Supplementary Materials for "Asymptotic Normality and Confidence Intervals for Prediction Risks of the Min-Norm Least Squares Estimator"

Zeng Li ${ }^{1}$ Chuanlong Xie ${ }^{2}$ Qinwen Wang ${ }^{3}$

The Supplementary materials contain the proofs of Theorems 4.1-4.5 and some additional simulation experiments.

1. Proof of Theorem 4.1 and Theorem 4.2

Let $\mathbf{X}=\mathbf{Z} \boldsymbol{\Sigma}^{1 / 2}$. According to the Bai-Yin theorem (Bai \& Yin, 2008), the smallest eigenvalue of $\mathbf{Z}^{\mathrm{T}} \mathbf{Z} / n$ is almost surely larger than $(1-\sqrt{c})^{2} / 2$ for sufficiently large n. Thus

$$
\lambda_{\min }\left(\frac{1}{n} \mathbf{X}^{\mathrm{T}} \mathbf{X}\right) \geq c_{0} \lambda_{\min }\left(\frac{1}{n} \mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right) \geq \frac{c_{0}}{2}(1-\sqrt{c})^{2}
$$

which implies that the matrix $\mathbf{X}^{\mathrm{T}} \mathbf{X} / n$ is almost surely invertible for large n. By Section 3.2,

$$
\begin{aligned}
B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =B_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=0 \\
V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =V_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})
\end{aligned}
$$

The first equality holds since $\boldsymbol{\Pi}=\mathbf{0}$. Thus the asymptotic of $R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is same to that of $R_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$. For simplicity, we focus on $R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ in the following. Notice that

$$
\begin{aligned}
V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\Sigma}\right) \\
& =\frac{\sigma^{2}}{n} \operatorname{Tr}\left(\boldsymbol{\Sigma}^{-1 / 2}\left(\frac{\mathbf{Z}^{\mathrm{T}} \mathbf{Z}}{n}\right)^{-1} \boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\Sigma}\right) \\
& =\frac{\sigma^{2}}{n} \sum_{i=1}^{p} \frac{1}{s_{i}}=\frac{\sigma^{2} p}{n} \int \frac{1}{s} d F_{\mathbf{Z}}(s)
\end{aligned}
$$

where s_{i} 's are eigenvalues of $\mathbf{Z}^{\mathrm{T}} \mathbf{Z} / n . F_{\mathbf{Z}}$ is the spectral measure of $\mathbf{Z}^{\mathrm{T}} \mathbf{Z} / n$. According to the convergence of empirical spectral distributions of sample covariance matrices $F_{\mathbf{Z}}$ established in Yin (1986), as $n, p \rightarrow \infty$ such that $p / n=c_{n} \rightarrow c \in(0, \infty), F_{\mathbf{Z}}(x)$ weakly converges to the standard Marcenko-Pastur law $F_{c}(x)$ and

$$
V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \rightarrow \sigma^{2} c \int \frac{1}{s} d F_{c}(s)=\sigma^{2} \frac{c}{1-c}
$$

[^0]Here the standard Marcenko-Pastur law $F_{c}(x)$ has a density function

$$
p_{c}(x)= \begin{cases}\frac{1}{2 \pi c x} \sqrt{(b-x)(x-a)}, & \text { if } a \leq x \leq b, \\ 0, & \text { o.w. },\end{cases}
$$

where $a=(1-\sqrt{c})^{2}, b=(1+\sqrt{c})^{2}$ and $p_{c}(x)$ has a point mass $1-\frac{1}{c}$ at the origin if $c>1$. Hence

$$
\begin{aligned}
& R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\sigma^{2} \frac{c_{n}}{1-c_{n}} \\
= & \frac{\sigma^{2} p}{n} \int \frac{1}{s} d F_{Z}(s)-\sigma^{2} c_{n} \int \frac{1}{s} d F_{c_{n}}(s) \\
= & \sigma^{2} c_{n} \int \frac{1}{s}\left(d F_{Z}(s)-d F_{c_{n}}(s)\right) .
\end{aligned}
$$

According to Theorem 1.1 of Bai \& Silverstein (2004),

$$
\begin{equation*}
p\left(R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\sigma^{2} \frac{c_{n}}{1-c_{n}}\right) \xrightarrow{d} N\left(\mu_{c}, \sigma_{c}^{2}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{c}= & -\frac{\sigma^{2} c}{2 \pi i} \oint_{\mathcal{C}} \frac{1}{z} \frac{c \underline{m}(z)^{3}(1+\underline{m}(z))^{-3}}{\left\{1-c \underline{m}(z)^{2}(1+\underline{m}(z))^{-2}\right\}^{2}} d z \tag{2}\\
& -\frac{\sigma^{2} c\left(\nu_{4}-3\right)}{2 \pi i} \oint_{\mathcal{C}} \frac{1}{z} \frac{c \underline{m}(z)^{3}(1+\underline{m}(z))^{-3}}{1-c \underline{m}(z)^{2}(1+\underline{m}(z))^{-2}} d z, \\
\sigma_{c}^{2}= & -\frac{\sigma^{4} c^{2}}{2 \pi^{2}} \oint_{\mathcal{C}_{1}} \oint_{\mathcal{C}_{2}} \frac{1}{z_{1} z_{2}} \frac{1}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}} \tag{3}\\
& \times \frac{d}{d z_{1} \underline{m}\left(z_{1}\right) \frac{d}{d z_{2}} \underline{m}\left(z_{2}\right) d z_{1} d z_{2}} \\
& -\frac{\sigma^{4} c^{3}\left(\nu_{4}-3\right)}{4 \pi^{2}} \oint_{\mathcal{C}_{1}} \oint_{\mathcal{C}_{2}} \frac{1}{z_{1} z_{2}} \frac{1}{\left(1+\underline{m}\left(z_{1}\right)\right)^{2}} \\
& \times \frac{1}{\left(1+\underline{m}\left(z_{2}\right)\right)^{2}} d \underline{m}\left(z_{1}\right) d \underline{m}\left(z_{2}\right) .
\end{align*}
$$

Here the contours in (2) and (3) are closed and taken in the positive direction in the complex plane, enclosing the support of $F^{c, H}$. The Stieltjes transform $\underline{m}(z)$ satisfies the equation

$$
z=-\frac{1}{\underline{m}}+\frac{c}{1+\underline{m}} .
$$

To further simplify the integrations in μ_{c} and σ_{c}, let $z=$ $1+\sqrt{c}\left(r \xi+\frac{1}{r \xi}\right)+c$ and perform change of variables, then
we have

$$
\begin{aligned}
\underline{m}(z) & =-\frac{1}{1+\sqrt{c} r \xi} \\
d z & =\sqrt{c}\left(r-\frac{1}{r \xi^{2}}\right) d \xi \\
d \underline{m} & =\frac{\sqrt{c} r}{(1+\sqrt{c} r \xi)^{2}} d \xi
\end{aligned}
$$

and when ξ moves along the unit circle $|\xi|=1$ on the complex plane, z will orbit around the center point $1+c$ along an ellipse which enclosing the support of $F^{c, H}$. Thus

$$
\begin{aligned}
\mu_{c}= & -\frac{\sigma^{2} c}{2 \pi i} \oint_{|\xi|=1} \frac{c \underline{m}^{3}(1+\underline{m})}{z\left\{(1+\underline{m})^{2}-c \underline{m}^{2}\right\}^{2}} \\
& \times \sqrt{c}\left(r-\frac{1}{r \xi^{2}}\right) d \xi \\
= & \frac{\sigma^{2} c}{2 \pi i} \oint_{|\xi|=1} \frac{1}{r(\sqrt{c}+r \xi)(1+\sqrt{c} r \xi)} \\
& \times \frac{1}{\left(\xi-\frac{1}{r}\right)\left(\xi+\frac{1}{r}\right)} d \xi \\
& +\frac{\sigma^{2} c\left(\nu_{4}-3\right)}{2 \pi i} \oint_{|\xi|=1} \frac{1}{r \xi^{2}(\sqrt{c}+r \xi)} \\
& \times \frac{1}{(1+\sqrt{c} r \xi)} d \xi \\
= & \frac{\sigma^{2} c^{2}}{(c-1)^{2}}+\frac{\sigma^{2} c^{2}\left(\nu_{4}-3\right)}{1-c} .
\end{aligned}
$$

As for σ_{c}^{2}, note that

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\mathcal{C}_{1}} \frac{1}{z_{1}\left(\underline{m}_{1}-\underline{m}_{2}\right)^{2}} d \underline{m}_{1} \\
&= \frac{1}{2 \pi i} \oint_{\left|\xi_{1}\right|=1} \frac{1}{1+\sqrt{c}\left(r_{1} \xi_{1}+\frac{1}{r_{1} \xi_{1}}\right)+c} \\
& \times \frac{\sqrt{c} r_{1}}{\left(\underline{m}_{2}+\frac{1}{1+\sqrt{c} r_{1} \xi_{1}}\right)^{2}\left(1+\sqrt{c} r_{1} \xi_{1}\right)^{2}} d \xi_{1} \\
&= \frac{1}{2 \pi i} \oint_{\left|\xi_{1}\right|=1} \frac{\sqrt{c} r_{1} \xi_{1}}{\left(\xi_{1}+\frac{\sqrt{c}}{r_{1}}\right)\left(r_{1} \xi_{1} \sqrt{c}+1\right)} \\
&= \frac{1}{\left(\left(r_{1} \xi_{1} \sqrt{c}+1\right) \underline{m}_{2}+1\right)^{2}} d \xi_{1} \\
&(c-1)\left((c-1) \underline{m}_{2}-1\right)^{2}
\end{aligned},
$$

therefore

$$
\begin{aligned}
& -\frac{\sigma^{4} c^{2}}{2 \pi^{2}} \oiint \frac{1}{z_{1} z_{2}\left(\underline{m}_{1}-\underline{m}_{2}\right)^{2}} d \underline{m_{1}} d \underline{m}_{2} \\
= & \frac{2 \sigma^{4} c^{2}}{2 \pi i} \oint_{\left|\xi_{2}\right|=1} \frac{c}{z_{2}(c-1)\left\{(c-1) \underline{m}_{2}-1\right\}^{2} \underline{m_{2}}} \\
= & \frac{2 \sigma^{4} c^{2}}{2 \pi i} \oint_{\left|\xi_{2}\right|=1} \frac{\sqrt{c} r_{2}^{2} \xi_{2}}{(c-1)\left(1+\sqrt{c} r_{2} \xi_{2}\right)\left(\sqrt{c}+r_{2} \xi_{2}\right)^{3}} d \xi_{2} \\
= & \frac{2 c^{3} \sigma^{4}}{(c-1)^{4}}
\end{aligned}
$$

Meanwhile,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \oint_{\mathcal{C}_{1}} \frac{1}{z_{1}} \frac{1}{\left(1+\underline{m}\left(z_{1}\right)\right)^{2}} d \underline{m}\left(z_{1}\right) \\
= & \frac{1}{2 \pi i} \oint_{|\xi|=1} \frac{1}{\sqrt{c} \xi(1+\sqrt{c} r \xi)(\sqrt{c}+r \xi)} d \xi \\
= & \frac{1}{c-1}
\end{aligned}
$$

hence

$$
\begin{aligned}
& -\frac{\sigma^{4} c^{3}\left(\nu_{4}-3\right)}{4 \pi^{2}}\left(\oint_{\mathcal{C}_{1}} \frac{1}{z_{1}} \frac{1}{\left(1+\underline{m}\left(z_{1}\right)\right)^{2}} d \underline{m}\left(z_{1}\right)\right)^{2} \\
= & \sigma^{4} c^{3}\left(\nu_{4}-3\right) \times \frac{1}{(1-c)^{2}} .
\end{aligned}
$$

Then we have,

$$
\sigma_{c}^{2}=\frac{2 c^{3} \sigma^{4}}{(c-1)^{4}}+\frac{\sigma^{4} c^{3}\left(\nu_{4}-3\right)}{(1-c)^{2}}
$$

Let

$$
T_{n}=\frac{p}{\sigma_{c}}\left(R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\sigma^{2} \frac{c_{n}}{1-c_{n}}-\frac{\mu_{c}}{p}\right)
$$

According to (1), we have

$$
\begin{aligned}
& P\left(L_{\alpha, c} \leq R_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \leq U_{\alpha, c}\right) \\
= & P\left(-Z_{\alpha / 2} \leq T_{n} \leq Z_{\alpha / 2}\right) \\
\rightarrow & 1-\alpha,
\end{aligned}
$$

where

$$
\begin{aligned}
L_{\alpha, c} & =\sigma^{2} \frac{c_{n}}{1-c_{n}}+\frac{1}{p}\left(\mu_{c}-Z_{\alpha / 2} \sigma_{c}\right) \\
U_{\alpha, c} & =\sigma^{2} \frac{c_{n}}{1-c_{n}}+\frac{1}{p}\left(\mu_{c}+Z_{\alpha / 2} \sigma_{c}\right)
\end{aligned}
$$

2. Proof of Theorem 4.3

Notice that

$$
\begin{aligned}
B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =\boldsymbol{\beta}^{\mathrm{T}}\left(\boldsymbol{I}_{p}-\hat{\boldsymbol{\Sigma}}^{+} \hat{\boldsymbol{\Sigma}}\right) \boldsymbol{\beta} \\
& =\lim _{z \rightarrow 0^{+}} \boldsymbol{\beta}^{\mathrm{T}}\left(\boldsymbol{I}_{p}-\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \hat{\boldsymbol{\Sigma}}\right) \boldsymbol{\beta} \\
& =\lim _{z \rightarrow 0^{+}} z \boldsymbol{\beta}^{\mathrm{T}}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{\beta}
\end{aligned}
$$

Since $\boldsymbol{\beta}$ is a constant vector, we can make use of the results in Theorem 3 in Bai et al. (2007) and Theorem 1.3 in Pan \& Zhou (2008) regarding eigenvectors. Their works investigate the sample covariance matrix

$$
\mathbf{A}_{p}=\boldsymbol{T}_{p}^{1 / 2} \mathbf{X}_{p}^{\mathrm{T}} \mathbf{X}_{p} \boldsymbol{T}_{p}^{1 / 2} / n
$$

where \boldsymbol{T}_{p} is an $p \times p$ nonnegative definite Hermitian matrix with a square root $\boldsymbol{T}_{p}^{1 / 2}$ and \mathbf{X}_{p} is an $n \times p$ matrix with i.i.d. entries $\left(\mathrm{x}_{i j}\right)_{n \times p}$. Let $\boldsymbol{U}_{p} \boldsymbol{\Lambda}_{p} \boldsymbol{U}_{p}^{\mathrm{T}}$ denote the spectral decomposition of \mathbf{A}_{p} where $\boldsymbol{\Lambda}_{p}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right)$ and \boldsymbol{U}_{p} is a unitary matrix consisting of the orthonormal eigenvectors of \mathbf{A}_{p}. Assume that \boldsymbol{x}_{p} is an arbitrary nonrandom unit vector and $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots, y_{p}\right)^{\mathrm{T}}=\boldsymbol{U}_{p}^{\mathrm{T}} \boldsymbol{x}_{p}$, two empirical distribution functions based on eigenvectors and eigenvalues are defined as

$$
\begin{aligned}
F_{1}^{\mathbf{A}_{p}}(x) & =\sum_{i=1}^{p}\left|y_{i}\right|^{2} \mathbb{1}\left(\lambda_{i} \leq x\right) \\
F^{\mathbf{A}_{p}}(x) & =\frac{1}{p} \sum_{i=1}^{p} \mathbb{1}\left(\lambda_{i} \leq x\right)
\end{aligned}
$$

Then for a bounded continuous function $g(x)$, we have

$$
\begin{aligned}
& \sum_{j=1}^{p}\left|\mathbf{y}_{j}\right|^{2} g\left(\lambda_{j}\right)-\frac{1}{p} \sum_{j=1}^{p} g\left(\lambda_{j}\right) \\
= & \int g(x) d F_{1}^{\boldsymbol{A}_{p}}(x)-\int g(x) d F^{\boldsymbol{A}_{p}}(x) .
\end{aligned}
$$

The results in Bai et al. (2007) and Pan \& Zhou (2008) are summarized in the following lemma.

Lemma 2.1. (Theorem 3 (Bai et al., 2007) and Theorem 1.3 (Pan \& Zhou, 2008)) Suppose that
(1) $\mathrm{x}_{i j}$'s are i.i.d. satisfying $\mathbb{E}\left(\mathrm{x}_{i j}\right)=0, \mathbb{E}\left(\left|\mathrm{x}_{i j}\right|^{2}\right)=1$ and $\mathbb{E}\left(\left|\mathrm{x}_{i j}\right|^{4}\right)<\infty$;
(2) $\boldsymbol{x}_{p} \in \mathbb{C}^{p},\left\|\boldsymbol{x}_{p}\right\|=1, \lim _{n, p \rightarrow \infty} p / n=c \in(0, \infty)$;
(3) \boldsymbol{T}_{p} is nonrandom Hermitian non-negative definite with with its spectral norm bounded in p, with $H_{p}=$ $F^{\boldsymbol{T}_{p}} \xrightarrow{d} H$ a proper distribution function and $\boldsymbol{x}_{p}^{\mathrm{T}}\left(\boldsymbol{T}_{p}-\right.$ $\left.z \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{x}_{p} \rightarrow m_{F^{H}}(z)$, where $m_{F^{H}}(z)$ denotes the Stieltjes transform of $H(t)$;
(4) g_{1}, \cdots, g_{k} are analytic functions on an open region of the complex plain which contains the real interval

$$
\begin{aligned}
& {\left[\liminf _{p} \lambda_{\min }\left(\boldsymbol{T}_{p}\right) \mathbb{1}_{(0,1)}(c)(1-\sqrt{c})^{2}\right.} \\
& \left.\quad \limsup _{p} \lambda_{\max }\left(\boldsymbol{T}_{p}\right) \mathbb{1}_{(0,1)}(c)(1+\sqrt{c})^{2}\right]
\end{aligned}
$$

(5) as $n, p \rightarrow \infty$,

$$
\begin{aligned}
\sup _{z} \sqrt{n} \| & \boldsymbol{x}_{p}^{\mathrm{T}}\left(\underline{m}_{F^{c_{n}, H_{p}}}(z) \boldsymbol{T}_{p}-\boldsymbol{I}_{p}\right)^{-1} \boldsymbol{x}_{p} \\
& -\int \frac{1}{1+t \underline{m}_{F^{c_{n}, H_{p}}}(z)} d H_{n}(t) \| \rightarrow 0
\end{aligned}
$$

Define $G_{p}(x)=\sqrt{n}\left(F_{1}^{\boldsymbol{A}_{p}}(x)-F^{\boldsymbol{A}_{p}}(x)\right)$, then the random vectors

$$
\left(\int g_{1}(x) d G_{p}(x), \cdots, \int g_{k}(x) d G_{p}(x)\right)
$$

forms a tight sequence and converges weakly to a Gaussian vector $\mathrm{x}_{g_{1}}, \cdots, \mathrm{x}_{g_{k}}$ with mean zero and covariance function

$$
\begin{aligned}
\operatorname{Cov}\left(\mathrm{x}_{g_{1}}, \mathrm{x}_{g_{2}}\right)= & -\frac{1}{2 \pi^{2}} \int_{\mathcal{C}_{1}} \int_{\mathcal{C}_{2}} g_{1}\left(z_{1}\right) g_{2}\left(z_{2}\right) \\
& \times \frac{\left(z_{2} \underline{m}_{2}-z_{1} \underline{m}_{1}\right)^{2}}{c^{2} z_{1} z_{2}\left(z_{2}-z_{1}\right)\left(\underline{m}_{2}-\underline{m}_{1}\right)} d z_{1} d z_{2}
\end{aligned}
$$

The contours $\mathcal{C}_{1}, \mathcal{C}_{2}$ are disjoint, both contained in the analytic region for the functions $\left(g_{1}, \cdots, g_{k}\right)$ and enclose the support of $F^{c_{n}, H_{p}}$ for all large p.
(6) If $H(x)$ satisfies

$$
\begin{aligned}
& \int \frac{d H(t)}{\left(1+\operatorname{tm} \underline{m}\left(z_{1}\right)\right)\left(1+t \underline{m}\left(z_{2}\right)\right)} \\
= & \int \frac{d H(t)}{1+t \underline{m}\left(z_{1}\right)} \int \frac{d H(t)}{1+t \underline{m}\left(z_{2}\right)},
\end{aligned}
$$

then the covariance function can be further simplified to

$$
\begin{aligned}
& \operatorname{Cov}\left(\mathbf{x}_{g_{1}}, \mathrm{x}_{g_{2}}\right) \\
= & \frac{2}{c}\left(\int g_{1}(x) g_{2}(x) d F^{c, H}(x)\right. \\
& \left.-\int g_{1}(x) d F^{c, H}(x) \int g_{2}(x) d F^{c, H}(x)\right)
\end{aligned}
$$

Recall that $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=\lim _{z \rightarrow 0^{+}} z \boldsymbol{\beta}^{\mathrm{T}}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{\beta}$. Let $g(x)=1 /(x+z)$ and $\boldsymbol{x}_{p}=\boldsymbol{\beta} / r$. Then we have

$$
\begin{aligned}
& \int g(x) d G_{n}(x) \\
= & \sqrt{n}\left(\frac{1}{r^{2}} \boldsymbol{\beta}^{\mathrm{T}}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{\beta}-\int g(x) d F_{c_{n}}(x)\right)
\end{aligned}
$$

where $F_{c_{n}}(x)$ is the standard Marcenko-Pastur law with parameter c_{n}. It is not difficult to check that under Assumptions (A1), (B1) and (C1), all the conditions (1)-(6) in Lemma 2.1 are satisfied.
To proceed further, denote $a=(1-\sqrt{c})^{2}, b=(1+\sqrt{c})^{2}$. If c is replaced by c_{n}, a and b are denoted by a_{n} and b_{n}
respectively. By some algebraic calculations, we have

$$
\begin{aligned}
& \int g(x) d F_{c_{n}}(x) \\
= & \left(1-\frac{1}{c_{n}}\right) \cdot \frac{1}{z} \\
& +\int_{a_{n}}^{b_{n}} \frac{1}{x+z} \cdot \frac{1}{2 \pi c_{n} x} \sqrt{\left(b_{n}-x\right)\left(x-a_{n}\right)} d x \\
= & \left(1-\frac{1}{c_{n}}\right) \cdot \frac{1}{z} \\
& -\frac{-1+c_{n}+z-\sqrt{c_{n}^{2}+2 c_{n}(z-1)+(1+z)^{2}}}{2 c_{n} z}
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Var}\left(\mathbf{x}_{g}\right) \\
= & \frac{2}{c}\left(\int\{g(x)\}^{2} d F_{c}(x)-\left\{\int g(x) d F_{c}(x)\right\}^{2}\right) \\
= & \frac{2}{c}\left\{\left(1-\frac{1}{c}\right) \cdot \frac{1}{z^{2}}\right. \\
& \left.+\int_{a}^{b} \frac{1}{(x+z)^{2}} \cdot \frac{1}{2 \pi c x} \sqrt{(b-x)(x-a)} d x\right\} \\
& -\frac{2}{c}\left\{\left(1-\frac{1}{c}\right) \cdot \frac{1}{z}\right. \\
& \left.+\int_{a}^{b} \frac{1}{x+z} \cdot \frac{1}{2 \pi c x} \sqrt{(b-x)(x-a)} d x\right\}^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\lim _{z \rightarrow 0^{+}} z \int g(x) d F_{c_{n}}(x) & =1-\frac{1}{c_{n}} \\
\lim _{z \rightarrow 0^{+}} z^{2} \operatorname{Var}\left(\mathrm{x}_{g}\right) & =\frac{2(c-1)}{c^{3}}
\end{aligned}
$$

Furthermore, as $n, p \rightarrow \infty, p / n=c_{n} \rightarrow c>1$,

$$
\sqrt{n}\left(B \mathbf{X}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\left(1-\frac{1}{c_{n}}\right) r^{2}\right) \xrightarrow{d} N\left(0, \frac{2(c-1)}{c^{3}} r^{4}\right) .
$$

This can be rewritten as

$$
\sqrt{p}\left(B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\left(1-\frac{1}{c_{n}}\right) r^{2}\right) \xrightarrow{d} N\left(0, \frac{2(c-1)}{c^{2}} r^{4}\right) .
$$

Next we deal with the variance term $V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$. According to the Assumption (B1), the variance term is

$$
V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=\frac{\sigma^{2}}{n} \operatorname{Tr}\left\{\hat{\boldsymbol{\Sigma}}^{+}\right\}=\frac{\sigma^{2}}{n} \sum_{i=1}^{n} \frac{1}{s_{i}}
$$

where $s_{i}, i=1, \ldots, n$ are the nonzero eigenvalues of $\mathbf{X}^{\mathrm{T}} \mathbf{X} / n$. Let $\left\{t_{i}, i=1, \ldots n\right\}$ denote the non-zero eigen-
values of $\mathbf{X X}^{\mathrm{T}} / p$, then we have

$$
\begin{aligned}
V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =\frac{\sigma^{2}}{p} \sum_{i=1}^{n} \frac{1}{t_{i}} \\
& =\frac{\sigma^{2} n}{p} \int \frac{1}{t} d F_{\mathbf{X X}^{\mathrm{T}} / p}(t) \\
& \rightarrow \frac{\sigma^{2}}{c-1}
\end{aligned}
$$

By interchanging the role of p and n, from the result in Theorem 4.1, as $n, p \rightarrow \infty, p / n=c_{n} \rightarrow c>1$, we have that the term

$$
\sum_{i=1}^{n} \frac{1}{t_{i}}-\frac{n}{1-c_{n}^{\prime}}
$$

weakly converges to a normal distribution:

$$
N\left(\frac{c^{\prime}}{\left(c^{\prime}-1\right)^{2}}+\frac{c^{\prime}\left(\nu_{4}-3\right)}{1-c^{\prime}}, \frac{2 c^{\prime}}{\left(c^{\prime}-1\right)^{4}}+\frac{c^{\prime}\left(\nu_{4}-3\right)}{\left(1-c^{\prime}\right)^{2}}\right)
$$

where $c_{n}^{\prime}=n / p=1 / c_{n}, c^{\prime}=1 / c$. This result can be rewritten as

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{t_{i}}-\frac{p}{c_{n}-1} \\
\xrightarrow{d} & N\left(\frac{c}{(1-c)^{2}}+\frac{\left(\nu_{4}-3\right)}{c-1}, \frac{2 c^{3}}{(1-c)^{4}}+\frac{c\left(\nu_{4}-3\right)}{(c-1)^{2}}\right) .
\end{aligned}
$$

Hence the CLT of $V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is given by

$$
\begin{aligned}
& p\left(V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\frac{\sigma^{2}}{c_{n}-1}\right) \\
\xrightarrow{d} & N\left(\frac{c \sigma^{2}}{(1-c)^{2}}+\frac{\sigma^{2}\left(\nu_{4}-3\right)}{c-1}, \frac{2 c^{3} \sigma^{4}}{(1-c)^{4}}+\frac{c \sigma^{4}\left(\nu_{4}-3\right)}{(c-1)^{2}}\right) .
\end{aligned}
$$

Notice that $\operatorname{Cov}\left(B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}), V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})\right)=0$. According to the consistency rate and the limiting distribution of $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ and $V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$, we know that the bias $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is the leading term of $R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$. This implies that
$\sqrt{p}\left\{R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\left(1-\frac{1}{c_{n}}\right)\|\boldsymbol{\beta}\|_{2}^{2}-\frac{\sigma^{2}}{c_{n}-1}\right\} \xrightarrow{d} N\left(0, \sigma_{c, 1}^{2}\right)$,
where $\sigma_{c, 1}^{2}=2(c-1) r^{4} / c^{2}$. A practical version of this CLT is given by
$\sqrt{p}\left\{R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\left(1-\frac{1}{c_{n}}\right)\|\boldsymbol{\beta}\|_{2}^{2}-\frac{\sigma^{2}}{c_{n}-1}\right\} \xrightarrow{d} N\left(\tilde{\mu}_{c, 1}, \tilde{\sigma}_{c, 1}^{2}\right)$,
where

$$
\begin{aligned}
\tilde{\mu}_{c, 1} & =\frac{1}{\sqrt{p}}\left\{\frac{c \sigma^{2}}{(1-c)^{2}}+\frac{\sigma^{2}\left(\nu_{4}-3\right)}{c-1}\right\} \\
\tilde{\sigma}_{c, 1}^{2} & =\frac{2(c-1)}{c^{2}} r^{4}+\frac{1}{p}\left\{\frac{2 c^{3} \sigma^{4}}{(1-c)^{4}}+\frac{c \sigma^{4}\left(\nu_{4}-3\right)}{(c-1)^{2}}\right\} .
\end{aligned}
$$

3. Proof of Theorem 4.4

First we consider the bias term $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$. By Assumption (A1), (B1), and (C2),

$$
\begin{aligned}
B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =\mathbb{E}\left[\boldsymbol{\beta}^{\mathrm{T}} \Pi \boldsymbol{\Sigma} \Pi \boldsymbol{\beta} \mid \mathbf{X}\right]=\mathbb{E}\left[\boldsymbol{\beta}^{\mathrm{T}} \Pi \boldsymbol{\beta} \mid \mathbf{X}\right] \\
& =\operatorname{Tr}\left\{\left(\boldsymbol{I}_{p}-\hat{\boldsymbol{\Sigma}}^{+} \hat{\boldsymbol{\Sigma}}\right) \mathbb{E}\left(\boldsymbol{\beta} \boldsymbol{\beta}^{\mathrm{T}} \mid \mathbf{X}\right)\right\} \\
& =\frac{r^{2}}{p} \operatorname{Tr}\left\{\boldsymbol{I}_{p}-\hat{\boldsymbol{\Sigma}}^{+} \hat{\boldsymbol{\Sigma}}\right\}=r^{2}(1-n / p)
\end{aligned}
$$

Alternatively, we can rewrite the bias as

$$
\begin{aligned}
B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) & =\lim _{z \rightarrow 0^{+}} \mathbb{E}\left[\boldsymbol{\beta}^{\mathrm{T}}\left(\boldsymbol{I}_{p}-\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \hat{\boldsymbol{\Sigma}}\right) \boldsymbol{\beta} \mid \mathbf{X}\right] \\
& =\lim _{z \rightarrow 0^{+}} \mathbb{E}\left[z \boldsymbol{\beta}^{\mathrm{T}}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{\beta} \mid \mathbf{X}\right] \\
& =\lim _{z \rightarrow 0^{+}} z \frac{r^{2}}{p} \operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1}
\end{aligned}
$$

Define that $f_{n}(z)=z \frac{r^{2}}{p} \operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1}$. Notice that $\left|f_{n}(z)\right|$ and $\left|f_{n}^{\prime}(z)\right|$ are bounded above. By the ArzelaAscoli theorem, we deduce that $f_{n}(z)$ converges uniformly to its limit. Under Assumption (C2), by the Moore-Osgood theorem, almost surely,

$$
\begin{aligned}
& \lim _{n, p \rightarrow \infty} B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \\
= & \lim _{z \rightarrow 0^{+}} \lim _{n, p \rightarrow \infty} z \frac{r^{2}}{p} \operatorname{Tr}\left(\hat{\boldsymbol{\Sigma}}+z \boldsymbol{I}_{p}\right)^{-1} \\
= & \lim _{z \rightarrow 0^{+}} \lim _{n, p \rightarrow \infty} z \frac{r^{2}}{p} \operatorname{Tr}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathrm{T}}+z \boldsymbol{I}_{n}\right)^{-1}
\end{aligned}
$$

In fact,

$$
\lim _{n, p \rightarrow \infty} B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=r^{2} \lim _{z \rightarrow 0^{+}} \lim _{n, p \rightarrow \infty} z m_{n}(-z)
$$

where $m_{n}(z)$ is the Stieltjes transform of empirical spectral distribution of $\hat{\boldsymbol{\Sigma}}=\mathbf{X}^{\mathrm{T}} \mathbf{X} / n$. According to Theorem 2.1 in (Zheng et al., 2015) and Lemma 1.1 in (Bai \& Silverstein, 2004), the truncated version of $p\left(m_{n}(z)-m(z)\right)$ converges weakly to a two-dimensional Gaussian process $M(\cdot)$ satisfying

$$
\begin{aligned}
\mathbb{E}[M(z)]= & \frac{c \underline{m}^{3}(1+\underline{m})}{\left\{(1+\underline{m})^{2}-c \underline{m}^{2}\right\}^{2}} \\
& +\frac{c\left(\nu_{4}-3\right) \underline{m}^{3}}{(1+\underline{m})\left\{(1+\underline{m})^{2}-c \underline{m}^{2}\right\}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Cov}\left(M\left(z_{1}\right), M\left(z_{2}\right)\right) \\
= & 2\left\{\frac{\underline{m}^{\prime}\left(z_{1}\right) \underline{m}^{\prime}\left(z_{2}\right)}{\left(\underline{m}\left(z_{1}\right)-\underline{m}\left(z_{2}\right)\right)^{2}}-\frac{1}{\left(z_{1}-z_{2}\right)^{2}}\right\} \\
& +\frac{c\left(\nu_{4}-3\right) \underline{m}^{\prime}\left(z_{1}\right) \underline{m}^{\prime}\left(z_{2}\right)}{\left(1+\underline{m}\left(z_{1}\right)\right)^{2}\left(1+\underline{m}\left(z_{2}\right)\right)^{2}},
\end{aligned}
$$

where $\underline{m}=\underline{m}(z)$ represents the Stieltjes transform of limiting spectral distribution of companion matrix $\mathbf{X X}^{\mathrm{T}} / n$ satisfying the equation

$$
z=-\frac{1}{\underline{m}}+\frac{c}{1+\underline{m}}, \quad \underline{m}(z)=-\frac{1-c}{z}+c m(z) .
$$

When $p>n$, we can actually solve $\underline{m}(z)$ equation and obtain that

$$
\begin{aligned}
& \underline{m}(z)=\frac{-1+c-z+\sqrt{-4 z+(1-c+z)^{2}}}{2 z} \\
& m(z)=\frac{1-c-z+\sqrt{-4 z+(1-c+z)^{2}}}{2 c z}
\end{aligned}
$$

Therefore, by some algebraic calculations, we have

$$
\begin{aligned}
& \lim _{n, p \rightarrow \infty} B \mathbf{X}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}) \\
= & \lim _{n, p \rightarrow \infty} r^{2} \lim _{z \rightarrow 0^{+}} z m_{n}(-z) \\
= & r^{2} \lim _{z \rightarrow 0^{+}}\left\{z m(-z)+z\left(1-\frac{1}{c}\right) \frac{1}{z}\right\} \\
= & \lim _{n, p \rightarrow \infty} r^{2} \lim _{z \rightarrow 0^{+}} z \frac{n}{p} \underline{m}_{n}(z) \\
= & r^{2} \frac{1}{c} \lim _{z \rightarrow 0^{+}} z \underline{m}(-z) \\
= & r^{2}\left(1-\frac{1}{c}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\operatorname{Var}(M(z))= & \lim _{z_{1} \rightarrow z_{2}=z} \operatorname{Cov}\left(M\left(z_{1}\right), M\left(z_{2}\right)\right) \\
= & \frac{2 \underline{m}^{\prime}(z) \underline{m}^{\prime \prime \prime}(z)-3\left(\underline{m}^{\prime \prime}(z)\right)^{2}}{6\left(\underline{m}^{\prime}(z)\right)^{2}} \\
& +\frac{c\left(\nu_{4}-3\right)\left(\underline{m}^{\prime}(z)\right)^{2}}{(1+\underline{m}(z))^{4}}
\end{aligned}
$$

By substituting of the explicit form of $\underline{m}(z)$, we can easily derive that

$$
\lim _{z \rightarrow 0^{+}} z \mathbb{E}[M(-z)]=0, \quad \lim _{z \rightarrow 0^{+}} z^{2} \operatorname{Var}(M(-z))=0
$$

which means that the second-order limit of $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is still $r^{2}(1-1 / c)$. All in all, $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is identical with a constant $r^{2}(1-1 / c)$ in distribution.

On the other hand, by Assumption (B1),

$$
V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=\frac{\sigma^{2}}{n} \operatorname{Tr}\left\{\hat{\boldsymbol{\Sigma}}^{+}\right\}=\frac{\sigma^{2}}{n} \sum_{i=1}^{n} \frac{1}{s_{i}}
$$

where $s_{i}, i=1, \ldots, n$ are the nonzero eigenvalues of $\mathbf{X}^{\mathrm{T}} \mathbf{X} / n$. Similar to the proof of Theorem 4.3, the CLT of $V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is given by

$$
\begin{aligned}
& p\left(V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\frac{\sigma^{2}}{c_{n}-1}\right) \\
\xrightarrow{d} \quad & N\left(\frac{c \sigma^{2}}{(1-c)^{2}}+\frac{\sigma^{2}\left(\nu_{4}-3\right)}{c-1}, \frac{2 c^{3} \sigma^{4}}{(1-c)^{4}}+\frac{c \sigma^{4}\left(\nu_{4}-3\right)}{(c-1)^{2}}\right) .
\end{aligned}
$$

Combining the results of $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ and $V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$, we have $p\left\{R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-r^{2}\left(1-\frac{1}{c_{n}}\right)-\frac{\sigma^{2}}{c_{n}-1}\right\} \xrightarrow{d} N\left(\mu_{c, 2}, \sigma_{c, 2}^{2}\right)$,
where

$$
\begin{aligned}
\mu_{c, 2} & =\frac{c \sigma^{2}}{(1-c)^{2}}+\frac{\sigma^{2}\left(\nu_{4}-3\right)}{c-1} \\
\sigma_{c, 2}^{2} & =\frac{2 c^{3} \sigma^{4}}{(1-c)^{4}}+\frac{c \sigma^{4}\left(\nu_{4}-3\right)}{(c-1)^{2}}
\end{aligned}
$$

4. Proof of Theorem 4.5

Note that under Assumption (B1) and (C2), $B_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=$ $\boldsymbol{\beta}^{\mathrm{T}} \Pi \boldsymbol{\beta}=\boldsymbol{\beta}^{\mathrm{T}}\left(\boldsymbol{I}_{p}-\hat{\boldsymbol{\Sigma}}^{+} \hat{\boldsymbol{\Sigma}}\right) \boldsymbol{\beta}$. If we directly consider $\boldsymbol{\beta}^{\mathrm{T}}\left(\boldsymbol{I}_{p}-\hat{\boldsymbol{\Sigma}}^{+} \hat{\boldsymbol{\Sigma}}\right) \boldsymbol{\beta}$, we can make use of the asymptotic results for quadratic forms, see Theorem 7.2 in Bai \& Yao (2008), which is stated as follows.

Lemma 4.1. (Theorem 7.2 in Bai \& Yao (2008)) Let $\left\{\boldsymbol{A}_{n}=\left[a_{i j}(n)\right]\right\}$ be a sequence of $n \times n$ real symmetric matrices, $\left\{\mathbf{x}_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of i.i.d. K dimensional real random vectors, with $\mathbb{E}\left(\mathbf{x}_{i}\right)=0, \mathbb{E}\left(\mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}\right)=\left(\gamma_{i j}\right)_{K \times K}$ and $\mathbb{E}\left[\left\|\mathbf{x}_{i}\right\|^{4}\right]<\infty$. Denote

$$
\begin{aligned}
& \mathbf{x}_{i}=\left(\mathrm{x}_{\ell i}\right)_{K \times 1}, \quad \mathbf{X}(\ell)=\left(\mathrm{x}_{\ell 1}, \cdots, \mathrm{x}_{\ell n}\right)^{\mathrm{T}}, \\
& \ell=1, \cdots, K, i=1, \cdots, n
\end{aligned}
$$

assume the following limits exist

$$
\omega=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i i}^{2}(n), \quad \theta=\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Tr} \boldsymbol{A}_{n}^{2}
$$

Define a K-dimensional random vectors,

$$
\mathbf{z}_{n}=\left(\mathbf{z}_{n, \ell}\right)_{K \times 1},
$$

where, for $1 \leq \ell \leq K$,

$$
\mathrm{z}_{n, \ell}=\frac{1}{\sqrt{n}}\left(\mathbf{X}(\ell)^{\mathrm{T}} \boldsymbol{A}_{n} \mathbf{X}(\ell)-\gamma_{\ell \ell} \operatorname{Tr}\left\{\boldsymbol{A}_{n}\right\}\right)
$$

Then \mathbf{z}_{n} converges weakly to a zero-mean Gaussian vector with covariance matrix $\boldsymbol{D}=\boldsymbol{D}_{1}+\boldsymbol{D}_{2}$, where for any $1 \leq \ell, \ell^{\prime} \leq K$,

$$
\left[\boldsymbol{D}_{1}\right]_{\ell \ell^{\prime}}=\omega\left(\mathbb{E}\left(x_{\ell 1}^{2} x_{\ell^{\prime} 1}^{2}\right)-\gamma_{\ell \ell} \gamma_{\ell^{\prime} \ell^{\prime}}\right),
$$

and

$$
\left[\boldsymbol{D}_{2}\right]_{\ell \ell^{\prime}}=(\theta-\omega)\left(\gamma_{\ell \ell^{\prime}} \gamma_{\ell^{\prime} \ell}+\gamma_{\ell \ell^{\prime}}^{2}\right)
$$

According to the results in Lemma 4.1, let $\boldsymbol{A}_{n}=\Pi=$ $\boldsymbol{I}_{p}-\hat{\boldsymbol{\Sigma}}^{+} \boldsymbol{\Sigma}$, then we have, as $p \rightarrow \infty$,

$$
\sqrt{p}\left\{\boldsymbol{\beta}^{\mathrm{T}} \Pi \boldsymbol{\beta}-\frac{r^{2}}{p} \operatorname{Tr}(\Pi)\right\} \xrightarrow{d} N\left(0, d^{2}=d_{1}^{2}+d_{2}^{2}\right)
$$

where

$$
\omega=\lim _{p \rightarrow \infty} \frac{1}{p} \sum_{i=1}^{p} \Pi_{i i}^{2}, \quad \theta=\lim _{p \rightarrow \infty} \frac{1}{p} \operatorname{Tr}\left(\Pi^{2}\right)=1-\frac{1}{c}
$$

and

$$
\begin{aligned}
d_{1}^{2} & =\omega\left\{\mathbb{E}\left(x_{\ell 1}^{2} x_{\ell 1}^{2}\right)-\gamma_{\ell \ell}^{2}\right\}=\omega\left(\frac{p^{2}}{r^{4}} \mathbb{E}\left(\beta_{i}^{4}\right)-1\right) r^{4} \\
d_{2}^{2} & =(\theta-\omega)\left(\gamma_{\ell \ell}^{2}+\gamma_{\ell \ell}^{2}\right)=2(\theta-\omega) r^{4}
\end{aligned}
$$

Since in the proof of Theorem 4.3, we have already shown that

$$
\frac{r^{2}}{p} \operatorname{Tr}(\Pi)=r^{2}\left(1-\frac{n}{p}\right)
$$

In particular, if $\boldsymbol{\beta}$ follows multivariate Gaussian distribution, i.e. $\boldsymbol{\beta} \sim N_{p}\left(0, \frac{r^{2}}{p} \boldsymbol{I}_{p}\right)$, then as $p \rightarrow \infty$,

$$
\sqrt{p}\left\{B_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-r^{2}\left(1-\frac{n}{p}\right)\right\} \xrightarrow{d} N\left(0,2\left(1-\frac{1}{c}\right) r^{4}\right) .
$$

Moreover, $V_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$, we have already proved in Theorem 4.3 that

$$
\begin{aligned}
& p\left(V_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\frac{\sigma^{2}}{c_{n}-1}\right) \\
\xrightarrow{d} & N\left(\frac{c \sigma^{2}}{(1-c)^{2}}+\frac{\sigma^{2}\left(\nu_{4}-3\right)}{c-1}, \frac{2 c^{3} \sigma^{4}}{(1-c)^{4}}+\frac{c \sigma^{4}\left(\nu_{4}-3\right)}{(c-1)^{2}}\right) .
\end{aligned}
$$

Note that $\operatorname{Cov}\left(B_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta}), V_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})\right)=0$. According to the consistency rate of $B_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ and $V_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$, we know that the bias $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ is the leading term of $R_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$. This implies that
$\sqrt{p}\left\{R_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-r^{2}\left(1-\frac{1}{c_{n}}\right)-\frac{\sigma^{2}}{c_{n}-1}\right\} \xrightarrow{d} N\left(0, \sigma_{c, 3}^{2}\right)$,
where $\sigma_{c, 3}^{2}=2 r^{4}(1-1 / c)$. A practical version of this CLT is given by
$\sqrt{p}\left\{R_{\mathbf{X}, \boldsymbol{\beta}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-r^{2}\left(1-\frac{1}{c_{n}}\right)-\frac{\sigma^{2}}{c_{n}-1}\right\} \xrightarrow{d} N\left(\tilde{\mu}_{c, 3}, \tilde{\sigma}_{c, 3}^{2}\right)$,
where

$$
\begin{aligned}
\tilde{\mu}_{c, 3} & =\frac{1}{\sqrt{p}}\left\{\frac{c \sigma^{2}}{(1-c)^{2}}+\frac{\sigma^{2}\left(\nu_{4}-3\right)}{c-1}\right\} \\
\tilde{\sigma}_{c, 3}^{2} & =2\left(1-\frac{1}{c}\right) r^{4}+\frac{1}{p}\left\{\frac{2 c^{3} \sigma^{4}}{(1-c)^{4}}+\frac{c \sigma^{4}\left(\nu_{4}-3\right)}{(c-1)^{2}}\right\} .
\end{aligned}
$$

5. More experiments

5.1. More results of Example 1

In this example, we consider the anisotropic case that the covariance matrix $\boldsymbol{\Sigma}$ is not an identity matrix. We checks Theorem 4.1 and define a statistic

$$
T_{n}=\frac{p}{\sigma_{c}}\left(R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\sigma^{2} \frac{c_{n}}{1-c_{n}}\right)-\frac{\mu_{c}}{\sigma_{c}}
$$

According to Theorem 4.1, T_{n} weakly converges to the standard normal distribution as $n, p \rightarrow \infty$. In this example, we take $c=1 / 2$ and $p=50,100,200$. To make sure the assumption (A) holds, the generative distribution $P_{\mathbf{x}}$ is taken to be the standard normal distribution, the centered gamma with shape 4.0 and scale 0.5 , and the normalized Student-t distribution with 6.0 degree of freedom. The covariance matrix Σ is taken to be

$$
\boldsymbol{\Sigma}=0.7 \boldsymbol{I}_{p}+0.3 \mathbf{1}_{p} \mathbf{1}_{p}^{\mathrm{T}}
$$

The finite-sample distribution of T_{n} is estimated by the histogram of T_{n} under 1000 repetitions. The results are presented in Figure 1. One can find that the finite-sample distribution of T_{n} tends to the standard normal distribution as $n, p \rightarrow+\infty$. When $\alpha=0.05$, the empirical cover rates of the 95%-confidence interval are reported in Figure 2.

Figure 1. The histogram of T_{n}. The solid line is the density of the standard normal distribution.

Figure 2. The cover rate of the confidence interval as p creases. The confidence level is 95%.

5.2. Example 3

This example checks Theorem 4.3. To proceed further, we denote two statistics:

$$
\begin{aligned}
T_{n, 2} & =\frac{\sqrt{p}}{\sigma_{c, 1}}\left\{R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\left(1-\frac{1}{c_{n}}\right) r^{2}-\frac{\sigma^{2}}{c_{n}-1}\right\}-\frac{\mu_{c, 1}}{\sigma_{c, 1}} \\
T_{n, 3} & =\frac{\sqrt{p}}{\tilde{\sigma}_{c, 1}}\left\{R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})-\left(1-\frac{1}{c_{n}}\right) r^{2}-\frac{\sigma^{2}}{c_{n}-1}\right\}-\frac{\tilde{\mu}_{c, 1}}{\tilde{\sigma}_{c, 1}}
\end{aligned}
$$

According to the central limit theorem (8) and its practical version, both $T_{n, 2}$ and $T_{n, 3}$ weakly converge to the standard normal distribution as $n, p \rightarrow+\infty$. We take $c=2$ and $p=$ $100,200,400$. The finite-sample distributions of $T_{n, 2}$ and $T_{n, 3}$ are estimated by the histogram of $T_{n, 2}$ and $T_{n, 3}$ under 1000 repetitions. The results are presented at Figure 3 and Figure 4. One can see that the finite-sample distributions of $T_{n, 2}$ and $T_{n, 3}$ are close to the standard normal distribution, and the finite-sample performance of $T_{n, 3}$ is better than that of $T_{n, 2}$. When $\alpha=0.05$, the empirical cover rates of the 95%-confidence interval (9) are reported in Figure 5.

Figure 3. The histogram of $T_{n, 2}$. The solid line is the density of the standard normal distribution.

5.3. An anisotropic example for Remark 4.2

In the over-parameterized case, the bias term $B_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})=$ $\boldsymbol{\beta}^{\mathrm{T}} \Pi \boldsymbol{\Sigma} \Pi \boldsymbol{\beta}$ is non-zero while the variance term $V_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ remains the same as under-parameterized case. Therefore in this section, we conduct a small simulation to examine the fluctuation of the bias $B_{\mathbf{X}}$ for both isotropic and anisotropic $\boldsymbol{\Sigma}$ in the over-parameterized case with non-random $\boldsymbol{\beta}$ satisfying Assumption (C1). In particular, in the following we set $r=1$.

We consider both localized and delocalized $\boldsymbol{\beta}$ such that

1. Localized case: $\boldsymbol{\beta}_{1}=(1,0, \cdots, 0)$;

Figure 4. The histogram of $T_{n, 3}$. The solid line is the density of the standard normal distribution.

Figure 5. The coverage of confidence interval (9) as p increases. The confidence level is 95%.

$$
\text { 2. Delocalized case: } \boldsymbol{\beta}_{2}=\frac{1}{\sqrt{p}}(1, \cdots, 1) \text {; }
$$

and both the isotropic and anisotropic $\boldsymbol{\Sigma}$
3. Identity case: $\boldsymbol{\Sigma}_{1}=\boldsymbol{I}_{p}$;
4. Compound symmetric case: $\boldsymbol{\Sigma}_{2}=0.5 \boldsymbol{I}_{p}+0.5 \mathbf{1}_{p} \mathbf{1}_{p}^{\mathrm{T}}$.

Then we fix $p / n=2$ and let p vary from 10 to 300, we present in Figure 6 the empirical variance of $\sqrt{p} * B_{\mathbf{X}}$ and $p * B_{\mathbf{X}}$ under various combinations of $\boldsymbol{\Sigma}$ and $\boldsymbol{\beta}$ with 1000 replications.

From the plot on the top left panel in Figure 6, we can see that the variance of $\sqrt{p} * B_{\mathbf{X}}$ for both $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ remain constant as p grows, which indicates that the convergence rate of $B_{\mathbf{X}}$ is $1 / \sqrt{p}$ under the isotropic case regardless of localized or delocalized $\boldsymbol{\beta}$. As for the anisotropic case on the top right corner, the variance of $\sqrt{p} * B_{\mathbf{X}}$ stabilizes for $\boldsymbol{\beta}_{1}$, while decays for $\boldsymbol{\beta}_{2}$, which indicates that convergence rate of $B_{\mathbf{X}}$ under $\left(\boldsymbol{\Sigma}_{2}, \boldsymbol{\beta}_{2}\right)$ and $\left(\boldsymbol{\Sigma}_{2}, \boldsymbol{\beta}_{1}\right)$ are different.

This simulation result further confirms our conjecture that in the over-parameterized case, there is no universal CLT for

Figure 6. The upper panels are the empirical variances of $\sqrt{p} * B_{\mathbf{X}}$, the lower panels are for $p * B_{\mathbf{X}}$.
the prediction risk $R_{\mathbf{X}}(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ under the anisotropic setting for non-random $\boldsymbol{\beta}$.

References

Bai, Z. and Silverstein, J. CLT for linear spectral statistics of large-dimensional sample covariance matrices. The Annals of Probability, 32:553-605, 2004.

Bai, Z. and Yao, J. Central limit theorems for eigenvalues in a spiked population model. Annales de l'IHP Probabilités et statistiques, 44(3):447-474, 2008.

Bai, Z. and Yin, Y. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. In Advances In Statistics, pp. 108-127. World Scientific, 2008.

Bai, Z., Miao, B., and Pan, G. On asymptotics of eigenvectors of large sample covariance matrix. The Annals of Probability, 35(4):1532-1572, 2007.

Pan, G. and Zhou, W. Central limit theorem for signal-tointerference ratio of reduced rank linear receiver. The Annals of Applied Probability, 18(3):1232-1270, 2008.

Yin, Y. Limiting spectral distribution for a class of random matrices. Journal of multivariate analysis, 20(1):50-68, 1986.

Zheng, S., Bai, Z., and Yao, J. Substitution principle for clt of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing. The Annals of Statistics, 43(2):546-591, 2015.

[^0]: ${ }^{1}$ First author, Department of Statistics and Data Science, Southern University of Science and Technology, China ${ }^{2}$ Noah Ark Lab, Huawei Technology, Hong Kong ${ }^{3}$ Corresponding author, School of Data Science, Fudan University, China. Correspondence to: Qinwen Wang wqw@fudan.edu.cn.

 Proceedings of the $38^{\text {th }}$ International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

