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Abstract
We study the online load balancing problem
with machine learned predictions, and give re-
sults that improve upon and extend those in a
recent paper by Lattanzi et al. (2020). First,
we design deterministic and randomized online
rounding algorithms for the problem in the unre-
lated machine setting, with O

(
logm

log logm

)
- and

O
(

log logm
log log logm

)
-competitive ratios. They re-

spectively improve upon the previous ratios of
O(logm) and O(log3 logm), and match the
lower bounds given by Lattanzi et al. Second,
we extend their prediction scheme from the iden-
tical machine restricted assignment setting to the
unrelated machine setting. With the knowledge
of two vectors over machines, a dual vector and
a weight vector, we can construct a good frac-
tional assignment online, that can be passed to
an online rounding algorithm. Finally, we con-
sider the learning model introduced by Lavastida
et al. (2020), and show that under the model, the
two vectors can be learned efficiently with a few
samples of instances.

1. Introduction
Inspired by the tremendous success of modern machine
learning techniques, there is a recent surge of interest in
using machine learned predictions to design algorithms for
online combinatorial optimization problems. In contrast to
the worst case analysis of online algorithms, we are given
some predicted information about the problem instance we
need to solve online, usually learned from previous instances
of the same nature. The prediction should be useful and
simple: It should allow the algorithm to achieve a better
performance than when no information is given, but on the
other hand, it should be simple enough so that it can be
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learned easily. As predictions are often error-prone, ide-
ally the performance of the algorithm should deteriorate
smoothly as a function of some error measurement, but at
the same time is never worse than the worst-case guarantee,
no matter how bad the prediction is. This has led to the area
of learning augmented online algorithm, in which many
classic problems have been studied (See Section 1.2).

In this paper, we study the classic online load balancing
problem in the general unrelated machine setting under this
model. In the offline problem, we are given m machines M ,
n jobs J , and pi,j ∈ (0,∞] for every i ∈M, j ∈ J , which
indicates the time needed to process job j if it is assigned to
machine i. The goal of the problem is to assign the jobs to
machines so as to minimize the makespan, i.e, the maximum
over all i ∈M , the sum of pi,j’s over all jobs j assigned to
i. In the online version of the problem, M is given upfront,
but jobs in J come one by one. When a job j ∈ J arrives,
it reveals the vector (pi,j)i∈M ∈ (0,∞]M . The online
algorithm has to irrevocably assign j to a machine upon its
arrival. When no predictions are given, the problem admits
an O(logm)-competitive ratio (Azar et al., 1995; Aspnes
et al., 1997), which is tight (Azar et al., 1995).

An extensively studied special case of the problem is the
identical machine restricted assignment setting. 1 There is
an intrinsic size pj > 0 for every job j ∈ J and for every
machine i ∈ M , we have pi,j ∈ {pj ,∞}. So, every job j
has a set of permissible machines which it can be assigned
to, and the processing time of j is always pj on a permissible
machine. The lower bound Ω(logm) of Azar et al. (1995)
on the competitive ratio is indeed for this special case.

Lattanzi et al. (2020) initiated the study of online load bal-
ancing with learned predictions. Their result contains two
components. First, given a load balancing instance in the
identical machine restricted assignment setting, they lever-
aged the proportion allocation scheme of Agrawal et al.
(2018) to show that there is a weight vector w ∈ RM>0

over the machines, such that the fractional assignment
(xi,j)i∈M,j∈J obtained by assigning each job j to its per-
missible machines proportionally to the weights is (1 + ε)-
approximately optimum. Thus if the weight vector w is

1Usually the model is simply called the restricted assignment
setting. We use the longer name since later we shall define another
setting called the related machine restricted assignment setting.
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given as the prediction, the algorithm has access to the frac-
tional assignment (xi,j)i∈M,j∈J online. That is, the vector
(xi,j)i∈M is revealed upon the arrival of j. The vector w
can be specified using m real numbers, i.e, one number
per-machine. In a typical application, the number m of
machines is much smaller than the number n of jobs.

To complement the first component, Lattanzi et al. (2020)
designed an online randomized rounding algorithm that
achieves a competitive ratio of O(log3 logm). Namely, the
makespan of the schedule produced by the algorithm is at
most O(log3 logm) times that of the fractional assignment
(xi,j)i∈M,j∈J . Combining it with the first component leads
to an online algorithm withO(log3 logm) competitive ratio,
given w as the prediction. This is exponentially better than
the worst guarantee of O(logm). Their algorithm is robust:
when the predicted vector w has a multiplicative error of
η > 1, the performance worsens by a multiplicative factor of
O(dlog ηe), but is no worse than the worst-case guarantee of
O(logm). We remark that while the proportional allocation
scheme (the first component of Lattanzi et al.) works only
for the identical machine restricted assignment setting, the
online rounding algorithm (the second component) works
for the general unrelated machine setting.

On the negative side, Lattanzi et al. showed lower bounds of
Ω
(

logm
log logm

)
and Ω

(
log logm

log log logm

)
respectively on the com-

petitive ratio of any deterministic and randomized online
rounding algorithm.

Learnability of Predictions It is natural to measure the
complexity of the predicted information using its bit com-
plexity, i.e, the number of bits needed to represent it. This is
due to the following phenomenon in computational learning
theory: To learn a function from a family of N hypothe-
sis functions, the number of samples needed is typically
proportional to logN .

This notion of learnability of predictions was made formal
by Lavastida et al. in a recent paper (2020). In their model,
it is assumed that the problem instance is generated from
some unknown but structured distribution. For the predic-
tion to be learnable, there should be some algorithm that can
learn it after seeing a small number of sampled instances
from the distribution. For the load balancing problem in the
identical machine restricted assignment setting, Lavastida
et al. showed that under some mild conditions, an algorithm
can learn a vector w ∈ RM>0 after seeing poly(m, 1

ε ) sam-
ples, such that the proportional allocation scheme according
to w gives a (1 +O(ε))-approximate fractional solution.

1.1. Our Results

Our contribution contains three parts. First we develop tight
deterministic and randomized online rounding algorithms
for the unrelated machine load balancing problem, improv-

ing upon the results of Lattanzi et al. (2020). Second we
extend the prediction introduced by Lattanzi et al. from the
identical machine restricted assignment setting to the unre-
lated machine setting. Finally, we show that our prediction
is learnable under the model of Lavastida et al. (2020).

Tight Online Rounding Algorithms We develop online
rounding algorithms for the unrelated machine load balanc-
ing problem that match the two lower bounds of Lattanzi
et al. (2020). That is, we give a deterministic online round-
ing algorithm with competitive ratio O

(
logm

log logm

)
, and a

randomized online rounding algorithm with competitive
ratio O

(
log logm

log log logm

)
(Theorem 2.1 and 2.2).

So, if a fractional solution is given online, a deterministic
algorithm can do slightly better (by a log logm factor) than
when it is not given. Our algorithm is obtained by deran-
domizing the simple independent rounding O

(
logm

log logm

)
-

competitive algorithm, using conditional expectation.

The main contribution of this part is the O
(

log logm
log log logm

)
-

competitive randomized online rounding algorithm, which
improves upon the O(log3 logm)-competitive ratio of Lat-
tanzi et al. (2020), and matches their lower bound of
Ω
(

log logm
log log logm

)
. Our algorithm uses some ideas from that

of Lattanzi et al., but is much simpler. As in their algo-
rithm, we break jobs into small and big ones, depending
on whether a job j is mostly assigned to machines i with
pi,j ≥ Ω(T/ logm) or pi,j ≤ O(T/ logm) in the frac-
tional solution x (T is the makespan of x). For small jobs j,
independent rounding incurs only an O(1)-factor loss. For
big jobs j, we do an initial rounding to make sure positive
xi,j values are at least Ω

(
1

logm

)
. Then we try to round xi,j

values further to 0 or 1. If assigning a job j makes a machine
overloaded, then we say j failed. Similar to Lattanzi et al.
(2020), we show that in the graph induced by the failed jobs
and their support machines, every connected components
has poly logm machines. Then we can use our determin-
istic algorithm to handle each connected component sepa-
rately, resulting in the O

(
log logm

log log logm

)
competitive ratio.

Predictions for Unrelated Machine Load Balancing In
the second part of our paper, we generalize the first com-
ponent of Lattanzi et al. (2020) to the unrelated machine
setting. Likewise, our goal is to define a prediction about
the online instance, so that given the prediction, the algo-
rithm can produce a good fractional assignment (xi,j)i,j
online. We show that it suffices for the prediction to con-
tain two vectors β,w ∈ RM>0, each having aspect ratio
exp

(
O(m log m

ε )
)
, to obtain an (1 + ε)-approximate frac-

tional solution online.

To obtain the result, we introduce an intermediate setting
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between the identical machine restricted assignment and
unrelated machine settings, that we call the related machine
restricted assignment setting: Each job j has a size pj ∈
R>0 and each machine i has a speed sj ∈ R>0. For every

i ∈ M, j ∈ J we have pi,j ∈
{
pj
si
,∞
}

. With a simple
modification to the analysis in Lattanzi et al. (2020), one
can show that the weight vector framework developed in
Lattanzi et al. can be applied to this setting as well.

Our vector β in the prediction is used to reduce the instance
in the unrelated machine setting to one in the related ma-
chine restricted assignment setting, and the vector w gives
the weight for the latter instance. To establish the reduction,
we resort to the dual of the LP relaxation for the problem. In
the dual, each machine i has a variable βi and each job j has
a variable αj . The complementary slackness condition says
that if the optimum primal solution has xi,j > 0 for some
(i, j) pair, then we must have αj = pi,jβi. Thus, if we view
βi as the speed of machine i and αj as the size of job j,
then we can restrict ourselves to the pairs with pi,j =

αj
βi

,
leading to the related machine restricted assignment setting.
To address the issue raised by 0 values in the dual solution
(α, β), we only take positive α and β values and remove
their correspondent jobs and machines. Then we focus on
the residual instance to fill the other α and β values. So,
the vector β is constructed piece by piece. The results are
formally stated in Theorem 2.4 and Corollary 2.5.

Learnability of Predictions Then we proceed to consider
the learnability of the prediction under the model introduced
by Lavastida et al. (2020). In their model, for each job j,
the vector (pi,j)i∈M is generated from some distribution
Dj , and the process for all jobs j are independent. It is also
assumed that individual pi,j values are reasonably small
compared to the expected optimum makespan of the in-
stance. We show that under their model, we can learn a pair
(β,w) such that their induced fractional solution is (1 + ε)-
approximate w.h.p. The analysis is based on concentration
bounds and union bound. Due to the page limit, the result is
deferred to the supplementary material.

1.2. Related Work

Much work has been done in the area of learning augmented
online algorithm. The focus of model is on the consistency
and robustness of algorithms. Namely, when the predic-
tion is perfect, the algorithm has to perform better (ideally,
much better) than the best online algorithm without using
predictions. On the other hand, the algorithm is never worse
than the worst-case guarantee, even if the prediction is ar-
bitrarily bad. Many problems have been studied under this
model, including caching (Lykouris & Vassilvtiskii, 2018;
Rohatgi, 2020; Jiang et al., 2020; Wei, 2020), ski-rental
(Gollapudi & Panigrahi, 2019; Anand et al., 2020), schedul-
ing (Kumar et al., 2018; Lattanzi et al., 2020), secretary and

online matching (Antoniadis et al., 2020), linear optimiza-
tion (Bhaskara et al., 2020) and primal-dual method (Bamas
et al., 2020).

A very similar model studied in the literature is the online
algorithm with advice model (Boyar et al., 2016). There is
an oracle that knows the whole input sequence. The online
algorithm is allowed to query the oracle about the input. The
goal is to understand the minimum number of bits needed
from the oracle in order for the algorithm to achieve certain
competitive ratio. Both models are in a broader theme
of studying online algorithms beyond worst case analysis.
Other models in the theme include the random arrival order
(Karp et al., 1990; Mahdian & Yan, 2011; Devanur et al.,
2013), stochastic distribution (Devanur, 2011; Manshadi
et al., 2011) and semi-online (Schild et al., 2019) models.

There is a rich literature on the load balancing prob-
lem. The classic result of Lenstra et al. (1990) gives a
2-approximation for the offline problem in the unrelated
machine setting, which remains the best approximation al-
gorithm for the problem. Much work has been done for the
identical machine restricted assignment setting (Svensson,
2012; Chakrabarty et al., 2015; Jansen & Rohwedder, 2017;
2020).

For the online load balancing problem, Azar et al. (1995)
developed an O(logm)-competitive algorithm for the iden-
tical machine restricted assignment setting, and proved that
the ratio is tight. Aspnes et al. (1997) extended theO(logm)
competitive ratio to the unrelated machine setting. Thus,
our understanding of the competitive ratio for online load
balancing in the two settings is complete.

2. Preliminaries and Formal Statements of
Our Results

2.1. Problem Definition and Notations

In the offline unrelated machine load balancing problem,
we are given a set J of n jobs and a set M of m machines;
one should think that m is much smaller than n. For every
job j and machine i, pi,j ∈ (0,∞] is the processing time of
job j on machine i; if pi,j =∞, then j can not be assigned
to i. The goal is to find an assignment σ : J → M such
that maxi∈M

∑
j∈σ−1(i) pi,j is minimized. In the online

problem, M is given upfront, but jobs J arrive one by one.
When a job j arrives, (pi,j)i∈M is revealed and we have to
irrevocably decide the machine σ(j) that j is assigned to.

We use E := {(i ∈ M, j ∈ J) : pi,j 6= ∞} to denote the
set of allowed machine-job pairs. For every j ∈ J , define
Mj := {i : (i, j) ∈ E} to be the set of machines j can be
assigned to, and for every i ∈M , Ji := {j : (i, j) ∈ E} to
be the set of jobs that can be assigned to i.

Throughout the paper, we always use ε to denote an accu-
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racy parameter in (0, 1) that controls the losses incurred in
various places. We make the following assumption when
defining the prediction for unrelated machine load balancing.
It increases the optimum makespan by at most a multiplica-
tive factor of 1 + ε. See Section A for the proof.

Assumption 1. For every job j ∈ J and two machines
i, i′ ∈Mj , we have pi′,j

pi,j
< m

ε .

Throughout the paper, by “with high probability”, we mean
with probability at least 1 − 1/poly(m), for any poly(m)
factor we desire for.

2.2. Primal and Dual Linear Programs

Now we describe the primal linear programming relaxation
for the problem, and its dual. In the primal LP relaxation
(P-LP), T ′ is the makespan of the assignment we try to
minimize, and xi,j , (i, j) ∈ E indicates whether a job j
is assigned to a machine i or not (in the correspondent
integer program). (1) requires all jobs to be scheduled. (2)
bounds the makespan of the schedule. All x variables are
non-negative (constraint (3)).

min T ′ (P-LP)
∑
i∈Mj

xi,j = 1 ∀j ∈ J (1)
∑
j∈Ji pi,jxi,j ≤ T

′ ∀i ∈M (2)

xi,j ≥ 0 ∀(i, j) ∈ E (3)

The LP as stated has integrality gap m. Consider the case
where one job of size 1 that can be assigned to all the m
machines. The LP value is 1

m but the optimum makespan
is 1. To overcome the issue, for any x ∈ [0, 1]E with∑
i∈Mj

xi,j = 1 for every j ∈ J , we define the makespan
of x to be

mspn(x) := max

{
maxi∈M

∑
j∈Ji pi,jxi,j

max(i,j)∈E:xi,j>0 pi,j
.

The first quantity inside the max operator is the value of x
to the LP, and the second one is the max pi,j over all (i, j)’s
in the support of x. By guessing the value of the second
quantity, the x with the smallest mspn(x) can be found
efficiently, and the value is clearly at most the makespan of
the optimum (integral) assignment.

The dual of (P-LP) is (D-LP), where αj’s and βi’s corre-
spond to constraints (1) and (2) in (P-LP) respectively, and
(4) and (5) correspond to variables xi,j’s and T ′ in (P-LP)
respectively. In the optimum solution (α, β), we must have
αj = mini∈Mj

pi,jβi for every j ∈ J , since this maximizes∑
j∈J αj while maintaining (4). We can treat each βi as the

per-unit-time cost of using the machine i. Then αj is the
minimum cost for processing job j, and

∑
j∈J αj is mini-

mum total cost needed to process all jobs. As
∑
i∈M βi = 1

(constraint (5)), the budget we can use for processing jobs
is exactly the makespan. Therefore,

∑
j∈J αj gives a lower

bound on the optimum makespan. Later, we shall use βi as
the speed of machine i to convert the an instance to one in
the related machine restricted assignment setting, described
in Section 2.4.

max
∑
j∈J αj (D-LP)

αj − pi,jβi ≤ 0 ∀(i, j) ∈ E (4)∑
i∈M βi = 1 (5)

βi ≥ 0 ∀i ∈M (6)

2.3. Online Rounding Algorithm

In the setting of an online rounding algorithm, when a job j
arrives, in addition to the (pi,j)i∈M vector, we are also given
a non-negative vector (xi,j)i∈Mj such that

∑
i∈Mj

xi,j =
1. As usual, upon the arrival of j, our algorithm has to
irrevocably assign j to a machine in Mj . The algorithm is
called an online rounding algorithm since it converts the
fractional assignment x to an integral one. We make the
following assumption, and see Section A for its justification.

Assumption 2. We are given T = mspn(x) upfront.

Our algorithm is α-competitive if the makespan of the as-
signment it produces is at most αT . Our main results are:

Theorem 2.1. There is an O
(

logm
log logm

)
-competitive deter-

ministic online rounding algorithm for the unrelated ma-
chine load balancing problem.

Theorem 2.2. There is an O
(

log logm
log log logm

)
-competitive

randomized online rounding algorithm for the unrelated
machine load balancing problem. The algorithm succeeds
with high probability.

2.4. Identical and Related Machine Restricted
Assignment Settings

We will deal with two special settings for the load balancing
problem. The first special case is the identical machine
restricted assignment setting. In the setting, there is an in-
trinsic size pj ∈ R>0 for every j ∈ J . For every i ∈ M ,
we have pi,j ∈ {pj ,∞}. The second special case, which
is more general than the first one, is the related machine
restricted assignment setting. Now additionally every ma-
chine is given a speed si ∈ R>0. Then for every i, j we
have pi,j ∈ {pjsi ,∞}. So, in the second setting, when a job
j can be assigned to a machine i, its processing time is the
size of j divided by the speed of i.

For convenience, we use P|restricted and Q|restricted to
denote the identical machine and related machine restricted
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assignment settings respectively. Notice that the general
setting is called the unrelated machine setting.

2.5. Proportional Allocation Scheme

Agrawal et al. (2018) considered a proportional alloca-
tion scheme for assigning jobs to machines fractionally in
the P|restricted setting to maximize the throughput of a
scheduling. Later Lattanzi et al. (2020) applied the scheme
to the load balancing problem in the same setting. Given the
sets (Mj)j∈J of permissible machines for all jobs j ∈ J ,
a weight vector w ∈ RM>0, the fractional solution x(w) as-
signs each job j to its permissible machines proportionally
to the weights. Namely, for every (i, j) ∈ E, we have
x

(w)
i,j = wi∑

i′∈Mj wi′
. Lattanzi et al. showed that for a load

balancing instance in the P|restricted setting, there is a
vector w such that x(w) is (1− ε)-approximate.

We generalizes the result to the Q|restricted setting in
Lemma 2.3. From now on, we use powersr,K for any
real r > 1 and integer K ≥ 1, to denote the set
{r0, r1, r2, · · · , rK}.
Lemma 2.3. Given a load balancing instance in the
Q|restricted setting, for any ε ∈ (0, 1), there is a weight
vector w ∈ powersM1+ε,K for some K = O

(
m
ε log m

ε

)
such

that x(w) is a (1 + ε)3-approximate solution to (P-LP).

2.6. Prediction for Unrelated Machine Load Balancing

Our main theorem in deriving the prediction on unrelated
machine load balancing is the following one, which says
given a vector β ∈ RM>0 with mild precision requirement,
we can reduce a load balancing instance in the unrelated
machine setting to one in the Q|restricted setting.
Theorem 2.4. Assume we are given an unrelated machine
load balancing instance, and ε ∈ (0, 1). There exists a
β ∈ powersM1+ε,K for some K = O

(
m
ε log m

ε

)
, αj =

mini∈Mj
pi,jβi for every j ∈ J , and an optimum solution

x ∈ [0, 1]E to (P-LP) such that the following holds. For
every (i, j) ∈ E with xi,j > 0 we have pi,jβi ≤ (1 + ε)αj .

To see why the theorem gives an instance in the Q|restricted
setting, we can let αj be the size of j and βi be the speed of

i. Then xi,j > 0 implies pi,j ∈
[
αj
βi
,

(1+ε)αj
βi

]
. Thus, if we

restrict ourselves to the support of x, the processing times
are approximated by size-to-speed ratios.

Let T ∗ = minx mspn(x), where x is over all x ∈ [0, 1]E

satisfying
∑
i∈Mj

xi,j = 1,∀j ∈ J . For simplicity we
make following assumption when defining our prediction:
Assumption 3. T ∗ is known to us and every (i, j) ∈ E has
pi,j ≤ T ∗.

Indeed T ∗ can be a part of the prediction, and often it is
easier to learn T ∗ (approximately) than the other parameters.

By removing pairs (i, j) with pi,j > T ∗ from E, the second
part of the assumption is guaranteed.

The prediction contains two vectors in powersM1+ε,K for
K = O

(
m
ε log m

ε

)
: a dual vector β and a weight vector w.

For a fixed pair (β,w) and a job j ∈ J , we define x(β,w)
i,j ∈

[0, 1] for each i as follows. Let αj := mini∈Mj pi,jβi, and
M ′j := {i ∈ Mj : pi,jβi ≤ (1 + ε)αj}. Then x(β,w)

i,j :=
wi∑

i′∈M′
j
wi′

if i ∈M ′j and x(β,w)
i,j := 0 if i ∈Mj \M ′j . So,

for any j ∈ J , (x
(β,w)
i,j )i is determined by (pi,j)i, β and w,

a crucial property for our online algorithm. The following
corollary gives our prediction:

Corollary 2.5. Given an unrelated machine load balancing
instance, there are β,w ∈ powersM1+ε,K for some K =

O
(
m
ε log m

ε

)
such that x(β,w) is (1 + ε)4-approximate to

(P-LP).

Organization The sections indexed by capital letters are
in the supplementary material. We give the deterministic
and randomized online rounding algorithms, which prove
Theorem 2.1 and Theorem 2.2, in Sections 3 and 4 respec-
tively. In Section 5, we prove Theorem 2.4 that reduces
the unrelated machine load balancing instance to one in the
Q|restricted setting. We defer the proof of Corollary 2.5 to
Section C, where we also show how to handle the case when
the prediction has errors. We give the formal theorem (The-
orem D.1) on the learnability of our prediction and its proof
in Section D. All omitted proofs can be found in Section B.

3. O
(

logm
log logm

)
-Competitive Deterministic

Online Rounding Algorithm

In this section, we obtain a deterministic O
(

logm
log logm

)
-

competitive rounding algorithm. Recall that in the set-
ting, when a job j ∈ [n] arrives, it reveals (pi,j)i∈M and
(xi,j)i∈M . By Assumption 2, we are given T = mspn(x)
upfront, which guarantees

∑
j∈J xi,jpi,j ≤ T for every

i ∈M , and if xi,j > 0 for some i, j, then pi,j ≤ T . So, we
assume pi,j ≤ T for every (i, j) ∈ E.

Our algorithm is based on de-randomizing the simple de-
pendent rounding algorithm which assigns each job j to a
machine i with probability xi,j independently. Via Chernoff
bound and union bound, we can show the algorithm achieves
an O

(
logm

log logm

)
-competitive ratio with high probability. To

de-randomize it, we use the idea of conditional expectation.

For simplicity, we identify J with [n], and index both jobs
and times using [n]: For any j ∈ [n], job j arrives at time j.

We now describe the algorithm. Let a > 0 be some parame-
ter whose value will be set to ln lnm later. For every i ∈M
and time t, let Li,t denote the total load of machine i at the



Online Unrelated Machine Load Balancing with Predictions Revisited

end of time t. We use Li to denote Li,n. Our algorithm is
simple: when job t arrives, we assign it to a machine i ∈Mt

so that Φt, defined as follows, is minimized:

Φt :=
∑

i∈M
exp


aLi,t

T
+ (ea − 1)

(
1− 1

T

t∑

j=1

xi,jpi,j

)

 .

To give some intuition behind the definition, we remark
that our goal is to guarantee that

∑
i∈M exp

(
aLi,n
T

)

is at most its expected value when jobs are assigned
randomly and independently according to x. Then
exp

(
(ea − 1) 1

T

∑n
j=t+1 xi,jpi,j

)
is an upper bound on

E
[
exp

(a(Li,n−Li,t)
T

)]
if we assign all jobs j ∈ [t + 1, n]

randomly and independently, that is used as an intermediate
bound in the proof of Chernoff bound. Then assuming the
worst case that 1

T

∑n
j=1 xi,jpi,j = 1 for every i ∈M leads

to the definition of Φt. We show that Φt is non-increasing:

Lemma 3.1. For every t ∈ [n], we have Φt ≤ Φt−1.

Notice that Φ0 =
∑
i∈M exp(ea − 1) = m · exp(ea − 1).

Hence, we have Φn ≤ m · exp(ea − 1) at the end of the
algorithm. For every i ∈ M , we have exp

(
aLi
T

)
≤ Φn ≤

m·exp(ea−1). That is, Li ≤ T
a (lnm+ea−1). Setting a =

ln lnm, we getLi ≤ T
ln lnm (2 lnm−1) = T ·O

(
logm

log logm

)

for every i ∈M .

4. O
(

log logm
log log logm

)
-Competitive Randomized

Online Rounding Algorithm
In this section, we give our randomized online rounding
algorithm with O

(
log logm

log log logm

)
-competitive ratio, prov-

ing Theorem 2.2. Our goal is to construct a solution of
makespan O

(
log logm

log log logm

)
· T w.h.p, where T = mspn(x)

is given upfront. Again recall that we have pi,j ≤ T for
every (i, j) ∈ E and

∑
j∈Mi

pi,jxi,j ≤ T for every i ∈M .
We aim at a success probability of 1 − 1

m ; but it can be
boosted to any 1− 1

poly(m) . Most of the time we describe
the algorithm as if it runs offline. Along the way we argue
that it can be easily made online.

Let ρ = dlogme. We say a job j is a big job if∑
i∈Mj :pi,j≥T/ρ xi,j ≥ 1/2, and small otherwise. Notice

that if j is small, then we have
∑
i∈Mj :pi,j<T/ρ

xi,j > 1/2.
Let Jbig and J small be the set of big and small jobs respec-
tively. Then for a big job j ∈ Jbig and a machine i ∈ Mj

with pi,j < T/ρ, we remove (i, j) from E. (Accordingly,
we remove j from Ji, i from Mj , change pi,j to ∞ and
discard the variable xi,j .) We do the same for any small job
j ∈ J small and machine i ∈Mj with pi,j ≥ T/ρ.

We sum up the properties we have after the operations:

(P1) For every j ∈ Jbig and i ∈Mj , we have pi,j ≥ T/ρ.
(P2) For every j ∈ J small and i ∈Mj , we have pi,j < T/ρ.
(P3)

∑
i∈Mj

xi,j = 1
2 , for every j ∈ J . (Notice that we

had
∑
i∈Mj

xi,j ≥ 1
2 ; the equality can be obtained by

decreasing some xi,j values. )
(P4) For every i ∈M , we have

∑
j∈Ji pi,jxi,j ≤ T .

For convenience we let Jbig
i = Jbig ∩ Ji and J small

i =
J small ∩ Ji denote the sets of big and small jobs that can be
assigned to i respectively. Clearly, deciding if a job is small
or big and modifying E and x can be made online. In the
following, we handle small and big jobs separately.

4.1. Dealing with Small Jobs

Small jobs can be handled easily by independent rounding.
For any j ∈ J small, we assign it to a random machine i ∈
Mj so that i is the chosen machine with probability 2xi,j ;
this can be done because of (P3). Clearly the procedure can
be made online. Using Chernoff bound we can show that
w.h.p every machine i has a total load O(T ) of small jobs.
Lemma 4.1. With probability at least 1− 1

4m , ∀i ∈M , the
total load of small jobs assigned to i is at most 8T .

4.2. Dealing with Big Jobs

Now we focus on big jobs Jbig and assign them to M .
We break the algorithm into 3 stages. First, we apply an
initial rounding to obtain a fractional solution x′ from x,
so that every non-zero value in x′ is at least 1/ρ. Second,
we randomly assign big jobs to machines according to x′,
and a job fails if the machine it is assigned to is already
overloaded. Finally, we assign all failed jobs using our
deterministic algorithm in Theorem 2.1.

In the actual online algorithm, for each job j in the arrival
order, we run the procedures for the job in the three stages.
Thus, it is crucial that the procedure for a job j do not
depend on the knowledge of the jobs that arrive after j, and
the overcome of handling these jobs. One can verify this
from the description of the algorithm.

Stage 1: round small x values For every job j ∈ Jbig

and machine i ∈Mj , we randomly set x′i,j so that:

x′i,j =





xi,j if xi,j ≥ 1/ρ{
1/ρ with probability ρxi,j
0 with probability 1− ρxi,j

if xi,j < 1/ρ
.

We correlate the variables {x′i,j}i∈Mj
for the same j ∈

Jbig, so that we always have
∑
i∈Mj

x′i,j −
∑
i∈Mj

xi,j ∈
(− 1

ρ ,
1
ρ ), which is equivalent to

∑
i∈Mj

x′i,j ∈
(

1
2 − 1

ρ ,
1
2 + 1

ρ

)
. (7)
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This is possible since all truly-random variables take values
in {0, 1

ρ}. On the other hand, we guarantee that the random
processes for all jobs j ∈ Jbig are independent.

Notice that E[x′i,j ] = xi,j for every j ∈ Jbig and i ∈ Mj .
Also, we have x′i,j = 0 or x′i,j ≥ 1/ρ. The following lemma
is a simple application of Chernoff bound.

Lemma 4.2. With probability at least 1 − 1
4m , for every

i ∈M , we have
∑
j∈Jbig

i
pi,jx

′
i,j ≤ 5T .

From now on, we assume the events in Lemma 4.2 happen.

Stage 2: attempt to assign big jobs The procedure in
this stage is formally defined in Algorithm 1. Notice that
Step 3 is well-defined as (7) says

∑
i∈Mj

x′i,j ≥ 1
2 − 1

ρ ≥ 1
3 .

Algorithm 1 Algorithm in Stage 2
1: for every i ∈M do Li ← 0 and let i be unmarked
2: for every j ∈ Jbig in order of arrival do
3: choose a machine i ∈Mj randomly, with the only

requirement that the probability i is chosen is at most
3x′i,j

4: if Li ≤ 15 log logm
log log logm · T then

5: assign j to i, and let Li ← Li + pi,j
6: else
7: claim that j fails to be assigned, and mark i

Let J failed be the set of jobs in Jbig that failed, and let
Mmarked be the set of the marked machines at the end of
Stage 2. Notice that for any machine i, we have Li ≤
15 log logm
log log logm · T ≤ O

(
log logm

log log logm

)
· T . So, in this stage,

every machine gets a load of at most O
(

log logm
log log logm

)
· T .

Lemma 4.3. For every i ∈ M , we have Pr[i ∈
Mmarked] ≤ 1

700ρ12 .

Stage 3: schedule J failed deterministically In stage 3,
we schedule J failed using our deterministic algorithm in The-
orem 2.1, with x′ (instead of x) being the fractional solution
given online. As in Lattanzi et al. (2020), we show that w.h.p
in the graph defined by J failed, M and the support of x′,
every connected components contains at most poly log(m)
machines. Then we can make the deterministic algorithm
O
(

log m̂
log log m̂

)
-competitive, where m̂ = poly log(m) is the

maximum number of machines in any connected component
of the graph. Therefore in this stage, each machine i gets a
load of O

(
log m̂

log log m̂

)
· T = O

(
log logm

log log logm

)
· T w.h.p.

Throughout this section, for any graph Ĝ = (V̂ , Ê) and an
integer p ≥ 1, we use Ĝp to denote the graph over V̂ , in
which there is an edge between u, v ∈ V̂ if and only if there

is a path of at most p edges in Ĝ connecting u and v. For
any graph Ĝ = (V̂ , Ê) and a subset Û ⊆ V̂ of vertices, we
use Ĝ[Û ] to denote the sub-graph of Ĝ induced by Û .

We let G′ = (M ] Jbig, E′) be the support bipartite graph
of x′: for any j ∈ Jbig and i ∈ Mj , we have (i, j) ∈ E′
if and only if x′i,j > 0 (which implies x′i,j ≥ 1/ρ). The
following claim is immediate:

Claim 4.4. In G′, every job j ∈ Jbig has degree at most
ρ/2 + 1, and every machine i ∈M has degree at most 5ρ2.
G′2[M ] has maximum degree at most 5ρ3/2, G′4[M ] has
maximum degree at most 25ρ6/4, and G′8[M ] has maxi-
mum degree at most 625ρ12/16.

As we mentioned, it remains to prove the following lemma:

Lemma 4.5. With probability at least 1 − 1
4m , every con-

nected component of the graph G′[M ∪ J failed] contains at
most ρ(5ρ3/2 + 1)2 = poly log(m) machines.

To show the lemma, we prove that the negation of the event
in Lemma 4.5 implies some event that happens with proba-
bility at most 1

4m .

Let H be the following graph over M . For every pair of
distinct machines i, i′ ∈ Mmarked, we have (i, i′) ∈ H if
(i, i′) ∈ G′4. For every i ∈M\Mmarked and i′ ∈Mmarked,
we have (i, i′) ∈ H if (i, i′) ∈ G′2; that is, i and i′ share
a common neighbor in G′. Notice that there are no edges
between any two unmarked machines in H .

Lemma 4.6. The machines in any connected component of
G′[M ∪ J failed] are in a same connected component of H .

Lemma 4.7. The marked machines in any connected
component of H are in a same connected component of
G′4[Mmarked].

The above two lemmas imply the following:

Lemma 4.8. If some connected component of G′[M ∪
J failed] contains ρ(5ρ3/2 + 1)2 machines, then some
connected component of G′4[Mmarked] has size at least
ρ(5ρ3/2 + 1).

We say a subset M ′ ⊆ M of machines is interesting if
G′8[M ′] is connected but M ′ is an independent set in G′2.

Lemma 4.9. Suppose we have a set M∗ of at least
ρ(5ρ3/2 + 1) machines such that G′4[M∗] is connected.
Then there is an interesting set M ′ ⊆M∗ of size at least ρ.

Lemma 4.10. With probability at least 1− 1
4m , every inter-

esting set M ′ of size ρ contains an unmarked machine.

Now we have all the ingredients to prove Lemma 4.5.

Proof of Lemma 4.5. By Lemma 4.8, if some connected
component of G′[M ∪ J failed] contains at least ρ(5ρ3/2 +
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Algorithm 2 construction of initial β

1: xi,j ← 0,∀(i, j) ∈ E, r ← max(i,j)∈E pi,j
min(i,j)∈E pi,j

, U ← 1

2: while J 6= ∅ do
3: solve (P-LP) to obtain x̃ and (D-LP) to obtain (α̃, β̃)
4: M ′ ← {i ∈M : β̃i > 0}, J ′ ← {j ∈ J : α̃j > 0}
5: scale (α̃, β̃) so that maxi∈M ′ β̃i becomes U

6: U ← mini∈M′ β̃i
r

7: let αj ← α̃j , ∀j ∈ J ′, βi ← β̃i,∀i ∈ M ′, and
xi,j ← x̃i,j ,∀j ∈ J ′, i ∈M ′, (i, j) ∈ E

8: M ←M \M ′ and J ← J \ J ′

1)2 machines, then G′4[Mmarked] has a connected compo-
nent of size at least ρ(5ρ3/2 + 1). Let M∗ ⊆Mmarked be
the machines in the component. Then by Lemma 4.9, there
is an interesting setM ′ ⊆M∗ ⊆Mmarked of size at least ρ.
We can remove machines from M ′ while keeping G′8[M ′]
connected to make |M ′| = ρ.

So, if some component of G′[M ∪ J failed] contains at least
ρ(5ρ3/2 + 1)2 machines, there is an interesting set M ′ ⊆
Mmarked of size ρ. By Lemma 4.10, the latter event happens
with probability at most 1

4m , so does the former.

5. Reduction of Unrelated Machine Setting to
Related Machine Restricted Assignment
Setting: Proof of Theorem 2.4

In this section, we prove Theorem 2.4 that reduces the
instance in the unrelated machine setting to one in the
Q|restricted setting. The proof of Corollary 2.5 and the
handling of errors can be found in Section C.

We can see that if we let (α, β) be the optimum dual solution,
then β satisfies all the properties of theorem except that
β ∈ powersM1+ε,K . However this is an important property
that can not be ignored. First, if some machine i has βi = 0,
we will have an invalid instance in the Q|restricted setting.
Specifically, all adjacent jobs of machines with β values
being 0 have α values being 0. Then we do not have any
restriction on how x assigns these jobs to machines. Second,
without the property, we could not bound the aspect ratio of
β, which determines its bit-complexity after descretization.

Indeed, our algorithm constructs the vector β piece by piece.
We take the optimum solution (α̃, β̃) to (D-LP) and copy
the non-zero values of β̃ to β. Then we remove the jobs and
machines with positive α̃ and β̃ values. Then we continue to
fill the other β values by considering the residual instance.
The initial β ∈ RM>0 is constructed in Algorithm 2. Finally
we modify β to make its aspect ratio small, and discretize it.

In Algorithm 2, r is fixed to be the ratio between the max
and min pi,j values, U serves as an upper bound on the value

of future β values; it decreases as the algorithm proceeds.
So, our final β (α and x, resp.) is the combination of all the
β̃’s (α̃’s and x̃’s, resp.) constructed in all iterations. The way
we scale (α̃, β̃) in Step 5 and update U in Step 6 guarantees
that the β values assigned in later iterations are at most 1

r
times the β values assigned in earlier iterations.

Focus on each iteration of Loop 2 in Algorithm 2. We
obtain a primal optimum solution x̃ and a dual optimum
solution (α̃, β̃). Notice that α̃j = mini∈Mj

pi,j β̃i for every
j ∈ J . By complementary slackness conditions we have
that x̃i,j > 0 implies α̃j = pi,j β̃i. So, in the solution x, any
j ∈ J ′ is completely assigned to M ′, and any j ∈ J \ J ′ is
completely assigned to M \M ′. Since we copied x̃ values
between M ′ and J ′ to x, x assigns each job j ∈ J ′ to an
extension of 1 and the makespan of every machine i ∈M ′
is at most T ∗ (Recall that T ∗ is the optimum fractional
makespan). Moreover, we are guaranteed that the residual
instance restricted to J \ J ′ and M \M ′ admits a primal
LP solution of value at most T ∗. So the value of (P-LP)
can only go down as the algorithm proceeds. So, the final x
we constructed is optimum to (P-LP). Moreover, xi,j > 0
implies αi = pi,jβj . Also, at the end of the algorithm
we have M = ∅, since otherwise

⋃
i∈M Ji are still in J

(assuming no Ji is empty).

We then show αj = mini∈Mi pi,jβi. Focus on the job j and
the iteration in which βj is assigned; in the iteration we have
α̃j = mini∈M ′ pi,j β̃i. The β values of machines assigned
in previous iterations are at least r times bigger than βj . All
machines in Mj will have β values assigned by the end of
the iteration. Then αj = mini∈Mi pi,jβi follows from the
definition of r.

So far we have β ∈ RM>0 but we need β ∈ powersM1+ε,K . To
gurantee this, we reduce the aspect ratio of β . We sort all β
values from the smallest to biggest. If we see two adjacent
machines i1, i2 in the ordering with βi2

βi1
> m

ε , then we can
scale all β values of jobs after i1 down by the same factor
so that βi2βi1 becomes m

ε . We update αj values accordingly.
By Assumption 1, this operation will not change whether
a machine i is the one that minimizes βipi,j or not for any
job j. We repeat the operation until we can not find such
an adjacent pair. Then we have that maxi∈M βi

mini∈M βi
≤
(
m
ε

)m−1
.

By scaling, we assume the smallest β value is 1.

Finally, we round each βj values down to its nearest
integer power of 1 + ε. So after the rounding we
have βj ∈ powers(1 + ε,K) for every j, where K =⌊
log1+ε

(
m
ε

)m−1
⌋

= O
(
m
ε log m

ε

)
. We update αj’s ac-

cordingly. Before the rounding, xi,j > 0 implies αj =
pi,jβi. After the rounding, it implies αj ≤ pi,jβi <
(1 + ε)αj . This finishes the proof of Theorem 2.4.
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3305, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR. URL http://proceedings.mlr.
press/v80/lykouris18a.html.

Mahdian, M. and Yan, Q. Online bipartite matching with
random arrivals: An approach based on strongly factor-
revealing lps. In Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing, STOC ’11,
pp. 597–606, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450306911. doi: 10.
1145/1993636.1993716. URL https://doi.org/
10.1145/1993636.1993716.

Manshadi, V. H., Gharan, S. O., and Saberi, A. Online
stochastic matching: Online actions based on offline
statistics. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
’11, pp. 1285–1294, USA, 2011. Society for Industrial
and Applied Mathematics.

Rohatgi, D. Near-optimal bounds for online caching with
machine learned advice. In Proceedings of the Thirty-
First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’20, pp. 1834–1845, USA, 2020. Society
for Industrial and Applied Mathematics.

Schild, A., Vee, E., Purohit, M., Ravikumar, R. K., and
Svitkina, Z. Semi-online bipartite matching. 2019.

Svensson, O. Santa claus schedules jobs on unrelated
machines. SIAM Journal on Computing, 41(5):1318–
1341, 2012. doi: 10.1137/110851201. URL https:
//doi.org/10.1137/110851201.

Wei, A. Better and Simpler Learning-Augmented Online
Caching. In Byrka, J. and Meka, R. (eds.), Approxi-
mation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM
2020), volume 176 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 60:1–60:17, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik. ISBN 978-3-95977-164-1. doi: 10.4230/LIPIcs.
APPROX/RANDOM.2020.60. URL https://drops.
dagstuhl.de/opus/volltexte/2020/12663.


