
Active Feature Acquisition with Generative Surrogate Models

A. Policy Invariance under Intermediate
Rewards

Assume the original Markov Decision Process (MDP)
without the intermediate rewards is defined as M =
(S,A, T, γ, R), where S and A are state and action spaces,
T is the state transition probabilities, γ is the discount factor,
and R is the rewards. When we introduce the intermediate
rewards Rm, the MDP is modified to M � = (S,A, T, γ, R�),
where R� = R+Rm. The following theory provides a suf-
ficient and necessary condition for the modified MDP M �

to achieve the same optimal policy as the original MDP M .

Theorem 1. The modified MDP M � = (S,A, T, γ, R+ F )
with any shaping reward function F is guaranteed to be
consistent with the optimal policy of the original MDP M =
(S,A, T, γ, R) if the shaping function F have the following
form

F (s, a, s�) = γΦ(s�)− Φ(s), (A.1)

where Φ : S → R is a potential function evaluated on
states. For infinite-state case (i.e., the state space is an
infinite set) the potential function is additionally required to
be bounded.

Proof. Please refer to Ng et al. (1999) for detailed proof.

From the above theorem, we can see our intermediate re-
wards in (3) is a potential based shaping function and the
potential function is Φ(s) = −H(y | s). For classification
task where y ∈ Y = {1, 2, . . . ,K} is a discrete variable, the
entropy is naturally bounded, i.e., 0 ≤ H(y | s) ≤ log|Y|,
where |Y| is the cardinality of the label space. For re-
gression task where y ∈ R, the entropy is bounded by
0 ≤ H(y | s) ≤ H(y | ∅). The upper bound H(y | ∅)
is determined by the given surrogate model. Similarly,
for the intermediate rewards in (10), the potential function
Φ(s) = log p(xu|s)

|u| is also bounded for a given surrogate
model.

B. Experiments
B.1. Classification

For classification tasks, we conduct experiments on MNIST
and two UCI datasets. We downsample the MNIST images
to 16 × 16 to reduce the total number of features in order
to accommodate baselines such as (Ma et al., 2018), which
had trouble scaling. Features are normalized into the range
[0, 1].

The surrogate model for classification task estimate arbitrary
conditional distributions that are conditioned on the target
variable y. For MNIST, we stack conditional coupling trans-
formations and a conditional Gaussian likelihood module.

For UCI dataset, we use an autoregressive likelihood mod-
ule. To train the surrogate model, we randomly select two
non-overlapping subsets u and o and optimize the arbitrary
conditional log likelihood

log p(y, xu | xo) = log p(xu | xo) + logP (y | xu, xo)

= log p(xu | xo) + log
p(xu, xo | y)P (y)�
y� p(xu, xo | y�)P (y�)

.

(B.2)

The agent is implemented as a PPO policy. Given the current
state xo and the auxiliary information from the surrogate
model, we extract a set embedding using set transformer
(Lee et al., 2019). The inputs are first transformed to sets
by concatenating with the one-hot encoding of their indexes.
The set embedding is beneficial to deal with arbitrary dimen-
sionality of the inputs. The policy network then takes the
set embedding as inputs and outputs the next action. The
critic network takes the same set embedding as inputs and
output an estimate of the state values. To help the agent ex-
tract meaningful representations from its inputs, we let the
prediction model fθ take the same set embedding as input.
The policy network, the critic network and the prediction
function are all implemented as fully connected layers.

We run the baseline model JAFA (Shim et al., 2018) using
their public code. We cross-validate the optimal architecture
by modifying the number of layers and the size of each layer
for both the agent and the classifier.

We adapt EDDI (Ma et al., 2018) to perform classification
task by modifying the decoder to output Categorical distri-
bution for y and Gaussian distribution for x. EDDI learns
the distribution p(y, xo) by utilizing a VAE based model.
The acquisition metric for EDDI is

Ui =Exi∼p(xi|xo)DKL[p(z | xi, xo)�p(z|xo)]

− Ey,xi∼p(y,xi|xo)DKL[p(z | y, xi, xo)�p(z | y, xo)],
(B.3)

which is estimated using the proposal distribution. Then, a
greedy policy that acquires the feature with maximum utility
is employed. We similarly cross-validate the architecture
for each dataset.

We also compare to a greedy policy using the surrogate
model where the utility is calculated by (8). At each acqui-
sition step, the one with maximum utility is selected.

B.2. Regression

For regression task, the target variable y is concatenated
into the features x and the surrogate model learns the distri-
bution p(y, xu | xo). The agent is similarly implemented as
the PPO policy with a set transformer based feature extrac-
tor. Baseline models include JAFA and EDDI, where the
architecture is selected by cross validation. We also build a



Active Feature Acquisition with Generative Surrogate Models

Algorithm 2 Active Feature Acquisition with GSMRL
1. load pretrained surrogate model M , agent agent and prediction model fθ(·)
2. instantiate an environment with data D: env = Environment(D)
3. xo, o = env.reset(); // o = ∅
4. done = False; reward = 0
while not done do

aux = M .query(xo, o); // query M for auxiliary information
// aux contains the prediction ŷ ∼ p(y | xo) and output likelihoods,
// the imputed values x̂u ∼ p(xu | xo) and their uncertainties,
// and estimated utilities Ui for each i ∈ u ((4)).
action = agent.act(xo, o, aux); // act based on the state and auxiliary info
rm = M .reward(xo, o, action); // calculate intermediate rewards with the surrogate model
xo, o, done, r = env.step(action); // take a step based on the action
// if action indicates termination: done=True, r=-L(ŷ(xo), y)
// else: done=False, r=−αC(action), o = o ∪ action
reward = reward + r + rm; // accumulate rewards

end
prediction = agent.predict(xo, o, aux); // make a final prediction
// using either M.predict(xo, o, aux) or fθ(xo, o, aux) based on validation

greedy policy using our surrogate model by estimating the
utility following (6). For GSMRL and JAFA, the reward for
a prediction ŷ is calculated as the negative MSE −�ŷ− y�22.

B.3. Medical Diagnosis

We evaluate our model on Physionet challenge 2012 dataset
(Goldberger et al., 2000). We first preprocess the dataset by
removing some non-relevant features (such as patient ID)
and eliminating the instances with very high missing rate
(larger than 80%). The features are then normalized to the
range of [0,1]. The model and baselines are mostly the same
as the classification experiments for UCI dataset. Since
the classses are heavily imbalanced, we use weighted cross
entropy as loss and reward. To evaluate the performance
for data with missing entries, We first impute those missing
features with our GSM model. For EDDI, the missing
entries are similarly imputed by the VAE model. JAFA does
not have a generative component, thus we simply replace
the missing features with zeros. JAFA reports the AUC
score for this dataset, but AUC is known inappropriate for
imbalanced classification (Brabec & Machlica, 2018). We
instead report the F1 scores for this experiment.

B.4. Time Series

Acquiring features for time series data requires the agent
to integrate chronological constraints into the action space.
For RL based approach, we manually set the probabilities
of invalid action to zeros. For greedy approach, inspired by
Thompson sampling (Thompson, 1933; Russo et al., 2017),
we employ a prior distribution to encode our chronological
constraint. Specifically, we set the prior as a Dirichlet dis-

tribution that is biased towards the selection of earlier time
steps:

π(ρ) = Dir [α(T − (max(o) + 1)),

. . . ,α(T − (T − 1)) ] (ρ),
(B.4)

where α is a hyperparameter, T is the total time steps,
max(o) represents the latest time step already acquired,
and ρ is a distribution for acquisition over the remaining
future time steps. However, we still desire that the acquired
features are informative for target y. Hence, we update
the prior to a posterior using time steps V that are drawn
according to how informative they are:

p(Vn = t) ∝ exp(I(xt; y | xo)),

t ∈ {max(o) + 1, . . . , T − 1}, n ∈ {1, . . . , N}, (B.5)

where N is the number of samples. Due to conjugacy, the
posterior is also a Dirichlet distribution

p(ρ | V ) = Dir

�
α(T − (max(o) + 1))

+

N�

n=1

I{Vn = max(o) + 1}, . . .
�
(ρ).

(B.6)

Samples from posterior represent the probabilities of choos-
ing each candidate, which now prefer both earlier time steps
and informative features. We draw a sample from posterior
and select the most likely time step at each acquisition step.

B.5. Unsupervised

To perform active feature acquisition on unsupervised tasks,
a.k.a, active instance recognition, we modify the reward for



Active Feature Acquisition with Generative Surrogate Models

prediction as the negative MSE of the unobserved features,
i.e., −�x̂u − xu�22, where x̂u is the imputed values of the
unobserved features.

The JAFA is adapted to this task by changing the classifier
to an auto-encoder like model, where the observed features
xo are encoded to predict the unobserved features xu.

For EDDI, by plugging y = x into (B.3), we have the
acquisition metric for this setting as

Ui = Exi∼p(xi|xo)DKL[p(z | xi, xo)�p(z|xo)], (B.7)

since the second KL term in (B.3) equals to zero.

To build a greedy policy using our surrogate model, we
estimate the utility using (9). Monte Carlo estimation is
utilized to estimate the entropy.

C. Hyperparameters
We search the hyperparameters for both our GSMRL and
baselines using cross-validation. The range of the hyperpa-
rameters is listed in Table C.1.

Table C.1. Hyperparameters for GSMRL and baselines.

GSMRL

set transformer {32, 64} × {1, 2}
set embedding size {32, 64}
policy network {32, 64} × {2, 3}
critic network {32, 64} × {2, 3}
prediction network {64, 128} × {2, 3}
advantage λ 0.95
discount factor γ 0.99
PPO clip range [0.8, 1.2]
entropy coefficient 0.0

JAFA
set embedding size {16, 32, 64, 128}
Q network {16, 32, 64, 128} × {2, 3, 4, 5}
prediction network {16, 32, 64, 128} × {2, 3, 4, 5}

EDDI

set embedding size {10, 20, 50, 100}
encoder {32, 64, 128, 256} × {3, 4, 5, 6}
latent code {10, 20, 50, 100}
decoder {32, 64, 128, 256} × {3, 4, 5, 6}

D. Additional Results
Due to the space limit, we only show one example for the ac-
quisition process in the main text. Figure D.1 and D.3 show
some additional examples for AFA and AIR tasks respec-
tively. In Fig. D.2 and D.4, we present several examples of
the acquisition process from the greedy policy. Note that the
predictions for both the greedy and the non-greedy policy
are from the same pretrained arbitrary conditioning model,
therefore the only difference is the acquired features. Com-
paring the greedy and the non-greedy policy suggests that
the non-greedy policy eliminates the prediction uncertainty
much faster than the greedy one.

In Fig. 4 and 5, we present the acquired features from our
GSMRL for several testing examples. To better understand

the overall distribution of the acquired features across all
the testing instances, we plot the frequencies of each feature
being acquired in Fig. D.5 and D.6 for both AFA and AIR
on MNIST respectively. A higher value of the frequency
means the corresponding feature is acquired for more testing
instances. Specifically, the frequency for a feature equals to
one means the corresponding feature is a common feature
acquired for all testing instances. The frequency loosely
represents the importance of each feature, which could help
with model interpretation and reasoning about decision mak-
ing. We will explore this direction in future works.

In Fig. D.7, we analyse the sensitivity of our model to ran-
dom initialization by running our model three times inde-
pendently with different random seeds. We report the mean
and standard deviation for both the number of acquisitions
and the task performance. Baseline performance are pre-
sented for reference. We can see that our model is robust to
random initialization and performs consistently better than
baselines.

Small vs. Large Action Space For the sake of comparison,
we employ a downsampled version of MNIST in the experi-
ment section. Here, we show that our GSMRL model can be
easily scaled up to a large action space. We conduct experi-
ments using the original MNIST of size 28×28. We observe
that JAFA has difficulty in scaling to this large action space,
the agent either acquires no feature or acquires all features.

2 4 6 8 10 12
% of Acquired Features

40

50

60

70

80

90

A
cc

u
ra

cy

MNIST(k=10)

28x28

16x16

Figure D.8. Acquisition with
large action space.

The greedy approaches
are also hard to scale,
since at each acquisition
step, the greedy policy
will need to compute the
utilities for every unob-
served features, which in-
curs a total O(d2) com-
plexity. In contrast, our
GSMRL only has O(d)
complexity. Furthermore,
with the help of the surrogate model, our GSMRL is pretty
stable during training and converges to the optimal policy
quickly. Fig. D.8 shows the accuracy with a certain percent
of features acquired. The task is definitely harder for large
action space as can be seen from the drop in performance
when the agent acquires the same percentage of features
for both small and large action space, but our GSMRL still
achieves high accuracy by only acquiring a small portion of
features.

Reward Evaluation Since we are dealing with a dynamic
acquisition scenario, different algorithms or the same al-
gorithm with different hyperparameters, such as α, could
lead to different acquisitions, which renders the direct com-
parison difficult. In the experiment section, we compare
different algorithms by plotting the performance curve w.r.t.



Active Feature Acquisition with Generative Surrogate Models

step 1 step 3 step 5 step 8 step 10

step 1 step 5 step 10 step 15 step 20

Figure D.1. Examples of the acquisition process for AFA task from
GSMRL.

step 1 step 3 step 5 step 8 step 10

step 1 step 5 step 10 step 15 step 20

Figure D.2. Examples of the acquisition process for AFA task from
GSM+Greedy.

step 1 step 3 step 5 step 10 step 15

averaged 
samples

step 1 step 5 step 10 step 20 step 25

averaged 
samples

Figure D.3. Examples of the acquisition process for AIR task from
GSMRL.

step 1 step 3 step 5 step 10 step 15

step 1 step 5 step 10 step 20 step 25

averaged 
samples

averaged 
samples

Figure D.4. Examples of the acquisition process for AIR task form
GSM+Greedy.

Figure D.5. Acquisition frequency for AFA. Figure D.6. Acquisition frequency for AIR.



Active Feature Acquisition with Generative Surrogate Models

12 14 16 18 20 22 24 26
# of Acquired Features

50

60

70

80

90

A
cc

u
ra

cy

MNIST(d=256,k=10)

GSMRL

JAFA

GSM+Greedy

EDDI

5 6 7 8
# of Acquired Features

75

80

85

90

95

A
cc

u
ra

cy

Grid(d=12,k=2)

(a) Classification

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
# of Acquired Features

0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

R
M

S
E

Parkinson(d=16,k=2)

GSMRL

JAFA

GSM+Greedy

EDDI

3 4 5 6 7
# of Acquired Features

0.20

0.25

0.30

0.35

0.40

0.45

R
M

S
E

Propulsion(d=13,k=2)

(b) Regression

3.003.253.503.754.004.254.504.755.00
# of Acquired Features

20
30
40
50
60
70
80
90

A
cc

u
ra

cy

Pedestrian(t=24,k=10)

(c) Time Series

4 5 6 7 8
# of Acquired Features

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

R
M

S
E

Gas(d=10)

GSMRL

JAFA

GSM+Greedy

EDDI

2 3 4 5 6 7 8 9 10
# of Acquired Features

0.05

0.10

0.15

0.20

R
M

S
E

Whitewine(d=11)

(d) Unsupervised

Figure D.7. Sensitivity analysis by running multiple times independently. Mean and standard deviation are reported for both the number
of acquisitions and task performance.



Active Feature Acquisition with Generative Surrogate Models

the number of acquisitions. Here, we utilize another eval-
uation metric that directly compares the returned reward.

Table D.2. Normalized rewards
for MNIST AFA experiments.

Algorithm Reward

GSMRL 0.7998
JAFA 0.7335

GSM+Greedy 0.7038
EDDI 0.6116

We use a normalized re-
ward for evaluation where
for a d-dimensional in-
stance, each feature costs
1
d and the final classifica-
tion is rewarded 1 if the
prediction is correct, oth-
erwise the reward is zero.
The normalized reward is
within the rage of [−1, 1]
where a correct classification with no feature acquired ob-
tains the highest reward 1, a wrong classification with all
feature acquired obtains the lowest reward -1, and a correct
classification with all features acquired obtains the reward 0.
We report the normalized reward for MNIST classification
in Table D.2.


