1)π − cos−1 z
)

=

∞∑
k=−∞

∫ 2(k+1)π−cos−1 z

2kπ+cos−1 z

fY (y)dy,

where f(y) is given by Lemma D.1. Let the density of Z be gZ , and denote t∗ = cos−1 z. It follows that

gZ(z) =

∞∑
k=−∞

1√
1− z2

[
fY (2(k + 1)π − t∗) + fY (2kπ + t∗)

]
=

1

2π
√

1− z2

∞∑
k=−∞

[
Φ(
t∗ − 2kπ

γ
)− Φ(

t∗ − 2(k + 1)π

γ
) + Φ(

−t∗ − 2(k − 1)π

γ
)− Φ(

−t∗ − 2kπ

γ
)
]

︸ ︷︷ ︸
αk

=
1

π
√

1− z2
. (10)

To prove the last line, denote the term in the bracket as αk. By cancellation, for any k1, k2, we have

k2∑
k=k1

αk =
[
Φ(
t∗ − 2k1π

γ
) + Φ(

−t∗ − 2(k1 − 1)π

γ
)− Φ(

t∗ − 2(k2 + 1)π

γ
)− Φ(

−t∗ − 2k2π

γ
)
]
,

which equals to 2 in the limit as k1 → −∞, k2 →∞. Using a similar approach, we can show that Eq. (10) is exactly the
density of the cosine of a uniform random variable on [0, 2π].

D.2. Theorem 2.2

We will use the following Lemma analogue to Lemma D.1 on the joint distribution.

Lemma D.2. Denote zx = γX + τ , zy = γY + τ with (X,Y ) ∼ N
(
0,

(
1 ρ
ρ 1

))
, τ ∼ uniform(0, 2π). We have the

joint distribution

f(zx, zy) =
1

2π
φ√

2(1−ρ)γ(zx − zy)
[
Φ(

4π − (zx + zy)

γ
√

2(1 + ρ)
)− Φ(− zx + zy

γ
√

2(1 + ρ)
)
]
.
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Proof. Similar to the proof of Lemma D.1, we have

f(tx, ty) =
1

2π

∫ 2π

0

P (γx = tx − u, γy = ty − u)du

=
1

4π2γ2
√

1− ρ2

∫ 2π

0

e
− (tx−u)2−2ρ(tx−u)(ty−u)+(ty−u)2

2(1−ρ2)γ2 du

=
1

4π2γ2
√

1− ρ2

∫ 2π

0

e
−

2(1−ρ)(u2−u(tx+ty))+t2x+t2y−2ρtxty

2(1−ρ2)γ2 du

=
1

4π2γ2
√

1− ρ2

∫ 2π

0

e
−

2(1−ρ)(u−
tx+ty

2
)2+

1+ρ
2

(tx−ty)2

2(1−ρ2)γ2 du

=
1

4π2γ2
√

1− ρ2
e
− (tx−ty)2

4(1−ρ)γ2

∫ 2π

0

e
−

(u−
tx+ty

2
)2

(1+ρ)γ2 du

=
1

2π
φ√

2(1−ρ)γ(tx − ty)
[
Φ(

4π − (tx + ty)

γ
√

2(1 + ρ)
)− Φ(− tx + ty

γ
√

2(1 + ρ)
)
]
,

where φ√
2(1−ρ)γ is the density of N(0, 2(1− ρ)γ2).

Proof. (of Theorem 2.2) We will first prove the cosine function, and then prove similar result for applying sine functions,
which will be useful for all subsequent proofs. Denote Zx = cos(tx), Zy = cos(ty). Let a∗x = cos−1(zx), a∗y = cos−1(zy).
Denote φ = φ√

2(1−ρ)γ for simplicity. We have

P (Zx ≤ zx, Zy ≤ zy) =

∞∑
kx=−∞

∞∑
ky=−∞

∫ 2(kx+1)π−a∗x

2kxπ+a∗x

∫ 2(ky+1)π−a∗y

2kyπ+a∗y

f(tx, ty)dtxdty.

By Lemma D.2, it follows that

f(zx, zy)

=
1

2π

∞∑
kx=−∞

∞∑
ky=−∞

∫ 2(kx+1)π−a∗x

2kxπ+a∗x

1√
1− z2y

{
φ(tx − 2(ky + 1)π + a∗y)

[
Φ(

4π − (tx + 2(ky + 1)π − a∗y)

γ
√

2(1 + ρ)
)

− Φ(−
tx + 2(ky + 1)π − a∗y

γ
√

2(1 + ρ)
)
]

+ φ(tx − 2kyπ − a∗y)
[
Φ(

4π − (tx + 2kyπ + a∗y)

γ
√

2(1 + ρ)
)− Φ(−

tx + 2kyπ + a∗y

γ
√

2(1 + ρ)
)
]}
dtx

=
1

2π
√

1− z2x
√

1− z2y

∑
kx

∑
ky

{
φ(−a∗x + a∗y + 2(kx − ky)π)

[
Φ(
a∗x + a∗y − 2(kx + ky)π)

γ
√

2(1 + ρ)
)− Φ(

a∗x + a∗y − 2(kx + ky + 2)π

γ
√

2(1 + ρ)
)
]

+ φ(−a∗x − a∗y + 2(kx − ky + 1)π)
[
Φ(
a∗x − a∗y − 2(kx + ky − 1)π)

γ
√

2(1 + ρ)
)− Φ(

a∗x − a∗y − 2(kx + ky + 1)π

γ
√

2(1 + ρ)
)
]

+ φ(a∗x + a∗y + 2(kx − ky − 1)π)
[
Φ(
−a∗x + a∗y − 2(kx + ky − 1)π)

γ
√

2(1 + ρ)
)− Φ(

−a∗x + a∗y − 2(kx + ky + 1)π

γ
√

2(1 + ρ)
)
]

+ φ(a∗x − a∗y + 2(kx − ky)π)
[
Φ(
−a∗x − a∗y − 2(kx + ky − 2)π)

γ
√

2(1 + ρ)
)− Φ(

−a∗x − a∗y − 2(kx + ky)π

γ
√

2(1 + ρ)
)
]}

(a)
=

1

2π
√

1− z2x
√

1− z2y

∞∑
k=−∞

[
φ(−a∗x + a∗y + 2kπ) + φ(−a∗x − a∗y + 2kπ) + φ(a∗x + a∗y + 2kπ) + φ(a∗x − a∗y + 2kπ)

]
=

1

π
√

1− z2x
√

1− z2y

∞∑
k=−∞

[
φ(a∗x − a∗y + 2kπ) + φ(a∗x + a∗y + 2kπ)

]
,

where (a) is derived by writing the summations
∑∞
kx=−∞

∑∞
ky=−∞{·} into

∑∞
l=−∞

∑∞
kx=−∞{·} with l = kx − ky and

canceling terms, along with the symmetry of φ(·). This gives the joint density of zx and zy .
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For the sine counterpart, with some abuse of notation, let us denote zx = sin(tx) and zy = sin(ty) from now on. Using
similar argument, we have

P (Zx ≤ zx, Zy ≤ zy) =

∞∑
kx=−∞

∞∑
ky=−∞

∫ 2(kx+1)π+sin−1(zx)

(2kx+1)π−sin−1(zx)

∫ 2(ky+1)π+sin−1(zy)

(2ky+1)π−sin−1(zy)

f(tx, ty)dtxdty.

After simplification, we finally arrive at

f(zx, zy) =
1

π
√

1− z2
x

√
1− z2

y

∞∑
k=−∞

[
φ(sin−1(zx)− sin−1(zy) + 2kπ) + φ(sin−1(zx) + sin−1(zy) + (2k + 1)π)

]
.

(11)

Considering Zx = sin(tx), Zy = sin(ty). Since sin−1(x) = π
2 − cos−1(x), we can substitute into the density to derive

f(zx, zy) =
1

π
√

1− z2
x

√
1− z2

y

∞∑
k=−∞

[
φ(cos−1(zx)− cos−1(zy) + 2kπ) + φ(cos−1(zx) + cos−1(zy) + (2k + 2)π)

]

==
1

π
√

1− z2
x

√
1− z2

y

∞∑
k=−∞

[
φ(a∗x − a∗y + 2kπ) + φ(a∗x + a∗y + 2kπ)

]
,

which is the same as the previous cosine transformation. This completes the proof.

D.3. Proposition 2.3

Proof. Let us denote σ =
√

2(1− ρ)γ for simplicity. By symmetry and exchangeability of f , to prove the desired
result, it suffices to consider the case where both zx and zy are positive, i.e., (zx, zy) ∈ (0, 1]2. Define the notation
a∗x = sin−1(zx) ≥ 0, a∗y = sin−1(zy) ≥ 0. From (11), we deduct

f(zx, zy)− f(zx,−zy)

∝
∞∑

k=−∞

[
φσ(a∗x − a∗y + 2kπ) + φσ(a∗x + a∗y + (2k + 1)π)

− φσ(a∗x + a∗y + 2kπ)− φσ(a∗x − a∗y + (2k + 1)π)
]

=

∞∑
k=0

(−1)k
[
φσ(kπ + d)− φσ(kπ + s) + φσ((k + 1)π − s)− φσ((k + 1)π − d)

]
,

= φσ(d)− φσ(s) +
∞∑
k=1

[
φσ(kπ − s)− φσ(kπ − d)− φσ(kπ + d) + φσ(kπ + s)

]
,

, φσ(d)− φσ(s) +

∞∑
k=1

Mk, (12)

where we let d = a∗x − a∗y and d = a∗x + a∗y, and we use the fact that φσ(−x) = φσ(x). Note that, we consider zy > 0 so
that d 6= s, since when zy = 0 we trivially have f(zx, 0) = f(zx, 0). For now, we assume that zx ≥ zy > 0, such that d and
s are defined on the domain 0 < s ≤ π and 0 ≤ d < min{s, π − s}. Since

φ′σ(x) = − x√
2πσ3

e−
x2

2σ2 , φ′′σ(x) = −x
2 − σ2

√
2πσ5

e−
x2

2σ2 ,

we know that φσ is piecewise concave on (0, σ) and piecewise convex on (σ,∞). Thus,

φσ(a)− φσ(a+ g) ≥ φσ(c)− φσ(c+ g) (13)
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for any σ ≤ a ≤ c and g ≥ 0. The equality holds only when a = c or g = 0. Consequently, under the assumption that
σ ≤ π, Mk ≥ 0 for k ≥ 2 since 2π − s ≥ σ, where the equality holds only when d = s, i.e., zy = 0. Furthermore, the
piecewise convexity of φσ(·) and (13) imply that for σ ≤ a < c,

(c− a)c

σ2
e−

c2

2σ2 < e−
a2

2σ2 − e−
c2

2σ2 <
(c− a)a

σ2
e−

a2

2σ2 . (14)

Also note that the function e−x is convex on the real line, which gives for ∀a < c,

(c− a)(c+ a)

2σ2
e−

c2

2σ2 < e−
a2

2σ2 − e−
c2

2σ2 <
(c− a)(c+ a)

2σ2
e−

a2

2σ2 . (15)

Now that Mk > 0 for k ≥ 2, evaluating (12) we obtain

(12) > φσ(d)− φσ(s) +M1

(a)
>

1√
2πσ3

[ (s− d)(s+ d)

2
e−

s2

2σ2 +
(s− d)(2π − s− d)

2
e−

(π−d)2

2σ2 − (s− d)(π + d)e−
(π+d)2

2σ2

]
(b)

≥ s− d√
2πσ3

[
πe−

(π−d)2

2σ2 − (π + d)e−
(π+d)2

2σ2

]
,

where (a) uses (14) and (15), and (b) is because s ≤ π − d. It is easy to verify that the ratio(
πe−

(π−d)2

2σ2

)/(
(π + d)e−

(π+d)2

2σ2

)
=

π

π + d
e

2πd
σ2 ≥ 1

for σ ≤ π and 0 ≤ d < min{s, π − s} < π
2 . Therefore, we have proved that f(zx, zy) > f(zx,−zy), for zx ≥ zy > 0.

Now, by exchangeability and symmetry of f , we have

f(zy, zx) = f(zx, zy) > f(zx,−zy) = f(−zx, zy) = f(zy,−zx).

Therefore, our result also holds for zy ≥ zx > 0. The proof is now complete.

D.4. Theorem 4.1

Proof. Denote the StocQ quantizer as Q. For each RFF z, assume z ∈ [ti−1, ti] for some i. We can then write Q(z) = z+ ε,
where

E[ε] = ti
z − ti−1

ti − ti−1
+ ti−1

ti − z
ti − ti−1

− z = 0.

Thus, it follows that

V ar[ε] = E[ε2] = t2i
z − ti−1

ti − ti−1
+ t2i−1

ti − z
ti − ti−1

− z2

= (ti − z)(z − ti−1).

For two data vectors u, v, let FStocQ(u) =
√

2Q(zu) and FStocQ(v) =
√

2Q(zv), where zu = cos(wTu + τ) and
zv = cos(wT v + τ) follows the distribution f given by Theorem 2.2. We can write Q(zu) = zu + εu, Q(zv) = zv + εv
where εu and εv are independent. Let =̂FStocQ(u)FStocQ(v). We have

E[K̂StocQ] = 2E[(zu + εu)(zv + εv)]

= 2E[zuzv] = K(u, v),

implying that StocQ estimate is unbiased. The variance factor can be computed as

V ar[K̂StocQ] = 4E[(zu + εu)2(zv + εv)
2]−K(u, v)2

= 4E[z2
uε

2
v + z2

vε
2
u + ε2uε

2
v] + V ar[K̂] , A+ V ar[K̂], (16)
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where V ar[K̂] is the variance of full-precision RFF kernel estimator. Obviously, A > 0, thus StocQ estimator always has
larger variance than full-precision RFF. Continuing our analysis,

E[z2
uε

2
v] = Ezu,zvz2

uE[ε2v|zv]

=

∫ 1

−1

dzu

( 2b−1∑
j=1

∫ tj

tj−1

(tj − zv)(zv − tj−1)z2
uf(zu, zv)dzv

)

=

2b−1∑
i=1

2b−1∑
j=1

∫ tj

tj−1

∫ ti

ti−1

(
(tj−1 + tj)zvz

2
u − z2

vz
2
u − tj−1tjz

2
u

)
f(zu, zv)dzudzv.

By symmetry of density function f , we know that E[z2
vε

2
u] = E[z2

uε
2
v]. It remains to compute E[ε2uε

2
v]. By similar reasoning,

we have

E[ε2uε
2
v] =

2b−1∑
i=1

2b−1∑
j=1

∫ tj

tj−1

∫ ti

ti−1

(ti − zu)(zu − ti−1)(tj − zv)(zv − tj−1)f(zu, zv)dzudzv

=

2b−1∑
i=1

2b−1∑
j=1

∫ tj

tj−1

∫ ti

ti−1

(
(ti−1 + ti)(tj−1 + tj)zuzv − (ti−1 + ti)zuz

2
v − (tj−1 + tj)zvz

2
u + z2

uz
2
v

− (ti−1 + ti)tj−1tjzu − (tj−1 + tj)ti−1tizv + tj−1tjz
2
u + ti−1tiz

2
v + ti−1titj−1tj

)
f(zu, zv)dzudzv

(a)
=

2b−1∑
i=1

2b−1∑
j=1

∫ tj

tj−1

∫ ti

ti−1

(
(ti−1 + ti)(tj−1 + tj)zuzv − 2(tj−1 + tj)zvz

2
u + z2

uz
2
v

+ 2tj−1tjz
2
u + ti−1titj−1tj

)
f(zu, zv)dzudzv,

where equation (a) is due to the symmetry of density f and the borders t0 < ... < t2b−1. Substituting above expressions
into (16) and cancelling terms, we obtain

A = 4

2b−1∑
i=1

2b−1∑
j=1

∫ tj

tj−1

∫ ti

ti−1

(
(ti−1 + ti)(tj−1 + tj)zuzv + ti−1titj−1tj − z2

uz
2
v

)
f(zu, zv)dzudzv

= 4

2b−1∑
i=1

2b−1∑
j=1

[
(ti−1 + ti)(tj−1 + tj)κi,j + ti−1titj−1tjpi,j

]
− 4E[z2

uz
2
v ].

Therefore,

V ar[K̂StocQ] = 4

2b−1∑
i=1

2b−1∑
j=1

[
(ti−1 + ti)(tj−1 + tj)κi,j + ti−1titj−1tjpi,j

]
−K(u, v)2.

The proof is completed by noting that StocQ estimator is the average of i.i.d. Bernoulli random variables.

D.5. Theorem 4.2

Proof. We start by recalling some preliminaries on functional analysis. The Chebyshev polynomials (Borwein and Erdélyi,
1995) of the first kind are defined through trigonometric identities

Tn(cos(x)) = cos(n cos(x)),

where admit the following recursion,

T0(x) = 1, T1(x) = x,

Ti+1(x) = 2xTi(x)− Ti−1(x), i ≥ 2.
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{T0, T1, ...} forms an orthogonal basis of the function space on [−1, 1] with finite number of discontinuities. Precisely,
define the inner product w.r.t. measure 1√

1−x2
as

〈f(x), g(x)〉 =

∫ 1

−1

f(x)g(x)
1√

1− x2
dx.

Then orthogonality holds:

∫ 1

−1

Ti(x)Tj(x)
1√

1− x2
dx =


0, i 6= j,

π, i = j = 0,
π
2 , i = j 6= 0.

By Chebyshev functional decomposition, our LM quantizer can be written as

Q(x) =

∞∑
k=0

αkTk(x),

where αk are computed through the inner products,

α0 =
2

π

∫ 1

−1

Q(x)T0(x)
dx√

1− x2
= 0,

α1 =
2

π

∫ 1

−1

Q(x)T1(x)
dx√

1− x2
= 1− 2D,

α2 =
2

π

∫ 1

−1

Q(x)T2(x)
dx√

1− x2
= 0,

α3 =
2

π

∫ 1

−1

Q(x)T3(x)
dx√

1− x2
,

...

with D the distortion of Q given in equation (7) of the main paper. Firstly, it is easy to show that |E[Ti(zx)Tj(zy)]| ≤
E[Ti(zx)2] = 1

2 . Note that αk = 0 when k is even because Tk(x) is even function and Q(x) is odd. Recall u, v are two
normalized data vectors with correlation ρ. Denote zx = cos(γx+ τ) and zy = cos(γy + τ) with distribution f(zx, zy),

where (x, y) ∼ N
(
0,

(
1 ρ
ρ 1

))
, τ ∼ uniform(0, 2π). It follows that

E[
√

2Q(zx)
√

2Q(zy)] = 2

∫ 1

−1

∫ 1

−1

Q(zx)Q(zy)f(zx, zy)dzxdzy

= 2

∫ 1

−1

∫ 1

−1

(

∞∑
i=1,odd

αiTi(zx))(

∞∑
j=1,odd

αjTj(zy))f(zx, zy)dzxdzy

= (1− 2D)2K(u, v) + 2

∞∑
i=1,odd

∞∑
j=3,odd

αiαj

∫ 1

−1

∫ 1

−1

Ti(zx)Tj(zy)f(zx, zy)dzxdzy. (17)

This proves the first part. There is an intrinsic constraint on αi, i = 3, 5, .... First, we can compute the cosine of Q(x) and
each Ti(x) as

ci =

∫ 1

−1
Q(x)Ti(x) dx√

1−x2√∫ 1

−1
Q(x)2 dx√

1−x2

∫ 1

−1
Ti(x)2 dx√

1−x2

=
π
2αi√

( 1
2 −D)π

√
π
2

=
αi√

1− 2D
.
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Since the Chebyshev polynomials form an orthogonal basis of function space on [−1, 1], it holds that
∑∞
i=0 c

2
i = 1.

Therefore, we have
∑∞
i=0 α

2
i = 1− 2D. Now that αi = 0 when i is even, and α1 = 1− 2D, we then have

∑∞
i=3,odd α

2
i =

1− 2D − (1− 2D)2 = 2D(1− 2D).

When ρ = 0, from (17), it is easy to see that all the integrals would be zero by independence. Thus, the estimated kernel
E[
√

2Q(zx)
√

2Q(zy)] = (1− 2D)2K(u, v).

When ρ = 1 (K(u, v) = 1), we have
∫ 1

−1
Ti(zx)Tj(zx)f(zx)dzx = 0 for i 6= j by orthogonality of Chebyshev polynomials,

where f(zx) is the marginal distribution of zx. It follows that

E[
√

2Q(zx)
√

2Q(zy)] = (1− 2D)2 +

∞∑
i=3,odd

α2
i

= (1− 2D)2 + 2D(1− 2D)

= 1− 2D.

This completes the proof of the theorem.

D.6. Theorem 4.3

Proof. Denotew = cos(γx+ τ), z = cos(γy+ τ), with (x, y) are random vectors with i.i.d. entries from N(0,

(
1 ρ
ρ 1

)
),

and τ ∼ uniform(0, 2π) is also a vector with i.i.d. entries. Recall the notation ζs,t = E[Q(w1)sQ(z1)t], where Q is our
LM-RFF quantizer. By Taylor expansion at the expectations, we have as m→∞,

E[K̂n,Q] =
E[ 1

m

∑m
i=1Q(wi)Q(zi)]

E[
√

1
m2 ‖Q(w)‖2‖Q(z)‖2]

+O(
1

m
)

,
ζ1,1

E[
√

Λ]
+O(

1

m
).

Applying Taylor expansion again,

E[
√

Λ] = E
[√

E[Λ] +
Λ− E[Λ]

2
√
E[Λ]

+O((Λ− E[Λ])2)
]

= E[Λ] +O(
1

m
), m→∞.

Furthermore, we have the expectation of Λ as

E[Λ] =
1

m2
E
[( m∑

i=1

Q(wi)
2
)( m∑

i=1

Q(zi)
2
)]

=
1

m2

[∑
i6=j

Q(wi)
2Q(zj)

2 +

m∑
i=1

Q(wi)
2Q(zi)

2
]

=
m− 1

m
E[Q(w1)2Q(z2)2] +

1

m
E[Q(w1)2Q(z1)2]

= ζ2
2,0, m→∞.

Consequently, we obtain

E[K̂n,Q] =
ζ1,1
ζ2,0

, m→∞.

This completes the proof for asymptotic mean. With a little abuse of notation, let K̂n,Q = a√
bc

, with

a =
〈Q(w), Q(z)〉

k
, b =

‖Q(w)‖2

k
, c =

‖Q(z)‖2

k
.
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We have

E[a] = ζ1,1, V ar[a] =
ζ2,2 − ζ2

1,1

m
,

E[b] = ζ2,0 = E[c], V ar[b] =
ζ4,0 − ζ2

2,0

m
= V ar[c],

Cov(a, b) =
1

m2
E[(

m∑
i=1

Q(wi)Q(zi))(

m∑
i=1

Q(wi)
2)]− ζ1,1ζ2,0

=
mζ3,1 +m(m− 1)ζ1,1ζ2,0

m2
− ζ1,1ζ2,0

=
ζ3,1 − ζ1,1ζ2,0

m
= Cov(a, c),

Cov(b, c) =
ζ2,2 − ζ2

2,0

m
.

We can formulate the covariance matrix

Cov(a, b, c) =
1

m

 ζ2,2 − ζ2
1,1 ζ3,1 − ζ1,1ζ2,0 ζ3,1 − ζ1,1ζ2,0

ζ3,1 − ζ1,1ζ2,0 ζ4,0 − ζ2
2,0 ζ2,2 − ζ2

2,0

ζ3,1 − ζ1,1ζ2,0 ζ2,2 − ζ2
2,0 ζ4,0 − ζ2

2,0

 .

The gradient vector at the expectations is

∇K̂n,Q(E[a],E[b],E[c]) = (
1

ζ2,0
,− ζ1,1

2ζ2
2,0

,− ζ1,1
2ζ2

2,0

).

By Taylor expansion, it holds that

V ar[K̂n,Q] = ∇K̂n,Q(E[a],E[b],E[c])TCov(a, b, c)∇K̂n,Q(E[a],E[b],E[c]) +O(
1

m2
).

The theorem is proved by plugging in the expressions.

D.7. Theorem 4.4

Proof. Let zx = cos(γX + τ), zy = cos(γY + τ) where (X,Y ) ∼ N
(
0,

(
1 ρ
ρ 1

))
, τ ∼ uniform(0, 2π). Denote

ζs,t = E[Q(zx)sQ(zy)t]. Recalling Theorem 4.2 and Theorem 4.3, we have asymptotically (omitting lower order terms)

E[K̂Q] = 2ζ1,1, V ar[K̂Q] =
4

m
(ζ2,2 − ζ2

1,1),

E[K̂n,Q] =
ζ1,1
ζ2,0

, V ar[K̂n,Q] =
1

m

(ζ2,2
ζ2
2,0

− 2ζ1,1ζ3,1
ζ3
2,0

+
ζ2
1,1(ζ4,0 + ζ2,2)

2ζ4
2,0

)
.

Thus, we can compute the debiased estimator variance as (after simplification)

V ardb[K̂Q] =
K(u, v)2

m

(ζ2,2
ζ2
1,1

− 1
)
,

V ardb[K̂n,Q] =
K(u, v)2

m

(ζ2,2
ζ2
1,1

− 2ζ3,1
ζ1,1ζ2,0

+
ζ4,0ζ2,2
2ζ2

2,0

)
.

Taking the difference, we obtain

V ardb[K̂Q]− V ardb[K̂n,Q] ∝ 4ζ2,0ζ3,1 + ζ1,1(ζ4,0 + ζ2,2)− 2ζ1,1ζ
2
2,0

≥ 4ζ2,0ζ3,1 + ζ1,1(ζ2,2 − ζ2
2,0) ,M(ρ),
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where the inequality is due to the fact that ζ4,0 − ζ2
2,0 = V ar[Q2(zx)] ≥ 0. Here we denote M as a function of ρ. At ρ = 0,

we have

ζ3,1 = 0, ζ2,2 = ζ2
2,0,

so that M(0) = 0. At ρ = 1, it holds that

ζ3,1 = ζ2,2 = ζ4,0,

hence M(1) > 0. Notice that Q(·) and Q3(·) are non-decreasing odd functions, and Q2(·) is a even function. For ρ ∈ [0, 1],
since

√
2(1− ρ)γ ≤

√
2γ ≤ π by assumption, it follows from Theorem 4.6 that ζ1,1, ζ2,2 and ζ3,1 are all increasing in ρ

on [0, 1]. Consequently, M(ρ) > 0 for any ρ ∈ [0, 1]. The desired result thus follows.

D.8. Lemma 4.5

Lemma D.3 (Stein’s Lemma). Suppose X ∼ N(µ, σ2), and g is a differentiable function such that E[g(X)(X − µ)] and
E[g′(X)] exist. Then, E[g(X)(X − µ)] = σ2E[g′(X)].

Proof. (of Lemma 4.5) We use the technique of Gaussian interpolation and Stein’s Lemma. First, we formulate Y =
γρX + γ

√
1− ρ2Z where Z ∼ N(0, 1) independent of X . By continuity and boundedness of g1 and g2, it holds that

∂E[g1(cos(sx))g2(cos(sy))]

∂ρ

=
∂EX,Z,τ [g1(cos(γX + τ))g2(cos(γρX + γ

√
1− ρ2Z + τ))]

∂ρ

= −EX,Z,τ
[
g1(cos(γX + τ))g′2(cos(γρX + γ

√
1− ρ2Z + τ)) sin(γρX + γ

√
1− ρ2Z + τ)︸ ︷︷ ︸

Υ(X,Z;ρ)

(
γX − γρZ√

1− ρ2

)]
.

We analyze two parts respectively. By Lemma D.3 and law of total expectation, we have

EX,Z,τ [Υ(X,Z; ρ)γX]

= EZ,τEX
[
− γ2g′1(cos(γX + τ)) sin(γX + τ)g′2(cos(γY + τ)) sin(γρX + γ

√
1− ρ2Z + τ)

− γ2ρg1(cos(γX + τ))g′′2 (cos(γρX + γ
√

1− ρ2Z + τ)) sin2(γρX + γ
√

1− ρ2Z + τ)

+ γ2ρg1(cos(γX + τ))g′2(cos(γρX + γ
√

1− ρ2Z + τ)) cos(γρX + γ
√

1− ρ2Z + τ)|Z, τ
]
, (18)

and

EX,Z,τ
[
Υ(X,Z; ρ)

γρZ√
1− ρ2

]
= EX,τEZ

[
− γ2ρg1(cos(γX + τ))g′′2 (cos(γρX + γ

√
1− ρ2Z + τ)) sin2(γρX + γ

√
1− ρ2Z + τ)

+ γ2ρg1(cos(γX + τ))g′2(cos(γρX + γ
√

1− ρ2Z + τ)) cos(γρX + γ
√

1− ρ2Z + τ)|X, τ
]
. (19)

Combining (18) and (19), we get

∂E[g1(cos(sx))g2(cos(sy))]

∂ρ

= EX,Z,τ
[
γ2g′1(cos(γX + τ)) sin(γX + τ)g′2(cos(γY + τ)) sin(γρX + γ

√
1− ρ2Z + τ)

]
= γ2EX,Y,τ

[
g′1(cos(sx)) sin(sx)g′2(cos(sy)) sin(sy)

]
,

which gives the desired expression.
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To prove the monotonicity, suppose that g1 and g2 are increasing odd or non-constant even functions. So, g′1(−x)g′2(−x) =
g′1(x)g′2(x) > 0, ∀x ∈ [−1, 1]. Assume

√
2(1− ρ)γ ≤ π, and denote f(x, y) as the joint density given by Theorem 1. We

can write

∂E[g1(cos(sx))g2(cos(sy))]

∂ρ
= γ2

∫ 1

−1

∫ 1

−1

zxzyg
′
1(
√

1− z2
x)g′2(

√
1− z2

y)f(zx, zy)dzxdzy

(a)
= 2γ2

(∫ 1

0

∫ 1

0

zxzyg
′
1(
√

1− z2
x)g′2(

√
1− z2

y)f(zx, zy)dzxdzy

+

∫ 1

0

∫ 0

−1

zxzyg
′
1(
√

1− z2
x)g′2(

√
1− z2

y)f(zx, zy)dzxdzy

)
= 2γ2

∫ 1

0

∫ 1

0

zxzyg
′
1(
√

1− z2
x)g′2(

√
1− z2

y)[f(zx, zy)− f(zx,−zy)]dzxdzy

(b)
> 0,

where (a) is due to the symmetry of f and g, and (b) is a consequence of Proposition 2.3 that f(zx, zy) > f(zx,−zy) for all
zx, zy ∈ (0, 1]2, provided that

√
2(1− ρ)γ ≤ π. The proof is complete.

D.9. Theorem 4.6

Proof. Since Q1 and Q2 both are non-decreasing and have finite number of discontinuities, by Baire’s Characterization
Theorem (Baire and Denjoy, 1905; Hausdorff, 1991), we know that each of them is the point-wise limit of a sequence of
continuous increasing functions. Suppose that {g1,n} and {g2,n} are two sequences of continuous increasing functions such
that as n→∞, g1,n → Q1 and g2,n → Q2 with point-wise convergence. By dominated convergence theorem, we have

∂E[Q1(zx)Q2(zy)]

∂ρ
=
∂E[ lim

n→∞
g1,n(zx) lim

n→∞
g2,n(zy)]

∂ρ

= lim
n→∞

∂E[g1,n(zx)g2,n(zy)]

∂ρ
> 0,

where Lemma 4.5 is adopted for continuous g1,n and g2,n functions.


