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Appendix
A. Proof for Section 4
A.1. Angles Between Two Equidimensional Subspaces

In this section, we introduce full definitions and lemmas on metrics between two subspaces, which will be useful in our
following proof.

Principal Angles. Given two matrices U, Ũ ∈ Od×k which are both full rank with 1 ≤ k ≤ d, we define the i-th
(1 ≤ i ≤ k) principal angle between U and Ũ in a recursive manner:

θi(U, Ũ) = min

{
arccos

(
x>y

‖x‖‖y‖

)
: x ∈ R(U),y ∈ R(Ũ),x ⊥ xj ,y ⊥ yj ,∀j < i

}
(7)

whereR(U) denotes by the space spanned by all columns of U. In this definition, we require that 0 ≤ θ1 ≤ · · · ≤ θk ≤ π
2

and that {x1, · · · ,xk} and {y1, · · · ,yk} are the associated principal vectors. Principal angles can be used to quantify the
differences between two given subspaces.

We have following facts about the k-th principal angle between U and Ũ:

Fact 1. Let U⊥ denote by the complement subspace of U (so that [U,U⊥] ∈ Rd×d forms an orthonormal basis of Rd) and
so dose Ũ⊥,

1. sin θk(U, Ũ) = ‖U>Ũ⊥‖ = ‖Ũ>U⊥‖;

2. tan θk(U, Ũ) = ‖
[
(U⊥)>Ũ

]
(U>Ũ)†‖ where † denotes by the Moore–Penrose inverse.

3. For any reversible matrix R ∈ Rk×k, tan θk(U, Ũ) = tan θk(U, ŨR).

Projection Distance. Define the projection distance9 between two subspaces by

dist(U, Ũ) = ‖UU> − ŨŨ>‖. (8)

This metric has several equivalent expressions:

dist(U, Ũ) = ‖U>Ũ⊥‖ = ‖Ũ>U⊥‖ = sin θk(U, Ũ).

More generally, for any two matrix A,B ∈ Rd×k, we define the projection distance between them as

dist(A,B) = ‖UAU>A −UBU>B‖

where UA,UB are the orthogonal basis ofR(A) andR(B) respectively.

Orthogonal Procrustes. Let U, Ũ ∈ Rd×k be two orthonormal matrices. R(U) is close toR(Ũ) does not necessarily
imply U is close to Ũ, since any orthonormal invariant of U forms a base ofR(U). However, the converse is true. If we try
to map Ũ to U using an orthogonal transformation, we arrive at the following optimization

O∗ = argmin
O∈Ok

‖U− ŨO‖F , (9)

where Ok denotes the set of k × k orthogonal matrices. The following lemma shows there is an interesting relationship
between the subspace distance and their corresponding basis matrices. It implies that as a metric on linear space, dist(U, Ũ)

is equivalent to ‖U−ŨO∗‖2 (or minO∈Ok
‖U−ŨO‖2) up to some universal constant. The optimization problem involved

in is named as the orthogonal procrustes problem and has been well studied (Schönemann, 1966; Cape, 2020).

9Unlike the spectral norm or the Frobenius norm, the projection norm will not fall short of accounting for global orthonormal
transformation. Check (Ye & Lim, 2014) to find more information about distance between two spaces.
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Lemma 3. Let U, Ũ ∈ Od×k and O∗ is the solution of eqn. (9). Then we have

1. O∗ has a closed form given by O∗ = W1W
>
2 where Ũ>U = W1ΣW>

2 is the singular value decomposition of
Ũ>U.

2. Define d(U, Ũ) := ‖U− ŨO∗‖2 where ‖ · ‖2 is the spectral norm. Then we have

d(U, Ũ) =

√
2− 2

√
1− dist(U, Ũ)2 = 2 sin

θk(U, Ũ)

2
.

3. d(U1,U2) = d(U2,U1) for any U1,U2 ∈ Od×k.

4. dist(U, Ũ) ≤ d(U, Ũ) ≤
√

2 dist(U, Ũ).

5. Define
`(U, Ũ) := min

O∈Ok

‖U− ŨO‖2.

Then `(U, Ũ) is a metric satisfying

• `(U, Ũ) ≥ 0 for all U, Ũ ∈ Od×k. `(U, Ũ) = 0 if and only ifR(U) = R(Ũ).
• `(U, Ũ) = `(Ũ,U) for all U, Ũ ∈ Od×k.
• `(U1,U2) ≤ `(U1,U3) + `(U3,U2) for any U1,U2 and U3 ∈ Od×k.

6. 1√
k

dist(U, Ũ) ≤ `(U, Ũ) ≤ d(U, Ũ) ≤
√

2 dist(U, Ũ).

Proof. The first item comes from Schönemann (1966). The second item comes from Cape (2020). The third and forth items
follow from the second one. The fifth item follows directly from definition. For the rightest two ≤ of the last item, we use
`(U, Ũ) ≤ d(U, Ũ) and the forth item. For the leftest ≤, we use minO∈Ok

‖U− ŨO‖2 ≥ 1√
k

minO∈Ok
‖U− ŨO‖F

and minO∈Ok
‖U− ŨO‖F ≥ dist(U, Ũ) (which is referred from Proposition 2.2 of Vu et al. (2013)).

A.2. Proof Technique and Useful Lemmas

Update Rule. Assume 1 = argmax
i∈[m]

pi. We overwrite Y
(i)
t when t ∈ IT (line 4 in Algorithm 1). To distinguish the

difference, we additionally use V
(i)
t to denote the updated but not communicated Y

(i)
t . Then the update rule becomes for all

i ∈ [m],

V
(i)
t = MiZ

(i)
t−1; (10)

Y
(i)
t =

{
V

(i)
t if t /∈ IT ;∑m
i=1 piV

(i)
t D

(i)
t if t ∈ IT .

(11)

Y
(i)
t = Z

(i)
t R

(i)
t . (12)

Here we abuse the notation a little bit and define D
(i)
t as

D
(i)
t = argmin

D∈F∩Ok

‖Z(i)
t−1D− Z

(1)
t−1‖o (13)

where ‖ · ‖o can be set as either the Frobenius norm ‖ · ‖F or the spectrum norm ‖ · ‖2, though in the body text we use only
‖ · ‖F . There are some observations about the update rule:

1. If t /∈ IT , we have MiZ
(i)
t−1 = V

(i)
t = Y

(i)
t = Z

(i)
t R

(i)
t .

2. If t ∈ IT , we have Y
(1)
t = · · · = Y

(m)
t =

∑m
i=1 piV

(i)
t D

(i)
t =

∑m
i=1 piMiZ

(i)
t−1D

(i)
t and thus R

(1)
t = · · · = R

(m)
t

and Z
(1)
t = · · · = Z

(m)
t . It implies that D

(i)
t+1 = Ik.

3. If F = Ok, then D
(i)
t is the OPT we introduced in Section 4. If F = Dk, then D

(i)
t is the sign-fixing. If F = {Ik},

then D
(i)
t is always equal to the identity matrix Ik and we arrive at the vanilla LocalPower. The unified view helps

us give theoretical analysis in a unified way.
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Virtual Sequence. To analyze convergence of LocalPower, we define a virtual sequences defined as the weighted
aggregation of local eigenvector matrices, i.e.,

Yt =

m∑
i=1

piY
(i)
t O

(i)
t . (14)

Here O
(i)
t ∈ Rk×k is defined as

O
(i)
t =

{
Ik if t ∈ IT
D

(i)
t if t /∈ IT .

If t ∈ IT , Yt = Y
(i)
t for i ∈ [m] and thus is obtainable. Otherwise, Yt is a shadow matrix facilitating analysis.

Recurrence Lemma. Lemma 4 shows that we can express Yt+1 as a linear transformation of Yt. The resulting expression
is similar to the iterates of the noisy power method proposed in (Hardt & Price, 2014), which motivates us to apply their
technique to prove the main convergence of LocalPower. Lemma 4 holds for any invertible Rt ∈ Rk×k. But, to guarantee
convergence, we should carefully determine Rt. In Lemma 8, we will give a particular expression of Rt, which plays a
crucial role in helping us to bound the noise term Gt.

Lemma 4 (Recurrence). For any invertible Rt ∈ Rk×k, we have

Yt+1 =
(
MYt + Gt

)
R−1
t (15)

where M = 1
nA>A ∈ Rd×d and

Gt = Ht + Wt (16)

with Ht =
∑m
i=1 piH

(i)
t and Wt =

∑m
i=1 piW

(i)
t . Here for i ∈ [m],

H
(i)
t = (Mi −M) Y

(i)
t O

(i)
t and W

(i)
t = V

(i)
t+1

[
D

(i)
t+1Rt −R

(i)
t O

(i)
t

]
. (17)

Proof. First notice that we always have Yt =
∑m
i=1 piV

(i)
t D

(i)
t . If t ∈ IT , Y

(1)
t = · · · = Y

(m)
t and O

(i)
t = Ir,

implying the equation follows from eqn. (11) and eqn. (14). Otherwise, we have Y
(i)
t = V

(i)
t and O

(i)
t = D

(i)
t , then

Yt =
∑m
i=1 piY

(i)
t O

(i)
t =

∑m
i=1 piV

(i)
t D

(i)
t .

We always have V
(i)
t+1 = MiZ

(i)
t = MiY

(i)
t (R

(i)
t )−1. Then for any invertible Rt, we have

Yt+1 =

m∑
i=1

piV
(i)
t+1D

(i)
t+1

=

m∑
i=1

piMiY
(i)
t (R

(i)
t )−1D

(i)
t+1

=

m∑
i=1

piMiY
(i)
t O

(i)
t R−1

t +

m∑
i=1

piMiY
(i)
t (R

(i)
t )−1

[
D

(i)
t+1Rt −R

(i)
t O

(i)
t

]
R−1
t

(a)
=

m∑
i=1

pi

(
MY

(i)
t O

(i)
t + H

(i)
t

)
R−1
t +

m∑
i=1

piMiZ
(i)
t

[
D

(i)
t+1Rt −R

(i)
t O

(i)
t

]
R−1
t

=

m∑
i=1

pi

(
MY

(i)
t O

(i)
t + H

(i)
t

)
R−1
t +

m∑
i=1

piMiZ
(i)
t

[
D

(i)
t+1Rt −R

(i)
t O

(i)
t

]
R−1
t

(b)
=
(
MYt + Ht + Wt

)
R−1
t

where (a) results from the definition of H
(i)
t ; and (b) simplifies the equation via defining Ht =

∑m
i=1 piH

(i)
t and Wt =∑m

i=1 piW
(i)
t . Setting Gt = Ht + Wt completes the proof.
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Convergence Lemma. The following lemma is an variant of Lemma 2.2 in Hardt & Price (2014). Given the relation
Yt+1 =

(
MYt + Gt

)
R−1
t , Hardt & Price (2014) requires Yt to have orthonormal columns, i.e., Y

>
t Yt = Ir. However,

it is unlikely to hold in our case. As a remedy, we slightly change the lemma to allow arbitrary Yt. This will also change the
condition on Gt.

Lemma 5. Let Uk ∈ Rd×k be the top-k eigenvectors of a positive semi-definite matrix M. For t ≥ 1, assume Yt

satisfies eqn. (15) and Gt ∈ Rd×k satisfy

4‖U>k GtY
†
t‖2 ≤ (σk − σk+1) cos θk

(
Uk,Yt

)
and 4‖GtY

†
t‖2 ≤ (σk − σk+1)ε (18)

where Y
†
t is the Moore–Penrose inverse of Yt and ε < 1. Then

tan θk
(
Uk,Yt+1

)
≤ max

(
ε,max

(
ε,

(
σk+1

σk

)1/4
)

tan θk
(
Uk,Yt

))
.

Proof. Let Yt = ZtRt be the QR factorization of Yt so that Zt has orthonormal columns. The recurrence relation
becomes Yt+1 =

(
MZtRt + Gt

)
R−1
t =

(
MZt + GtR

−1

t

)
RtR

−1
t . By the fact 1, we have tan θk

(
Uk,Yt+1

)
=

tan θk

(
Uk,Yt+1RtR

−1

t

)
= tan θk

(
Uk,MZt + GtR

−1

t

)
. By requiring

4‖U>k GtR
−1

t ‖2 ≤ (σk − σk+1) cos θk
(
Uk,Zt

)
and 4‖GtR

−1

t ‖2 ≤ (σk − σk+1)ε,

we have from Lemma 2.2 in Hardt & Price (2014) that

tan θk
(
Uk,Yt+1

)
≤ max

(
ε,max

(
ε,

(
σk+1

σk

)1/4
)

tan θk
(
Uk,Zt

))
.

Noting thatR(Yt) = R(Zt), we have θk
(
Uk,Yt

)
= θk

(
Uk,Zt

)
and thus

cos θk
(
Uk,Yt

)
= cos θk

(
Uk,Zt

)
and tan θk

(
Uk,Yt

)
= tan θk

(
Uk,Zt

)
.

Finally, using ‖U>k GtY
†
t‖2 = ‖U>k GtR

−1

t ‖2 and ‖GtY
†
t‖2 = ‖GtR

−1

t ‖2 completes the proof.

Other Useful Lemma. Lemma 6 handles tan θk(U,Z0) with randomly generate Z0, while Lemma 7 give a upper bound
of ‖Y†tM‖2.

Lemma 6 (Lemma 2.4 in Hardt & Price (2014)). For an arbitrary orthonormal U and random subspace Z0 ∈ Rd×r, with
probability grater than 1− τ−Ω(r+1−k) − e−Ω(d), we have that

tan θk(U,Z0) ≤ τ
√
d

√
r −
√
k − 1

.

Lemma 7. Recall that κ = ‖M‖2‖M†‖2 and η = maxi∈[m] ‖Mi −M‖2/‖M‖2. Define

µt = 1− ηκ−
m∑
j=1

pj‖Z(j)
t−1D

(j)
t − Z

(1)
t−1‖2

and assume µt > 0. Then it follows that ‖Y†tM‖2 ≤ 1
µt

.

Proof. For any matrix X ∈ Rd×k, we have

‖X†‖2 = max
x∈Rk

‖w‖2
‖Xw‖2

= max
‖Xw‖2=1

‖w‖2 = max{‖w‖2 : ‖Xw‖2 ≤ 1}.
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Notice that Y
†
tM = (M†Yt)

† and Yt =
∑m
j=1 pjMjZ

(j)
t−1D

(j)
t . We then have

‖Y†tM‖2 = ‖(M†Yt)
†‖2

= max{‖w‖2 : ‖M†Ytw‖2 ≤ 1}

= max{‖w‖2 : ‖(M†
m∑
j=1

pjMjZ
(j)
t−1D

(j)
t )w‖2 ≤ 1}

(a)

≤ max{‖w‖2 : ‖
m∑
j=1

pjZ
(j)
t−1D

(j)
t w‖2 − ηκ‖w‖2 ≤ 1}

(b)

≤ max{‖w‖2 : ‖w‖2(1− ηκ−
m∑
j=1

pj‖Z(j)
t−1D

(j)
t − Z

(1)
t−1‖2) ≤ 1}

≤ 1

1− ηκ−
∑m
j=1 pj‖Z

(j)
t−1D

(j)
t − Z

(1)
t−1‖2

≤ 1

µt

where (a) follows because of

‖(M†
m∑
j=1

pjMjZ
(j)
t−1D

(j)
t )w‖2 ≥ ‖

m∑
j=1

pjZ
(j)
t−1D

(j)
t w‖2 −

m∑
i=1

pi‖M†(Mj −M)‖2‖Z(j)
t−1D

(j)
t w‖2

and ‖M†(Mj −M)‖2 ≤ ‖M†‖2‖(Mj −M)‖2 ≤ ηκ; and (b) holds since

‖
m∑
j=1

pjZ
(j)
t−1D

(j)
t w‖2 ≥ ‖

m∑
j=1

pjZ
(1)
t−1w‖2 − ‖

m∑
j=1

pj(Z
(j)
t−1D

(j)
t − Z

(1)
t−1)w‖2

≥ ‖w‖2 −
m∑
j=1

pj‖Z(j)
t−1D

(j)
t − Z

(1)
t−1‖2‖w‖2

= ‖w‖2(1−
m∑
j=1

pj‖Z(j)
t−1D

(j)
t − Z

(1)
t−1‖2).

A.3. The Choice of Rt

In this section, we specify the choice of Rt and analyze the residual error bound ‖D(i)
t+1Rt−R

(i)
t O

(i)
t ‖2. Lemma 8 specifies

the way we set Rt. Given a baseline data matrix Mo, Rt is the shadow matrix that depicts what the upper triangle matrix
ought to be, if we start from the nearest synchronized matrix and perform QR factorization using the matrix Mo. We will
set Mo = M

(1)
t (by assuming 1 = argmax

i∈[m]

pi) and analyze ‖W(i)
t Y

†
t‖2 and ‖H(i)

t Y
†
t‖2 in terms of ‖Z(i)

t D
(i)
t+1 − Z

(1)
t ‖2.

Latter we will bound ‖Z(i)
t D

(i)
t+1 − Z

(1)
t ‖2 when F is differently set.

Lemma 8 (Choice of Rt). Fix any t and let t0 = τ(t) ∈ IT be the latest synchronization step before t, then t ≥ τ(t).

• If t = t0, we define Rt = R
(i)
t for any i ∈ [m] since all R

(i)
t ’s are equal.

• If t > t0, given a baseline data matrix Mo, we define Rt ∈ Rr×r recursively as the following. Let Yt0 = Yt0 =
Zt0Rt0 , and for l = t0, t0 + 1, · · · , t, we use the following QR factorization to define Rt’s:

Vl+1 = MoZl = Zl+1Rl+1.

Then for any i ∈ [m], we have

‖D(i)
t+1Rt −R

(i)
t O

(i)
t ‖2 ≤ σ1(Mo)‖Z(i)

t D
(i)
t+1 − Zt‖2 +

[
‖Mo −Mi‖2 + σ1(Mi)‖Z(i)

t−1D
(i)
t − Zt−1‖2

]
1t/∈IT . (19)
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Proof. We are going to bound ‖D(i)
t+1Rt −R

(i)
t O

(i)
t ‖2 in two cases depending on whether t ∈ IT . If t ∈ IT , implying

t = t0 := τ(u), then O
(i)
t = D

(i)
t+1 = Ir and Rt = R

(i)
t . Therefore, D

(i)
t+1Rt −R

(i)
t O

(i)
t = 0.

Otherwise, t /∈ IT and thus t > t0. Let’s fix some i ∈ [m] and denote ∆M = Mi −Mo. Based on LocalPower, we
have Y

(i)
t0 = Yt0 = Z

(i)
t0 R

(i)
t0 , and for l = t0, t0 + 1, · · · , t,

V
(i)
l+1 = MiZ

(i)
l = Z

(i)
l+1R

(i)
t+1.

Then,

Z
(i)
l R

(i)
l O

(i)
l = MiZ

(i)
l−1O

(i)
l

= (Mo + ∆M)(Zl−1 + ∆Zl−1)

= MoZl−1 + ∆M · Zl−1 + Mi ·∆Zl−1

:= MoZl−1 + El−1 = ZlRl + El−1

where El−1 = ∆M · Zl−1 + Mi ·∆Zl−1 and ∆Zl−1 = Z
(i)
l−1O

(i)
l − Zl−1.

Note that

Z
(i)
t R

(i)
t O

(i)
t = ZtRt + Et−1.

Then we have

‖D(i)
t+1Rt −R

(i)
t O

(i)
t ‖2 = ‖Z(i)

t D
(i)
t+1Rt − Z

(i)
t R

(i)
t O

(i)
t ‖2

(a)
= ‖Z(i)

t D
(i)
t+1Rt − ZtRt −Et−1‖2

≤ ‖(Z(i)
t D

(i)
t+1 − Zt)Rt‖2 + ‖Et−1‖2

(b)

≤ ‖Z(i)
t D

(i)
t+1 − Zt‖2‖Rt‖2 + ‖∆M‖2 + ‖Mi‖2‖Z(i)

t−1O
(i)
t − Zt−1‖2

(c)

≤ σ1(Mo)‖Z(i)
t D

(i)
t+1 − Zt‖2 + ‖Mo −Mi‖2 + σ1(Mi)‖Z(i)

t−1D
(i)
t − Zt−1‖2

where (a) uses the equality of Z
(i)
t R

(i)
t O

(i)
t ; (b) uses the definition of Et−1 and O

(i)
t = D

(i)
t (due to t /∈ IT ); and (c) uses

‖Rt‖2 ≤ ‖Mo‖2 = σ1(Mo).

Combining the two cases, we have for all t ∈ [T ],

‖D(i)
t+1Rt −R

(i)
t O

(i)
t ‖2 ≤ σ1(Mo)‖Z(i)

t D
(i)
t+1 − Zt‖2 +

[
‖Mo −Mi‖2 + σ1(Mi)‖Z(i)

t−1D
(i)
t − Zt−1‖2

]
1t/∈IT .

Lemma 9. Assume η = maxi∈[m] ‖Mi −M‖2/‖M‖2 is sufficiently small and 1 = argmax
i∈[m]

pi. Define

ρt = ‖Z(i)
t D

(i)
t+1 − Z

(1)
t ‖2,

we have

‖HtY
†
t‖2 ≤

2σ1ηκ1t/∈IT
1− ηκ− (1−maxi∈[m] pi)ρt−1

(20)

‖WtY
†
t‖2 ≤ 4(1− max

i∈[m]
pi)σ1κ

ρt + (ρt−1 + η)1t/∈IT
1− ηκ− (1−maxi∈[m] pi)ρt−1

. (21)

Proof. Without loss of generality, we assume 1 = argmax
i∈[m]

pi and then set the baseline matrix in Lemma 8 as Mo = M1

and use the Rt defined therein. Then Lemma 8 and Lemma 10 imply for all i ∈ [m],

‖D(i)
t+1Rt −R

(i)
t O

(i)
t ‖2 ≤ σ1(Mo)‖Z(i)

t D
(i)
t+1 − Zt‖2 + [‖Mo −Mi‖2 + σ1(Mi)‖Z(i)

t−1D
(i)
t − Zt−1‖2]1t/∈IT
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≤ (1 + η)σ1 [ρt + ρt−11t/∈IT ] + ησ11i 6=1 and t/∈IT

where σ1 = σ1(M) and 1i 6=1 and t/∈IT is the indicator of event {i 6= 1} ∩ {t /∈ IT }.

Recall the definition of ρt. By Lemma 8 and Lemma 7, we have

‖WtY
†
t‖2 = ‖

m∑
i=1

piMiZ
(i)
t

[
D

(i)
t+1Rt −R

(i)
t O

(i)
t

]
Y
†
tMM−1‖2

≤
m∑
i=1

pi‖M−1‖2‖Mi‖2‖Y
†
tM‖2‖D

(i)
t+1Rt −R

(i)
t O

(i)
t ‖2

≤ 2(1− p1)σ1κ
η1t/∈IT + 2(ρt + ρt−11t/∈IT )

1− ηκ− (1− p1)ρt−1

≤ 4(1− p1)σ1κ
ρt + (ρt−1 + η)1t/∈IT
1− ηκ− (1− p1)ρt−1

.

Similarly,

‖HtY
†
t‖2 = ‖

m∑
i=1

pi (Mi −M) Y
(i)
t O

(i)
t Y

†
tMM−1‖2

≤
m∑
i=1

pi‖M−1‖2‖(Mi −M)‖2‖Y(i)
t O

(i)
t ‖2‖Y

†
tM‖21t/∈IT

≤ (1 + η)σ1κη1t/∈IT
1− ηκ− (1− p1)ρt−1

≤ 2σ1κη1t/∈IT
1− ηκ− (1− p1)ρt−1

.

A.3.1. THE CASE WHEN F = Ok

Lemma 10. When setting F = Ok, no mater D
(i)
t is solved from eqn. (13) using ‖ · ‖F or ‖ · ‖2, we have

‖Zit−1D
(i)
t − Z

(1)
t−1‖2 ≤

√
2 dist(Z

(i)
t−1,Z

(1)
t−1). (22)

Proof. This follows directly from Lemma 3.

Lemma 11 (Davis-Kahan sin(θ) theorem). Let the top-k eigenspace of M and M̃ be respectively Uk and Ũk (both
of which are orthonormal). The k-largest eigenvalue of M is denoted by σk(M) and similarly for σk(M̃). Define
δk = min{|σk(M)− σj(M̃)| : j ≥ k + 1}, then

dist(Uk, Ũk) = sin θk(Uk, Ũk) ≤ ‖M− M̃‖2
δk

.

Lemma 12 (Perturbation theorem of projection distance). Let rank(X) = rank(Y), then

dist(X,Y) ≤ min{‖X†‖2, ‖Y†‖2}‖X−Y‖2.

Proof. See Theorem 2.3 of Ji-guang (1987).

Lemma 13. Assume η = maxi∈[m] ‖Mi −M‖2/‖M‖2 is sufficiently small. If D
(i)
t is solved from eqn. (13) with F = Ok,

then eqn. (20) and eqn. (21) hold with

ρt ≤ min
√

2

{
2κppη(1 + η)p−1

(1− η)p
,
ησ1

δk
+ 2γ

p/4
k max

i∈[m]
tan θk(Zτ(t),U

(i)
k )

}
.

where
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• δk = min
i∈[m]

δ
(i)
k with δ(i)

k = min{|σk(M)− σj(Mi)| : j ≥ k + 1};

• γk = max{max
i∈[m]

σk+1(Mi)
σk(Mi)

, σk+1(M)
σk(M) } ∈ (0, 1);

• κ = ‖M‖2‖M†‖2 is the condition number of M;

• p = t− τ(u), τ(t) ∈ IT is defined as the nearest synchronization time before t.

Proof. By Lemma 5 and Lemma 10, we only need to bound max
i∈[m]

dist(Z
(i)
t ,Z

(1)
t ). We will bound each dist(Z

(i)
t ,Z

(1)
t )

uniformly in two ways. Then the minimum of the two upper bounds holds for their maximum that is exactly ρt.

Fix any i ∈ [m] and t ∈ [T ]. Let τ(t) be the latest synchronization step before t and p = t− τ(t) be the number of nearest
local updates.

• For small p, by Lemma 12, it follows that

dist(Zit,Z
(1)
t ) = dist(Mp

iZτ(t),M
p
1Zτ(t))

≤ dist(Mp
iZτ(t),M

pZτ(t)) + dist(MpZτ(t),M
p
1Zτ(t))

≤ min{‖(Mp
iZτ(t))

†‖2, ‖(MpZτ(t))
†‖2}‖(Mp

i −Mp)Zτ(t)‖2
+ min{‖(MpZτ(t))

†‖2, ‖(Mp
1Zτ(t))

†‖2}‖(Mp −Mp
1)Zτ(t)‖2

≤ 2κp
(1 + η)p − 1

(1− η)p

≤ 2κppη(1 + η)p−1

(1− η)p

where κ = ‖M‖2‖M†‖2 is the condition number of M.

• For large p, let the top-k eigenspace of M1 and Mi be respectively U
(1)
k and U

(i)
k (both of which are orthonormal).

The k-largest eigenvalue of M is denoted by σk(M1) and similarly for σk(Mi). Then by Lemma 11, we have

dist(Uk,U
(i)
k ) ≤ ‖Mi −M‖

δ
(i)
k

≤ ησ1

δ
(i)
k

.

where σ1 = σ1(M) and δ(i)
k = min{|σj(Mi)− σk(M)| : j 6= k}.

Note that local updates are equivalent to noiseless power method. Then, using Lemma 5 and setting ε = 0 and Gt = 0
therein, we have

tan θk(Zit,U
(i)
k ) ≤

(
σk+1(Mi)

σk(Mi)

)1/4

tan θk(Zit−1,U
(i)
k ).

Hence,

dist(Zit,Z
(1)
t ) ≤ dist(Zit,U

(i)
k ) + dist(U

(i)
k ,U

(1)
k ) + dist(U

(1)
k ,Z

(1)
t )

≤ ησ1

δ
(i)
k

+

(
σk+1(Mi)

σk(Mi)

)p/4
tan θk(Zτ(t),U

(i)
k ) +

(
σk+1(M)

σk(M)

)p/4
tan θk(Zτ(t),U

(1)
k )

≤ ησ1

mini∈[m] δ
(i)
k

+ 2γ
p/4
k max

i∈[m]
tan θk(Zτ(t),U

(i)
k ).

Combining the two cases, we have

ρt ≤
√

2 min

{
2κppη(1 + η)p−1

(1− η)p
,
ησ1

δk
+ 2γ

p/4
k max

i∈[m]
tan θk(Zτ(t),U

(i)
k )

}
.
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A.3.2. THE CASE WHEN F = {Ik}

When F is only a singleton containing only Ik, it is equivalent to set D
(i)
t = Ir for all t ∈ [T ] and i ∈ [m]. In this case, the

virtual sequence is actually a pure average: Yt =
∑m
i=1 piV

(i)
t .

Lemma 14. Let A ∈ Rd×k with d ≥ k be any matrix with full rank. Denote by its QR factorization as A = QR where Q
is an orthgonal metrix. Let E be some perturbation matrix and A + E = Q̃R̃ the resulting QR factorization of A + E.
When ‖E‖2‖A†‖2 < 1, A + E is of full rank. What’s more, it follows that

‖Q̃−Q‖2 ≤
√

2k
‖A†‖2‖E‖2

1− ‖A†‖2‖E‖2
.

Proof. Actually, we have

‖Q̃−Q‖F
(a)

≤
√

2‖E‖F
‖E‖2

ln
1

1− ‖A†‖2‖E‖2

(b)

≤
√

2
‖A†‖2‖E‖F

1− ‖A†‖2‖E‖2

(c)

≤
√

2k
‖A†‖2‖E‖2

1− ‖A†‖2‖E‖2

where (a) comes from Theorem 5.1 in Sun (1995); (b) uses ln(1+x) ≤ x for all x > −1; and (c) uses ‖E‖F ≤
√
k‖E‖2.

Lemma 15. Let η = maxi∈[m] ‖Mi −M‖2/‖M‖2 be sufficiently small. If D
(i)
t is solved from eqn. (13) with F = {Ik},

then eqn. (20) and eqn. (21) hold with
ρt ≤ 4

√
2kpκpη(1 + η)p−1

where κ = ‖M‖2‖M†‖2 is the condition number of M, p = t− τ(u), τ(t) ∈ IT is defined as the nearest synchronization
time before t.

Proof. By Lemma 5, we are going to bound ρt = max
i∈[m]

‖Z(i) − Z
(1)
t ‖2. Fix any i ∈ [m] and t ∈ [T ]. We will bound

‖Z(i) − Z
(1)
t ‖2 uniformly so that the bound holds for their maximum.

Fix any i ∈ [m] and t ∈ [T ]. Let τ(t) be the latest synchronization step before t and p = t− τ(t) be the number of nearest
local updates. Note that Z

(i)
t and Z

(1)
t are the Q-factor of the QR factorization of Mp

iZτ(t) and Mp
1Zτ(t). Let Zt be the

Q-factor of the QR factorization of MpZτ(t). Then Lemma 14 yields

‖Z(i)
t − Zt‖2 ≤

√
2k

‖(MpZτ(t))
†‖2‖(Mp

i −Mp)Zτ(t)‖2
1− ‖(MpZτ(t))†‖2‖(Mp

i −Mp)Zτ(t)‖2
:=
√

2k
ω

1− ω

where ω = ‖(MpZτ(t))
†‖2‖(Mp

i −Mp)Zτ(t)‖2 for short. If ω ≤ 1/2, then we have ‖Z(i)
t − Zt‖2 ≤ 2

√
2kω. Otherwise,

we have ω ≥ 1/2 and ‖Z(i)
t − Zt‖2 ≤ 2 ≤

√
2k ≤ 2

√
2kω. Then we have for all i ∈ [m],

‖Z(i)
t − Zt‖2 ≤ 2

√
2k‖(MpZτ(t))

†‖2‖(Mp
i −Mp)Zτ(t)‖2.

Hence,

ρt = ‖Z(i)
t − Z

(1)
t ‖2

≤ ‖Z(i)
t − Zt‖2 + ‖Zt − Z

(1)
t ‖2

≤ 2
√

2k
[
‖(MpZτ(t))

†‖2‖(Mp
i −Mp)Zτ(t)‖2 + ‖(MpZτ(t))

†‖2‖(Mp
1 −Mp)Zτ(t)‖2

]
≤ 4
√

2kκp [(1 + η)p − 1]

≤ 4
√

2kpκpη(1 + η)p−1

where κ = ‖M‖2‖M†‖2 is the condition number of M.

A.4. Proof of Theorem 1 and Theorem 2

Proof. We provide a proof in four steps.
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First step: Perturbed iterate analysis. Recall that we defined a virtual sequence by

Yt =

m∑
i=1

piY
(i)
t O

(i)
t .

Notice that this sequence never has to be computed explicitly, it is just a virtual sequence we use in the analysis. From
Lemma 4, we construct the iteration of the virtual sequence {Yt} as

Yt+1 =
(
MYt + Gt

)
R−1
t

where M = 1
nA>A ∈ Rd×d, Gt is the noise term inccured by the variance among different nodes, and Rt is chosen

according to Lemma 8. Recall that Gt = Ht + Wt is given in eqn. (16) with Ht =
∑m
i=1 piH

(i)
t and Wt =

∑m
i=1 piW

(i)
t .

Second step: Bound the noise term Gt. Let p = gap(IT ) denotes by the longest interval between subsequent synchro-
nization steps. In order to guarantee convergence, we should make sure the noise term Gt is small enough. In particular, we
require

‖GtY
†
t‖2 ≤

σk − σk+1

5
min

(√
r −
√
k − 1

τ
√
d

, ε

)
(23)

By Lemma 13 or 15, we always have

‖HtY
†
t‖2 ≤

2σ1κη1t/∈IT
1− ηκ− (1−maxi∈[m] pi)ρt−1

‖WtY
†
t‖2 ≤ 4(1− max

i∈[m]
pi)σ1κ

ρt + (ρt−1 + η)1t/∈IT
1− ηκ− (1−maxi∈[m] pi)ρt−1

We assume ηκ ≤ 1/3 and additionally assume (1−maxi∈[m] pi)ρt−1 ≤ 1
3 . Then the last two inequalities become

‖HtY
†
t‖2 ≤ 6σ1κη1t/∈IT := 6σ1κΨt

‖WtY
†
t‖2 ≤ 12(1− max

i∈[m]
pi)σ1κ [ρt + (ρt−1 + η)1t/∈IT ] := 12σ1κΩt

Then in order to ensure eqn. (23), we only need to ensure

6σ1Ψt + 12σ1Ωt ≤
σk − σk+1

5κ
min

(√
r −
√
k − 1

τ
√
d

, ε

)
.

A sufficient condition to that is

Ψt +Ωt ≤
1

60

σk − σk+1

σ1κ
min

(√
r −
√
k − 1

τ
√
d

, ε

)
= O(ε0). (24)

Finally, we argue that the condition (1 − maxi∈[m] pi)ρt−1 ≤ 1
3 is indicated in the uniform boundedness of eqn. (24)

(i.e., eqn. (24) holds for all t ∈ [T ]). This is because

(1− max
i∈[m]

pi)ρt−1 ≤ Ωt−1 ≤ Ψt−1 +Ωt−1 ≤
ε0
60

<
1

3
.

Third step: Bound ρt. Let κ = ‖M‖2‖M†‖2 be the condition number of M and p = t− τ(u) with τ(t) ∈ IT defined
as the nearest synchronization time before t. Then, we can prove Theorem 2 now.

• If F = Ok, then

ρt ≤
√

2 min

{
2κpη(1 + η)p−1

(1− η)p
,
ησ1

δk
+ 2γ

p/4
k max

i∈[m]
tan θk(Zτ(t),U

(i)
k )

}
.
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with the parameters δk, γk given in Lemma 13. By requiring η ≤ 1/p, we have (1+η)p−1

(1−η)p ≤
(1+1/p)p−1

(1−1/p)p ≤ e2. Define

Ct = maxi∈[m] tan θk(Zτ(t),U
(i)
k ). Latter we will show that since LocalPower converges under Assumption 1,

then lim
t→∞

sin θk(Zτ(t),Uk) ≤ ε. Then, we have

lim sup
t→∞

Ct = lim sup
t→∞

max
i∈[m]

tan θk(Zτ(t),U
(i)
k )

= lim sup
t→∞

max
i∈[m]

tan arg sin sin θk(Zτ(t),U
(i)
k )

≤ lim sup
t→∞

max
i∈[m]

tan arg sin(sin θk(Zτ(t),Uk) + sin θk(Uk,U
(i)
k ))

≤ max
i∈[m]

tan arg sin(
ησ1

δk
+ ε) = O(η + ε).

It can be seen that when p is sufficiently large, ρt = O(η) which is independent with p.

• If F = {Ik}, then
ρt ≤ 4

√
2kpκpη(1 + η)p−1 ≤ 4e

√
2kpκpη.

Simply put together, if Ψ +Ω ≤ ε0, we can firmly ensure eqn. (23) holds.

Forth step: Establish convergence. Let’s first assume eqn. (18) holds. With eqn. (18), the following argument is quite
similar to Hardt & Price (2014). Note that Specifically, we will see that at every step t of the algorithm,

tan θk(Uk,Yt) ≤ max (ε, tan θk(Uk,Z0)) ,

which implies for ε ≤ 1
2 that

cos θk(Uk,Zt) ≥ min
(
1− ε2/2, cos θk(Uk,Z0)

)
≥ 7

8
cos θk(Uk,Z0)

so Lemma 5 applies at every step. This means that

tan θk(Uk,Yt+1) ≤ max
(
ε, δ tan θk(Uk,Yt)

)
for δ = max(ε, (σk+1/σk)1/4). After T ≥ log1/δ

tan θk(Uk,Z0)
ε steps, the tangent will reach the accuracy ε and remain

there. So we have
‖(I− ZTZ>T )U‖ = sin θk(Uk,YT ) ≤ tan θk(Uk,YT ) ≤ ε.

Plus the observation that

log(1/δ) ≥ cmin(log(1/ε), log(σk/σk+1)) ≥ cmin

(
1, log

1

1− γ

)
≥ cmin(1, γ) = cγ

where γ = 1− σk+1/σk and c = 1
4 , we can set T ∈ IT and

T = Ω

(
σk

σk − σk+1
log(dτ/ε)

)
.

Finally we are going to show that once the noise term Gt is bounded as eqn. (23), eqn. (18) would naturally hold. From
Lemma 6, we have

tan θk(U,Z0) ≤ τ
√
d

√
r −
√
k − 1

with all but τ−Ω(p+1−k) + e−Ω(d) probability. Hence

cos θk(U,Z0) ≥ 1

1 + tan θk(U,Z0)
≥
√
r −
√
k − 1

2τ
√
d

.
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A.5. Proof of Corollary 1

Proof. From Theorem 1, our algorithm has error no larger than ε. We then find the minimum ε that is a function of m,n, p
by combining Theorem 2 and Lemma 2. For a fixed n/m, Lemma 2 bounds η in terms of s or equivalently n/m, implies

η =
√

3µρ
si

log
(
ρm
δ

)
= Θ̃(

√
µρ
s ) = Θ̃(

√
mµρ
n ). For sufficiently small ε, we have ε = σ1κ

σk−σk+1
ε0. Let ε be sufficiently

small such that eqn. (6) just holds. Then we have

ε = Θ(ε0) = Θ(η + sup
t

(ρt + ρt−1)) = O(hp(η) + η)

where the last equality follows from Theorem 2 which bounds ρt in terms of η. It is in the form of ρt ≤ hp(η) where
h1(·) = 0 and hp(η) typically increases in p and η. With OPT, hp(η) = O(η), while without OPT, hp(η) = O(

√
kpκpη).

If we use any decay strategy in which p converges to 1 finally, then LocalPower is reduced to DPI finally and thus of
course achieves zero error asymptotically.

B. Statistical Error Between the Empirical Matrix and the Population One
Recall that M = 1

nAA> = 1
n

∑n
i=1 xix

>
i is the empirical correlation matrix and M∗ = Ex∼Dxx> is the population one.

By Matrix Hoeffding theorem, we can bound ‖M−M∗‖ in terms of samples.
Lemma 16 (Matrix Hoeffding inequality Tropp (2012)). Let D be a distribution over vectors with squared `2 norm at most
b. Let M∗ = Ex∼Dxx> and M = 1

n

∑n
i=1 xix

>
i where x1, · · · ,xn are sampled i.i.d. from D, then it holds that

P (‖M∗ −M‖ ≥ t) ≤ d · exp

(
− t2n

16b2

)
.

Let the top-k eigenspace of M and M∗ be respectively Vk and Vk,∗ (both of which are orthonormal). Let V̂ be any
estimated top-k eigenvector matrix (for example, ZT produced by LocalPower). If we care how accurately V̂ approximate
Vk,∗, by the triangle inequality,

dist(V̂,Vk,∗) ≤ dist(V̂,Vk)︸ ︷︷ ︸
optimization error

+ dist(Vk,Vk,∗)︸ ︷︷ ︸
statistical error

Theorem 1 characterizes the diminishing speed of the optimization term, however, has nothing to do with the statistical error.
The latter is controlled by the available samples through the combination of the Davis-Kahan sin(θ) theorem (Lemma 11)
and ‖M∗ −M‖. In particular, with probability greater than 1− δ, the statistical error is no larger than

1

δk
4b

√
ln d

δ

n
.

If only a single machine attends the training, n = s, while if m machines cooperate, n = ms. From the last inequality, the
statistical error is reduced by a factor of

√
m.

C. Dependence on σk − σk+1

Our result depends on σk − σk+1 even when r > k where r is the number of columns used in subspace iteration. This is
mainly because we borrow tools from Hardt & Price (2014) to prove the theory. In the analysis of Hardt & Price (2014), the
required iteration depends on the consecutive eigengap σk − σk+1 even when r > k where r is the number of columns used
in subspace iteration. Note that σk−σk+1 can be unimaginably small in practical large-scale problems. Balcan et al. (2016a)
improved the result to a slightly milder dependency on σk − σq+1 by proposing a novel characterization measuring the
discrepancy between the running rank-r subspace Zt and target top-k eigenspace Uk, where q is any intermediate integer
between k and r. If we borrow the idea from the improved analysis of Balcan et al. (2016a), we can refine the result. In that
case, the needed computation rounds will depend on σk − σq+1 as a result. All the above discussion can be easily parallel.
Theorem 3. Let Assumption 1 hold with sufficiently small ηκ ≤ 1

3 where κ = ‖M‖‖M†‖ is the condition number of M.
Let Assumption 1 holds with τ > 0 and the following ε0

ε0 =

√
r −
√
q − 1

τ
√
d

min

{
σk − σq+1

σ1
ε,
σq
σ1

}
.
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Let k ≤ q ≤ r. If we borrow the refined analysis in Balcan et al. (2016a), then for sufficiently small ε satisfying

ε = O
(
σq
σk
·min

{
1

log(σk/σq)
,

1

log(τd)

})
,

when

T = Ω

(
σk

σk − σq+1
log

(
τd

ε

))
after |IT | rounds of communication, with probability at least 1− τ−Ω(r+1−q) − e−Ω(d), we have

dist(ZT ,Uk) = sin θk(ZT ,Uk) = ‖
(
Id − ZTZ>T

)
Uk‖ ≤ ε.

Proof. We use Corollary A.1 in Balcan et al. (2016a) instead of Lemma 5 in the third step of the proof of Theorem 1.

D. Related Work
Truncated SVD or principal component analysis (PCA) is one of the most important and popular techniques in data analysis
and machine learning. A multitude of researches focus on iterative algorithms such as power iterations or its variants (Golub
& Van Loan, 2012; Saad, 2011). These deterministic algorithms inevitably depends on the spectral gap, which can be quite
large in large scale problems. Another branch of algorithm seek alternatives in stochastic and incremental algorithms (Oja
& Karhunen, 1985; Arora et al., 2013; Shamir, 2015; 2016; De Sa et al., 2018). Some work could achieve eigengap-free
convergence rate and low-iteration-complexity (Musco & Musco, 2015; Shamir, 2016; Allen-Zhu & Li, 2016).

Large-scale problems necessitate cooperation among multiple worker nodes to overcome the obstacles of data storage and
heavy computation. For a review of distributed algorithms for PCA, one could refer to Wu et al. (2018). One feasible
approach is divide-and-conquer algorithm which performs a one-shot averaging of the individual top-k eigenvectors (or
subspace) returned by worker nodes (Garber et al., 2017; Fan et al., 2019; Bhaskara & Wijewardena, 2019; Charisopoulos
et al., 2020). In particular, the concurrent work (Charisopoulos et al., 2020) proposes to average local eigenvector matrices
via OPT as ours, though they focus on one-shot scenario and obtain better error analysis. The divide-and-conquer algorithms
have only one round of communication. To reach a certain accuracy, it often requires that the per-machine sample size s to
grow with the number of machines m (Garber et al., 2017), which means it is only effective in large local dataset regime.

Another line of results for distributed eigenspace estimation uses iterative algorithms that perform multiple communication
rounds. They require much smaller sample size and can often achieve arbitrary accuracy. For example, in our work, we only
require the per-machine sample size s depends on m in a very mild way likeO(lnm), however, Garber et al. (2017) requires
s = Õ(m) to reach a comparable result. Some works make use of shift-and-invert framework (S&I) for PCA (Garber
& Hazan, 2015; Garber et al., 2016; Allen-Zhu & Li, 2016). S&I methods turn the problem of computing the leading
eigenvector to that of approximately solving a small system of linear equations. This, in turn, could be solved by arbitrary
convex solvers (Xu, 2018), and, therefore, can be extended in distributed settings naturally. Garber et al. (2017) coupled S&I
methods with a distributed first-order convex solver, giving guarantees in terms of communication costs. Gang et al. (2019)
turns the problem of distributed PCA into a constraint optimization problem (by letting each device hold a independent
parameter and adding a constraint that all local parameter should be same), and then uses gradient-based methods to
solve it iteratively. Chen et al. (2021) combined S&I methods with a distributed approximate Newton method where the
communication cost is saved by only using the Hessian information on the first machine. Very recently, Grammenos et al.
(2019) proposed a federated, asynchronous, and differential privacy algorithm for distributed PCA. Methodologically, the
algorithm is not power-iteration-based. Instead, their algorithm incrementally computes local model updates using streaming
procedure and adaptively estimates its leading principle components. In particular, they assume the clients are arranged in a
tree-like structure, while we did not make such assumption.

Recently, the technique of local updates emerges as a simple but powerful tool in distributed empirical risk minimiza-
tion (McMahan et al., 2017; Zhou & Cong, 2017; Stich, 2018; Wang & Joshi, 2018b; Yu et al., 2019; Li et al., 2019a;b;
Khaled et al., 2019). Distributed algorithms with local updates typically alternate between local computation and periodical
communication. Therefore, local updates allow less frequent communication but incur more computation due to the
inevitably accumulated residual errors. This paper uses local updates for the distributed power iteration. However, our
analysis is totally different from the local SGD algorithms (Zhou & Cong, 2017; Stich, 2018; Wang & Joshi, 2018b; Yu
et al., 2019; Li et al., 2019a;b; Khaled et al., 2019). A main challenge in analyzing LocalPower is that the local SGD
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algorithms for empirical risk minimization often involve an explicit form of (stochastic) gradients. For SVD or PCA, a
canonical example of non-convex problems, the gradient cannot be explicitly expressed, so the existing techniques cannot be
applied (Simchowitz et al., 2017). Instead, we borrowed tools from the noisy power method (Hardt & Price, 2014; Balcan
et al., 2016a) and carefully analyze the residual errors.

In our paper, we only consider the centralize PCA, where there is a server connecting all other nodes. However, the technique
of local updates can also be used in other settings like decentralized or streaming PCA (Gang et al., 2019; Raja & Bajwa,
2020).

E. Experiments
E.1. Experimental Settings

We conduct experiments to demonstrate the communication efficiency of LocalPower. We use several datasets from the
LIBSVM website and summarize them in Table 4. Our focus is the needed communication round required to minimize the
optimization error and analyze LocalPower through different lens. For comparison, we consider the following baselines:

1. Weighted Distributed Averaging (Bhaskara & Wijewardena, 2019);

2. Unweighted Distributed Averaging (Fan et al., 2019);

3. Distributed Randomized SVD.

4. Distributed power Iteration (the case of LocalPower when p = 1)

For completeness, we include the former three algorithms in the next subsection. We also study the effect of different choice
of m, p, and the decay strategy. Throughout, we use either IT = {0, p, 2p, · · · , T} or the decay strategy.

Preprocessing. The data are randomly shuffled and partitioned among m nodes. We scale each feature by dividing it
by the maximum value of each coordinate, so that each feature locates between [−1, 1]. In particular, we will first find
the maximum value for each feature coordinate among all workers in the system and share it with all participants. All the
experiments use the same initialization Z0 ∈ Rd×r (for any r > k) which contains a set of randomly generated orthonormal
bases.

Experimental. All the experiments are conducted on a single machine. We fix the target rank to k = 5. We plot
dist(Zt,Uk) = ‖(1 − ZtZ

>
t )Uk‖ = sin θk(Zt,Uk) against the number of communications to evaluate communication

efficiency. In Table 4, we list the information of (n, d) for the datasets we use, all satisfying n � d. Though we focus
on large n regime, latter we also test large d regimes namely n ≈ d for completeness. In Table 5, we estimate η by
maxi∈[m] ‖Mi −M‖2/‖M‖2. Under uniform sampling, when we fix n, the larger m (equals to smaller s), the larger η.

Table 4. A summary of used data sets from the LIBSVM website.

Data set n d Data set n d

A9a 32561 123 Abalone 2114 8
Acoustic 78823 50 Aloi 108000 128
Combined 78823 100 Connect-4 7990 125
Covtype 581,012 54 Housing 506 13
Ijcnn1 49990 22 MNIST 60,000 780
Poker 25010 10 Space-ga 3107 6
Splice 1000 24 W8a 49749 300
MSD 463,715 90
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Table 5. The value of η under uniform partitions on fifteen datasets. In the following experiments, we uniformly distribute n samples into
m = max(b n

1000
c, 3) so that each device has about 1000 samples. It implies m ranges from 20 to 100, which is the range we consider

here. To fill the following table, we distributed n samples into m devices and estimate it by η = maxi∈[m] ‖M−Mi‖2/‖M‖2. It can
be seen that for a fixed n, the larger m, the larger η.

Dataset m = 20 m = 40 m = 60 m = 80 m = 100

A9a 0.034 0.0563 0.0701 0.0906 0.0998
Abalone 0.1089 0.23 0.2458 0.2629 0.3556
Acoustic 0.0063 0.0107 0.0134 0.0179 0.0199

Aloi 0.0479 0.0659 0.1023 0.1162 0.203
Combined 0.006 0.0089 0.0113 0.014 0.0158
Connect-4 0.0376 0.054 0.0771 0.0791 0.0899
Covtype 0.0078 0.011 0.0159 0.0164 0.0202
Housing 0.3117 0.3747 0.5062 0.6442 0.6741
Ijcnn1 0.016 0.0288 0.0348 0.0363 0.0489

MNIST 0.0396 0.0584 0.0689 0.0896 0.0904
Poker 0.0369 0.0519 0.0702 0.0803 0.0904

Space-ga 0.0855 0.1317 0.1495 0.2111 0.3446
Splice 0.1627 0.2484 0.3154 0.3957 0.4717
W8a 0.1046 0.1664 0.1937 0.2515 0.3167
MSD 0.0007 0.0009 0.0012 0.0014 0.0015

E.2. One-shot Baseline Algorithms

Algorithm 2 Unweighted Distributed Averaging (UDA) (Fan et al., 2019)
1: Input: distributed dataset {Ai}mi=1 with Ai ∈ Rsi×d, target rank k.
2: Local: Each device computes the rank-k SVD of Mi = 1

si
A>i Ai as V̂iΣiV̂

>
i with Σi ∈ Rk×k and V̂i ∈ Rd×k.

3: Server: The central server computes M̃ = 1
m

∑n
i=1 V̂iV̂

>
i , then output the top k eigenvalues and the corresponding

eigenvectors of M̃.

Algorithm 3 Weighted Distributed Averaging (WDA) (Bhaskara & Wijewardena, 2019)
1: Input: distributed dataset {Ai}mi=1 with Ai ∈ Rsi×d, target rank k.
2: Local: Each device computes the rank-k SVD of Mi = 1

si
A>i Ai as V̂iΣiV̂

>
i with Σi ∈ Rk×k and V̂i ∈ Rd×k.

3: Server: The central server computes M̃ = 1
m

∑n
i=1 V̂iΣiV̂

>
i , then output the top k eigenvalues and the corresponding

eigenvectors of M̃.

Algorithm 4 Distributed Randomized SVD (DR-SVD) (A distributed variant of Randomized SVD in Halko et al. (2011))

1: Input: distributed dataset {Ai}mi=1, A = [A>1 , · · · ,A>m]> ∈ Rn×d with target rank k, Ai ∈ Rsi×d and r = k+bd−k4 c.
2: The server generates a d× r random Gaussian matrix Ω;
3: The server learns Y = AA>AΩ and obtains an orthonormal Q ∈ Rn×r by QR decomposition on Y;
4: Let Q = [Q>1 , · · · ,Q>m]> with Qi ∈ Rsi×r and each worker receives Qi;
5: The i-th worker computes Bi = Q>i Ai ∈ Rr×d for all i ∈ [m];
6: The server aggregate B =

∑m
i=1 Bi = Q>A and perform SVD: B = ŨΣ̂V̂T ;

7: Set Û = QŨ;
8: Output: the first k columns of (Û, Σ̂, V̂).
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E.3. Additional Experiments Results

Table 6. Error comparison among three one-shot baseline algorithms and our LocalPower. We uniformly distribute n samples into
m = max(b n

1000
c, 3) devices so that each device has about 1000 samples. We show the mean errors of ten repeated experiments with

its standard deviation enclosed in parentheses. Here we use p = 4 for all variants of LocalPower and sufficiently large T ’s which
guarantee LocalPower converges. For better visualization, we show the box plot of final errors of ten repeated experiments in Figure 4.

Datasets LocalPower with p = 4
DR-SVD UDA WDAOPT Sign-fixing Vanilla

A9a 4.09e-03 (4.20e-04) 5.82e-03 (1.41e-03) 8.13e-02 (3.44e-02) 4.63e-02 (9.24e-03) 2.64e-02 (1.58e-02) 2.40e-02 (1.50e-02)
Abalone 3.16e-03 (2.89e-03) 3.85e-03 (2.54e-03) 3.03e-02 (5.70e-02) 3.20e-01 (2.30e-01) 1.03e-01 (9.38e-02) 1.03e-01 (9.18e-02)
Acoustic 1.83e-03 (4.40e-04) 2.03e-03 (3.90e-04) 2.38e-03 (8.50e-04) 1.54e-02 (6.59e-03) 7.76e-03 (2.64e-03) 6.67e-03 (2.41e-03)

Aloi 3.07e-02 (1.10e-02) 6.57e-02 (1.06e-02) 5.24e-02 (1.10e-02) 1.92e-03 (4.30e-04) 4.80e-02 (1.10e-02) 4.37e-02 (4.73e-03)
Combined 6.01e-03 (1.59e-03) 5.57e-03 (1.05e-03) 2.47e-02 (3.40e-02) 5.19e-02 (6.23e-03) 4.63e-02 (2.97e-02) 4.16e-02 (2.76e-02)
Connect-4 1.27e-02 (4.52e-03) 1.81e-02 (3.79e-03) 1.70e-02 (4.35e-03) 1.61e-02 (2.96e-03) 1.65e-01 (3.48e-02) 1.56e-01 (3.26e-02)
Covtype 7.38e-03 (8.50e-04) 6.23e-03 (3.30e-04) 1.28e-02 (1.88e-03) 1.82e-01 (8.73e-02) 6.09e-02 (9.70e-03) 5.60e-02 (9.41e-03)
Housing 1.18e-02 (5.45e-03) 2.76e-02 (1.14e-02) 3.84e-02 (5.11e-02) 5.66e-01 (2.62e-01) 9.16e-02 (5.09e-02) 5.89e-02 (3.25e-02)
Ijcnn1 1.53e-01 (1.87e-01) 1.95e-01 (2.45e-01) 3.23e-01 (2.24e-01) 1.21e+00 (1.70e-01) 3.85e-01 (7.62e-02) 3.67e-01 (7.59e-02)

MNIST 2.62e-03 (3.40e-04) 4.85e-03 (8.00e-04) 5.08e-03 (7.90e-04) 5.00e-05 (0.00e+00) 1.08e-02 (3.00e-03) 8.91e-03 (2.53e-03)
Poker 6.45e-03 (1.90e-03) 1.08e-02 (3.34e-03) 5.33e-02 (3.63e-02) 1.25e+00 (1.61e-01) 2.39e-02 (3.00e-03) 2.00e-02 (2.19e-03)

Space-ga 2.80e-04 (1.40e-04) 5.10e-04 (2.90e-04) 6.50e-04 (3.60e-04) 7.40e-01 (2.14e-01) 2.83e-02 (2.46e-02) 3.82e-02 (2.72e-02)
Splice 1.61e-02 (5.46e-03) 2.87e-02 (8.93e-03) 7.45e-02 (9.26e-02) 4.52e-01 (1.37e-01) 1.56e-01 (7.08e-02) 1.34e-01 (6.26e-02)
W8a 1.90e-02 (2.46e-03) 1.75e-02 (1.76e-03) 1.68e-02 (1.29e-03) 7.13e-02 (2.06e-02) 1.52e-01 (4.37e-02 ) 1.51e-01 (4.11e-02)
MSD 9.90e-03 (1.21e-03) 9.62e-03 (5.20e-04) 1.44e-02 (1.58e-03) 3.01e-02 (9.64e-03) 1.55e-02 (1.39e-03) 1.92e-02 (1.14e-03)

Table 7. Error comparison among LocalPower with the decay strategy and three different F . We uniformly distribute n samples into
m = max(b n

1000
c, 3) devices so that each device has about 1000 samples. We show the mean errors of ten repeated experiments with

its standard deviation enclosed in parentheses. Here we use p = 4 for all variants of LocalPower and sufficiently large T ’s which
guarantee LocalPower converges.

Datasets LocalPower with the decay strategy
OPT Sign-fixing Vanilla

A9a 4.84e-03 (1.40e-02) 1.52e-03 (4.08e-03) 3.11e-04 (4.84e-04)
Abalone 3.50e-10 (4.10e-10) 4.14e-10 (4.00e-10) 6.12e-10 (6.77e-10)
Acoustic 1.40e-05 (2.16e-05) 1.92e-05 (3.72e-05) 2.28e-05 (4.91e-05)

Aloi 5.82e-10 (5.17e-10) 1.71e-09 (2.20e-09) 2.36e-09 (2.14e-09)
Combined 3.68e-03 (5.63e-03) 7.74e-03 (1.70e-02) 2.99e-03 (3.88e-03)
Connect-4 4.90e-03 (8.47e-03) 3.58e-03 (4.35e-03) 3.09e-03 (3.16e-03)
Covtype 5.57e-04 (1.55e-03) 4.95e-05 (5.40e-05) 8.01e-05 (8.62e-05)
Housing 1.38e-05 (2.88e-05) 2.20e-05 (5.66e-05) 2.08e-05 (5.68e-05)
Ijcnn1 3.56e-01 (1.97e-01) 3.33e-01 (1.67e-01) 3.32e-01 (1.72e-01)

MNIST 2.06e-05 (2.38e-05) 1.72e-05 (1.62e-05) 1.72e-05 (1.62e-05)
Poker 3.08e-03 (1.49e-03) 3.22e-03 (1.82e-03) 3.22e-03 (1.93e-03)

Space-ga 3.47e-14 (2.13e-14) 3.56e-14 (2.11e-14) 3.87e-14 (2.27e-14)
Splice 4.11e-07 (5.29e-07) 8.88e-07 (1.24e-06) 1.01e-06 (1.34e-06)
W8a 1.70e-03 (2.46e-03) 1.85e-02 (4.94e-02) 6.09e-03 (9.60e-03)
MSD 2.75e-05 (3.34e-05) 2.47e-05 (3.27e-05) 3.02e-05 (2.10e-05)

11Actually, it means setting F for LocalPower as Ok,Dk and {Ik} respectively (see eqn. (13) for the reason).
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Figure 4. Box plot of Table 6 for better visualization. Here Orth, Sign and Iden represents OPT, sign-fixing and the vanilla LocalPower
respectively.11 We can see that for most datasets, LocalPower with p = 4 obtains smallest error and more stability. We can obtain zero
error if we use the decay strategy.
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Figure 5. Vary p for LocalPower with OPT. Typically, the larger p, the larger error, which is consistent with our theory. Typically,
LocalPower with OPT achieves the smallest error among our three proposed methods.
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Figure 6. Vary p for LocalPower with sign-fixing Similar to Figure 5, the larger p, the larger error, which is consistent with our theory.
LocalPower with sign-fixing is much computation efficient than that with OPT. Sign-fixing can be viewed as a good practical of
surrogate of OPT.
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Figure 7. Vary p for vanilla LocalPower . For most datasets, vanilla LocalPower converges and the similar pattern that the larger p,
the larger error occurs. However, for large p, it fluctuates and even diverges on some datasets (including A9a, Abalone, Combined, Ijcnn1
and Poker). This is because η can’t meet required smallness. As argued, LocalPower with OPT or sign-fixing typically is more stable
than the vanilla one, since it requires less strict smallness of η. Besides, we can use the decay strategy or decreases the number of devices.
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Figure 8. Decay strategy for LocalPower with OPT. For most datasets, LocalPower with OPT converges faster and achieves much
less error than non-decay counterparts (see Figure 5). Theoretically, LocalPower with decay strategy can achieve zero error.
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Figure 9. Decay strategy for LocalPower with sign-fixing. For most datasets, LocalPower with sign-fixing converges faster and
achieves much less error than non-decay counterparts (see Figure 6). Theoretically, LocalPower with decay strategy can achieve zero
error.
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Figure 10. Decay strategy for vanilla LocalPower . For most datasets, vanilla LocalPower converges faster and more stable than
non-decay counterparts (see Figure 6). It typically achieves much less error than non-decay counterparts. Theoretically, LocalPower
with decay strategy can achieve zero error.
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Figure 11. Various m for LocalPower with OPT. Typically, the smaller m has smaller errors.
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Figure 12. Various m for LocalPower with sign-fixing. Typically, the smaller m has smaller errors.
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Figure 13. Error dependence of LocalPower with OPT.


