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A. An Example Illustrating the Necessity of both α1, α2 in Characterizing the Relation Between
Adversarial Transferability and Knowledge Transferability

α1 and α2 (Definition 1&2) represent complementary aspects of the adversarial transferability: α1 can be understood as how
often the adversarial attack transfers, while α2 encodes directional information of the output deviation caused by adversarial
attacks. Recall that α1, α2 ∈ [0, 1] (higher values indicate better adversarial transferability). As we show in our theoretical
results reveal that high α1 alone is not enough, i.e., both the proposed metrics are necessary to characterize adversarial
transferability and the relation between adversarial and knowledge transferabilities.

We provide a one-dimensional example showing that large α1 only is not enough to indicate high knowledge transferability.
Suppose the ground truth target function fT (x) = x2, and the source function fS(x) = sgn(x) · x2 where sgn(·) denotes
the sign function. Let the adversarial loss be the deviation in function output, and the data distribution be the uniform
distribution on [−1, 1]. As we can see, the direction that makes either fT or fS deviates the most is always the same, i.e., in
this example even with α1 = 1 achieves its maximum and adversarial attacks always transfer, regardless of the choice of
f1 → f2 or f2 → f1. However, there does not exist an affine function g (i.e., fine-tuning) making g ◦ fS close to fT on
[−1, 1]. Indeed, one can verify that α2 = 0 in this case (either f1 → f2 or f2 → f1), which contributes to the low knowledge
transferability. However, if we move the data distribution to [0, 2], we can have α1 = α2 = 1 (either f1 → f2 or f2 → f1)
indicating high adversarial transferability, and indeed it achieves fS = fT showing perfect knowledge transferability.
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B. Detailed Discussion About the Direction of Adversarial Transfer From fS → fT in
Subsection 3.3

In this section, we present a detailed discussion, in addition to subsection 3.3, about the connection between function
matching distance and knowledge transfer distance when the direction of adversarial transfer is from fS → fT .

Recall that, to complete the story, it remains to connect the function matching distance to knowledge transferability. As the
adversarial transfer is symmetric (i.e., either from fS → fT or fT → fS), we are able to use the placeholders ?, � ∈ {S, T}
all the way through. However, as the knowledge transfer is asymmetric (i.e., fS → y to the target ground truth), we need
to instantiate the direction of adversarial transfer to further our discussion. We have discussed the direction of adversarial
transfer from fT → fS in the main paper, where we show that the function matching distance of this direction, i.e.,

min
g∈G
‖fT − g ◦ fS‖D,HT

, (16)

can both upper and lower bound the knowledge transfer distance, i.e.,

min
g∈G
‖y − g ◦ fS‖D,HT

. (17)

The direction of adversarial transfer from fS → fT corresponds to (?, �) = (S, T ). Accordingly, the function matching
distance (equation 13) becomes

min
g∈G
‖fS − g ◦ fT ‖D,HS

. (18)

Since the affine transformation g acts on the target reference model, it can not be directly viewed as a surrogate transfer loss.
However, interesting interpretations can be found in this direction, depending on the output dimension of fS : Rn → Rm
and fT : Rn → Rd.

In this subsection in the appendix we provide detailed discussion on the connection between the function matching distance
of the direction of adversarial transfer from fS → fT (equation 18) and the knowledge transfer distance (equation 17).
We build this connection by providing the relationships between the two directions of function matching distance, i.e.,
equation 16 and equation 18. That is being said, since we know equation 17 and equation 16 are tied together, we only need
to provide relationships between equation 16 and equation 18 to show the connection between equation 18 and equation 17.

Suppose g : Rd → Rm is full rank, and loosely speaking we can derive the following intuitions.

• If d < m, then g is injective and there exists g−1 : Rm → Rd such that g−1 ◦ g is the identity function. That is, if g
can map fT to closely track fS , then reversely g−1 can map fS to fT , showing equation 18 upper bounds equation 16
in some sense.

• If d > m, then g is surjective. By symmetry, equation 16 upper bounds equation 18 in some sense.

• It is when m = d that equation 16 and equation 18 coincide.

Formally, we have the following theorem.
Theorem B.1. Denote g̃T,S : Rm → Rd as the optimal solution of equation 16, and g̃S,T : Rd → Rm as the optimal
solution of equation 18. Suppose the two optimal affine maps g̃T,S , g̃S,T are both full-rank. For v ∈ Rm, denote the matrix
representation of g̃T,S as g̃T,S(v) = W̃T,Sv + b̃T,S . Similarly, for w ∈ Rd, denote the matrix representation of g̃S,T as
g̃S,T (w) = W̃S,Tw + b̃S,T . We have the following statements.

If d < m, then g̃S,T is injective, and we have:

‖fT − g̃T,S ◦ fS‖D,HT
≤
√
‖(W̃>

S,TW̃S,T )−1‖F · ‖HT ‖F · ‖fS − g̃S,T ◦ fT ‖D. (19)

If d > m, then g̃T,S is injective, and we have:

‖fS − g̃S,T ◦ fT ‖D,HS
≤
√
‖(W̃>

T,SW̃T,S)−1‖F · ‖HS‖F · ‖fT − g̃T,S ◦ fS‖D. (20)

If d = m, then both g̃S,T and g̃T,S are bijective, and we have both (19) and (20) stand.
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That is, when the direction of adversarial transfer is from fS → fT , the indicating relation between the function matching
distance if this direction (equation 18) and knowledge transferability would possibly be unidirectional, depending on the
dimensions.

C. Proofs in Section 2
In this section, we present proofs for Proposition 2.1 and Proposition 2.2.

C.1. Proof of Proposition 2.1

Proposition C.1 (Proposition 2.1 Restated). The αf1→f22 can be reformulated as

(αf1→f22 )2 = Ex1,x2
[θf1→f1(x1,x2)θf1→f2(x1,x2)] ,

where x1,x2
i.i.d.∼ D, and

θf1→f1(x1,x2) = 〈 ̂∆f1→f1(x1), ̂∆f1→f1(x2)〉
θf1→f2(x1,x2) = 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉

Proof. Recall that we want to show

∥∥Ex[ ̂∆f1→f1(x) ̂∆f1→f2(x)
>

]
∥∥2
F

= (αf1→f22 )2 = Ex1,x2
[θf1→f1(x1,x2)θf1→f2(x1,x2)] ,

and the proof of this proposition is done by applying some trace tricks, as shown below.

θf1→f1(x1,x2)θf1→f2(x1,x2) = 〈 ̂∆f1→f1(x1), ̂∆f1→f1(x2)〉 · 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉
= 〈 ̂∆f1→f1(x2), ̂∆f1→f1(x1)〉 · 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉

= ̂∆f1→f1(x2)
> ̂∆f1→f1(x1) ̂∆f1→f2(x1)

> ̂∆f1→f2(x2)

= tr

(
̂∆f1→f1(x2)

> ̂∆f1→f1(x1) ̂∆f1→f2(x1)
> ̂∆f1→f2(x2)

)
= tr

(
̂∆f1→f1(x1) ̂∆f1→f2(x1)

> ̂∆f1→f2(x2) ̂∆f1→f1(x2)
>)

(21)

Plugging equation 21 into equation 25, we have

(αf1→f22 )2 = Ex1,x2

[
tr

(
̂∆f1→f1(x1) ̂∆f1→f2(x1)

> ̂∆f1→f2(x2) ̂∆f1→f1(x2)
>)]

= tr

(
Ex1,x2

[
̂∆f1→f1(x1) ̂∆f1→f2(x1)

> ̂∆f1→f2(x2) ̂∆f1→f1(x2)
>])

= tr

(
Ex1

[
̂∆f1→f1(x1) ̂∆f1→f2(x1)

>]
· Ex2

[
̂∆f1→f2(x2) ̂∆f1→f1(x2)

>])
, (22)

where the last equality is because that x1,x2 are i.i.d. samples from the same distribution.

Therefore, we can re-write the x1,x2 to be the same x ∼ D and realize that the two matrices are in fact the same one.

(22) = tr

(
Ex
[

̂∆f1→f1(x) ̂∆f1→f2(x)
>]
· Ex

[
̂∆f1→f2(x) ̂∆f1→f1(x)

>])
=
∥∥Ex[ ̂∆f1→f1(x) ̂∆f1→f2(x)

>
]
∥∥2
F
.
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C.2. Proof of Proposition 2.2

Proposition C.2 (Proposition 2.2 Restated). The adversarial transferability metrics αf1→f21 , αf1→f22 and (α1 ∗ α2)f1→f2

are in [0, 1].

Proof. Let us begin with

αf1→f21 (x) =
`adv(f2(x), f2(x+ δf1,ε(x)))

`adv(f2(x), f2(x+ δf2,ε(x)))
.

Recall that `adv(·) ≥ 0, and the definition of adversarial attack:

δf,ε(x) = arg max
‖δ‖≤ε

`adv(f(x), f(x+ δ)),

and we can see that by definition,

0 ≤ `adv(f2(x), f2(x+ δf1,ε(x))) ≤ `adv(f2(x), f2(x+ δf2,ε(x))).

Therefore,

0 ≤ `adv(f2(x), f2(x+ δf1,ε(x)))

`adv(f2(x), f2(x+ δf2,ε(x)))
≤ 1,

where we define 0/0 = 0 if necessary.

Hence, αf1→f21 = Ex∼D[αf1→f21 (x)] is also in [0, 1].

Next, we use Proposition 2.1 to prove the same property for αf1→f22 . Note that

(αf1→f22 )2 = Ex1,x2

[
〈 ̂∆f1→f1(x1), ̂∆f1→f1(x2)〉 · 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉

]
(23)

is the expectation of the product of two inner products, where each inner product is of two unit-length vector. That is being
said, 〈 ̂∆f1→f1(x1), ̂∆f1→f1(x2)〉 ∈ [−1, 1] and 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉 ∈ [−1, 1]. Therefore, we know that

Ex1,x2

[
〈 ̂∆f1→f1(x1), ̂∆f1→f1(x2)〉 · 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉

]
∈ [−1, 1].

In addition, we know from equation 23 that it is non-negative, and hence

(αf1→f22 )2 ∈ [0, 1].

As αf1→f22 itself is also non-negative by definition, we can see that αf1→f22 ∈ [0, 1].

Finally, we move to prove (α1 ∗ α2)f1→f2 ∈ [0, 1]. Recall that

(α1 ∗ α2)f1→f2 =
∥∥Ex∼D[αf1→f21 (x) ̂∆f1→f1(x) ̂∆f1→f2(x)

>
]
∥∥
F
.

If we see αf1→f21 (x) ̂∆f1→f1(x) as a whole, we can show exactly the same as the Proposition 2.1 that

((α1 ∗ α2)f1→f2)2 = Ex1,x2
[θf1→f1(x1,x2)θf1→f2(x1,x2)] , (24)

where

θf1→f1(x1,x2) = 〈αf1→f21 (x1) ̂∆f1→f1(x1), αf1→f21 (x2) ̂∆f1→f1(x2)〉
θf1→f2(x1,x2) = 〈 ̂∆f1→f2(x1), ̂∆f1→f2(x2)〉.

Similarly, as αf1→f21 (x) ∈ [0, 1], we can see that θf1→f1(x1,x2)θf1→f2(x1,x2) ∈ [−1, 1], and hence

Ex1,x2 [θf1→f1(x1,x2)θf1→f2(x1,x2)] ∈ [−1, 1].

Noting that equation 24 is non-negative, we conclude that

((α1 ∗ α2)f1→f2)2 ∈ [0, 1].

Since (α1 ∗ α2)f1→f2 itself is non-negative as well, we can see that (α1 ∗ α2)f1→f2 ∈ [0, 1].

Therefore, the three adversarial transferability metrics are all within [0, 1].



Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability

D. Proofs in Section 3
In this section, we prove the two theorems and the two propositions presented in section 3, which are our main theories.

D.1. Proof of Theorem 3.1

We introduce two lemmas before proving Theorem 3.1.

Lemma D.1. The square of the gradient matching distance is

min
g∈G

‖∇f>? −∇(g ◦ f�)>‖2D,H?
= ‖∇f>? ‖2D,H?

− 〈P>H?P ,J
†〉,

where g ∈ G are affine transformations, and

P = Ex∼D
[
∇f?(x)>∇f�(x)

]
, J = Ex∼D

[
∇f�(x)>∇f�(x)

]
.

Proof.

min
g∈G

‖∇f>? −∇(g ◦ f�)>‖2D,H?
= min

W
‖∇f>? −W∇f>� ‖2D,H?

= min
W

Ex∈D‖∇f?(x)> −W∇f�(x)>‖2H?
, (25)

whereW is a matrix.

We can see that (25) is a convex program, where the optimal solution exists in a closed-form form, as shown in the following.
Denote l(W ) = ‖∇f?(x)> −W∇f�(x)>‖2H?

, we have

l(W ) = Ex∼D
[
‖∇f?(x)>‖2H?

+ ‖W∇f�(x)>‖2H?
− 2〈∇f?(x)>,W∇f�(x)>〉H?

]
= Ex∼D

[
‖∇f?(x)>‖2H?

+ tr
(
∇f�(x)W>H?W∇f�(x)>

)
− 2 tr

(
∇f?(x)H?W∇f�(x)>

)]
= Ex∼D

[
‖∇f?(x)>‖2H?

+ tr
(
H?W∇f�(x)>∇f�(x)W>)− 2 tr

(
H?W∇f�(x)>∇f?(x)

)]
.

Taking the derivative of l(·) w.r.t. W , we have

∂l

∂W
= Ex∼D

[
2H?

(
W∇f�(x)> −∇f?(x)>

)
∇f�(x)

]
= 2H?Ex∼D

[
W∇f�(x)>∇f�(x)−∇f?(x)>∇f�(x)

]
= 2H?

(
WEx∼D

[
∇f�(x)>∇f�(x)

]
− Ex∼D

[
∇f?(x)>∇f�(x)

])
. (26)

Since l(·) is convex, if there exists a W̃ such that ∂l
∂W

∣∣
W=W̃

= 0 then we know that W̃ is an optimal solution. Luckily,
we can find such solution easily by using pseudo inverse, i.e.,

W̃ = Ex∼D
[
∇f?(x)>∇f�(x)

] (
Ex∼D

[
∇f�(x)>∇f�(x)

])†
= PJ†, (27)

where we denote P = Ex∼D
[
∇f?(x)>∇f�(x)

]
and J = Ex∼D

[
∇f�(x)>∇f�(x)

]
.

We can verify that such W̃ indeed make the partial derivative (equation 26) zero. In equation 26, we have

W̃Ex∼D
[
∇f�(x)>∇f�(x)

]
− Ex∼D

[
∇f?(x)>∇f�(x)

]
= PJ†J − P . (28)

To continue, we can see from Lemma E.2 that ker(J) ⊆ ker(P ) which means rowsp(P ) ⊆ rowsp(J), where ker(·) denotes
the kernel of a matrix, and rowsp(·) denotes the row space of a matrix. Therefore, by definition of the pseudo-inverse, we
can see that PJ†J = P , i.e., (28) = 0, and hence W̃ is indeed the optimal solution.
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Plugging (27) into (25), we have the optimal value as

(25) = l(W̃ )

= Ex∼D
[
‖∇f?(x)>‖2H?

+ tr
(
H?W̃∇f�(x)>∇f�(x)W̃>

)
− 2 tr

(
H?W̃∇f�(x)>∇f?(x)

)]
= ‖∇f>? ‖2D,H?

+ tr
(
H?W̃JW̃> − 2H?W̃P>

)
= ‖∇f>? ‖2D,H?

+ tr
(
H?PJ

†JJ†P> − 2H?PJ
†P>

)
= ‖∇f>? ‖2D,H?

− tr
(
H?PJ

†P>
)

= ‖∇f>? ‖2D,H?
− 〈P>H?P ,J

†〉.

Next, we present another lemma to analyze the term P>H?P .

Lemma D.2. In this lemma, we break down the matrix representation of P>H?P into pieces relating to the output
deviation caused by the generalized adversarial attacks (defined in equation 10)

P>H?P = E
x1,x2

i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)

)
·
(

∆
(i)
f?→f�(x1)∆

(j)
f?→f�(x2)>

)
.

Proof. Denote a symmetric decomposition of the positive semi-definitive matrixH? as

H? = T>T ,

where T is of the same dimension ofH?. We note that the choice of decomposition does not matter.

Then, plugging in the definition of P , we can see that

P>H?P = Ex∼D
[
∇f�(x)>∇f?(x)

]
· T>T · Ex∼D

[
∇f?(x)>∇f�(x)

]
= Ex∼D

[
∇f�(x)>∇f?(x)T>

]
· Ex∼D

[
T∇f?(x)>∇f�(x)

]
. (29)

A key observation to connect the above equation to the adversarial attack (equation 5) is that,

δf?,ε(x) = arg max
‖δ‖2≤ε

‖∇f?(x)>δ‖H?

= arg max
‖δ‖2≤ε

‖∇f?(x)>δ‖2H?

= arg max
‖δ‖2≤ε

δ>∇f?(x)H?∇f?(x)>δ

= arg max
‖δ‖2≤ε

‖T∇f?(x)>δ‖22.

That is being said, the adversarial attack is the right singular vector corresponding to the largest singular value (in absolute
value) of T∇f?(x)>.

Similarly, we can see the singular values σf?,H?(x) ∈ Rn, defined as the descending (in absolute value) singular values of
the Jacobian ∇f?(x)> ∈ R·×n in theH? inner product space (equation 8), are the singular values of T∇f?(x)>.

With this perspective, if we write down the singular value decomposition of T∇f?(x)>, i.e.,

T∇f?(x)> = U?(x)Σ?(x)V >? (x),

we can observe that:

1. Σ?(x) is diagonalized singular values σf?,H?
(x);

2. The ith column of V?(x) is the ith generalized attack δ(i)f? (x) (defined in equation 9);
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3. The ith column of U?(x)Σ(x) is T∆
(i)
f?→f?(x) where ∆

(i)
f?→f?(x) is the output deviation (defined in equation 10);

4. The ith column of ∇f�(x)>V?(x) is the output deviation ∆
(i)
f?→f�(x) (defined in equation 10).

With the four key observations, we can break down the Jacobian matrices as

∇f�(x)>∇f?(x)T> =
(

∆
(1)
f?→f�(x) . . .∆

(n)
f?→f�(x)

)
∆

(1)
f?→f?(x)>T>

...
∆

(n)
f?→f?(x)>T>


=

n∑
i=1

∆
(i)
f?→f�(x)∆

(i)
f?→f?(x)>T>.

Therefore, plugging it into the equation 29, we have

(29) = Ex∼D

[
n∑
i=1

∆
(i)
f?→f�(x)∆

(i)
f?→f?(x)>T>

]
· Ex∼D

[
n∑
i=1

T∆
(i)
f?→f?(x)∆

(i)
f?→f�(x)>

]

= E
x1,x2

i.i.d.∼D

 n∑
i=1

(
∆

(i)
f?→f�(x1)∆

(i)
f?→f?(x1)>T>

) n∑
j=1

(
T∆

(j)
f?→f?(x2)∆

(j)
f?→f�(x2)>

)
= E

x1,x2
i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f�(x1)∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)∆

(j)
f?→f�(x2)>

)
= E

x1,x2
i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)

)
·
(

∆
(i)
f?→f�(x1)∆

(j)
f?→f�(x2)>

)
,

where the last equality is due to that ∆
(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2) is a scalar value.

Equipped with Lemma D.1 and Lemma D.2, we are able to prove the Theorem 3.1.

Theorem D.1 (Theorem 3.1 Restated). Given the target and source models f?, f�, where (?, �) ∈ {(S, T ), (T, S)}, the
gradient matching distance (equation 7) can be written as

min
g∈G

‖∇f>? −∇(g ◦ f�)>‖D,H? =

(
1− E[v?,�(x1)>A?,�

2 (x1,x2)v?,�(x2)]

‖∇f>? ‖2D,H?
· ‖J†‖−1H�

) 1
2

‖∇f>? ‖D,H? ,

where the expectation is taken over x1,x2
i.i.d.∼ D, and

v?,�(x) = σ
(1)
f�,H�

(x)σf?,H?
(x)�A?,�

1 (x)

J = Ex∼D[∇f�(x)>∇f�(x)].

Moreover,A?,�
2 (x1,x2) is a matrix, and its element in the ith row and jth column is

A?,�
2 (x1,x2)(i,j) = 〈 ̂

∆
(i)
f?→f?(x1)

∣∣
H?
,

̂
∆

(j)
f?→f?(x2)

∣∣
H?
〉 · 〈 ̂

∆
(i)
f?→f�(x1)

∣∣
H�
,

̂
∆

(j)
f?→f�(x2)

∣∣
H�
〉
Ĵ†|H�

.
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Proof. Combining the result from Lemma D.1 and Lemma D.2, and applying the linearity of the inner product, we have

min
g∈G

‖∇f>? −∇(g ◦ f�)>‖2D,H?

=‖∇f>? ‖2D,H?
−
〈
E
x1,x2

i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)

)
·
(

∆
(i)
f?→f�(x1)∆

(j)
f?→f�(x2)>

)
,J†

〉

=‖∇f>? ‖2D,H?
− E

x1,x2
i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)

)
·
〈

∆
(i)
f?→f�(x1)∆

(j)
f?→f�(x2)>,J†

〉

=‖∇f>? ‖2D,H?
− E

x1,x2
i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)

)
· tr
(

∆
(i)
f?→f�(x1)∆

(j)
f?→f�(x2)>J†

)
=‖∇f>? ‖2D,H?

− E
x1,x2

i.i.d.∼D

n∑
i,j=1

(
∆

(i)
f?→f?(x1)>H?∆

(j)
f?→f?(x2)

)
︸ ︷︷ ︸

X1

·
(

∆
(i)
f?→f�(x1)>J†∆(j)

f?→f�(x2)
)

︸ ︷︷ ︸
X2

. (30)

As the generalized first adversarial transferabilityA1 is about the magnitude of the output deviation (defined in equation 11),
and we can separate theA1 out from the above equation. Then, what left should be about the directions about the output
deviation, which we will put into the matrixA2, i.e., the generalized second adversarial transferability.

Recall that the generalized the first adversarial transferability is a n-dimensional vectorA?,�
1 (x) including the adversarial

losses of all of the generalized adversarial attacks, where the ith element in the vector is

A?,�
1 (x)(i) =

‖∆(i)
f?→f�(x)‖H�
‖∇f�(x)‖H�

.

Moreover, to connect the magnitude of the output deviation to the generalized singular values (equation 9), we have

‖∆(i)
f?→f?(x)‖H?

= ‖∇f?(x)>δ(i)f? (x)‖H∗ = σ
(i)
f?,H?

(x),

and similarly,

‖∇f�(x)‖H� = ‖∇f�(x)δ
(1)
f�

(x)‖H� = σ
(1)
f�,H�

(x).

Therefore, we can finally rewrite the X1, X2 in equation 30 as

X1 = σ
(i)
f?,H?

(x1)σ
(j)
f?,H?

(x2) · 〈 ̂
∆

(i)
f?→f?(x1)

∣∣
H?
,

̂
∆

(j)
f?→f?(x2)

∣∣
H?
〉

X2 = A?,�
1 (x1)(i)A?,�

1 (x2)(j) · 〈 ̂
∆

(i)
f?→f�(x1)

∣∣
H�
,

̂
∆

(j)
f?→f�(x2)

∣∣
H�
〉
Ĵ†|H�

· σ(1)
f�,H�

(x1)σ
(1)
f�,H�

(x2)‖J†‖H� .

Recall the (i, j)th entry of the matrixA2 is

A?,�
2 (x1,x2)(i,j) = 〈 ̂

∆
(i)
f?→f?(x1)

∣∣
H?
,

̂
∆

(j)
f?→f?(x2)

∣∣
H?
〉 · 〈 ̂

∆
(i)
f?→f�(x1)

∣∣
H�
,

̂
∆

(j)
f?→f�(x2)

∣∣
H�
〉
Ĵ†|H�

.

We can write

X1X2 = σ
(1)
f�,H�

(x1)σ
(i)
f?,H?

(x1)A?,�
1 (x1)(i) ·A?,�

2 (x1,x2)(i,j) · σ(1)
f�,H�

(x2)σ
(j)
f?,H?

(x2)A?,�
1 (x2)(j)‖J†‖H� .

Plugging the above into equation 30, and rearranging the double summation, we have

(30) = ‖∇f>? ‖2D,H?

− E
x1,x2

i.i.d.∼D

[
(σ

(1)
f�,H�

(x1)σf?,H?
(x1)�A?,�

1 (x1))>A?,�
2 (x1,x2)(σ

(1)
f�,H�

(x2)σf?,H?
(x2)�A?,�

1 (x2))
]
‖J†‖H� .

(31)

Denoting

v?,�(x) = σ
(1)
f�,H�

(x)σf?,H?
(x)�A?,�

1 (x),

and rearranging equation 31 give us the Theorem 3.1.
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D.2. Proof of Proposition 3.1

From the proof of Theorem 3.1 in the above subsection, we can see why this proposition holds.

Proposition D.1 (Proposition 3.1 Restated). In Theorem 3.1,

0 ≤ E[v?,�(x1)>A?,�
2 (x1,x2)v?,�(x2)]

‖∇f>? ‖2D,H?
· ‖J†‖−1H�

≤ 1.

Proof. Recall Theorem 3.1 states

min
g∈G

‖∇f>? −∇(g ◦ f�)>‖D,H?
=

(
1− E[v?,�(x1)>A?,�

2 (x1,x2)v?,�(x2)]

‖∇f>? ‖2D,H?
· ‖J†‖−1H�

) 1
2

‖∇f>? ‖D,H?
.

We can see that the ≤ 1 part stands, since ming∈G ‖∇f>? −∇(g ◦ f�)>‖D,H? is always non-negative.

The ≥ 0 part can be proved by observing(
1− E[v?,�(x1)>A?,�

2 (x1,x2)v?,�(x2)]

‖∇f>? ‖2D,H?
· ‖J†‖−1H�

) 1
2

‖∇f>? ‖D,H?
= min

g∈G
‖∇f>? −∇(g ◦ f�)>‖D,H?

≤ ‖∇f>? −∇(0 ◦ f�)>‖D,H?
= ‖∇f>? ‖D,H?

D.3. Proof of Theorem 3.2

We introduce two lemmas before proving Theorem 3.2.

Lemma D.3. Assume that function h(·) satisfies the β-smoothness under ‖ · ‖H?
norm (Assumption 1), and assume there is

a vector x0 in the same space as x ∼ D such that h(x0) = 0. Given τ > 0, there exists x′ as a function of x such that
‖x− x′‖2 ≤ τ , and

‖h(x)‖2H?
≤ 2

(
‖∇h(x′)>‖2H?

+ β2 (‖x− x0‖2 − τ)
2
+

)
· ‖x− x0‖22,

where the (·)+ is an operator defined by ∀x ∈ R: (x)+ = x if x ≥ 0 and (x)+ = 0 otherwise.

Proof. To begin with, we note that the assumption of h(x0) = 0 is only used for this lemma, and the assumption will be
naturally guaranteed when we invoke this lemma in the proof of Theorem 3.2.

With the smoothness assumption, we know that h(·) has continuous gradient. Thus, we have

‖h(x)‖H? = ‖h(x)− h(x0)‖H? = ‖∇h(x0 + ξ(x− x0))>(x− x0)‖H? ,

where the last equation is by mean value theorem and thus ξ ∈ (0, 1).

Then, noting that ‖ · ‖H?
and ‖ · ‖2 are compatible (Lemma E.1), we have

‖∇h(x0+ξ(x− x0))>(x− x0)‖H?
≤ ‖∇h(x0 + ξ(x− x0))>‖H?

· ‖(x− x0)‖2.

Now we discuss two cases to define a random variable x′ as a function of x.

If (1− ξ)‖x− x0‖2 ≤ τ , we define x′ as

x′ = x0 + ξ(x− x0),

and we can see that ‖x′ − x‖2 ≤ τ .
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Otherwise, i.e., (1− ξ)‖x− x0‖2 > τ , we apply triangle inequality to derive

‖∇h(x0+ξ(x− x0))>(x− x0)‖H?

= ‖∇h(x0 + ξ(x− x0))> −∇h(x− τ ̂(x− x0))> +∇h(x− τ ̂(x− x0))>‖H?

≤ ‖∇h(x0 + ξ(x− x0))> −∇h(x− τ ̂(x− x0))>‖H?︸ ︷︷ ︸
X

+‖∇h(x− τ ̂(x− x0))>‖H?
,

where we define

x′ = x− τ ̂(x− x0).

By definition, in this case ‖x′ − x‖2 ≤ τ as well. We then treat X: it can be bounded using β-smoothness, i.e.,

X ≤ β‖x0 + ξ(x− x0)− x+ τ ̂(x− x0))‖2
= β‖τ ̂(x− x0)− (1− ξ)(x− x0))‖2
= β

∣∣τ − (1− ξ) · ‖(x− x0)‖2
∣∣

= β ((1− ξ) · ‖(x− x0)‖2 − τ) ,

where the last step is because we are exactly considering the case of (1− ξ) · ‖(x− x0)‖2 > τ .

Therefore, combining the two cases together, we can write

‖∇h(x0 + ξ(x− x0))>‖H? ≤ β ((1− ξ) · ‖(x− x0)‖2 − τ)+ + ‖∇h(x′)>‖H? ,

where ‖x− x′‖ ≤ τ .

Combining the above, we have

‖h(x)‖H?
≤
(
‖∇h(x′)>‖H?

+ β (‖x− x0‖2 − τ)+
)
· ‖x− x0‖2.

Take the square on both sides, and apply the Cauchy-Schwarz inequality, we have the lemma proved.

‖h(x)‖2H?
≤
(
‖∇h(x′)>‖H? + β (‖x− x0‖2 − τ)+

)2 · ‖x− x0‖22
≤ 2

(
‖∇h(x′)>‖2H?

+ β2 (‖x− x0‖2 − τ)
2
+

)
· ‖x− x0‖22.

Lemma D.4. Assume that function h(·) satisfies the β-smoothness under ‖ · ‖H? norm (Assumption 1). Given τ > 0, there
exists x′i as a function of x for ∀i ∈ [n] such that ‖x− x′i‖2 ≤ τ , and

τ2 · ‖∇h(x)>‖2H?
≤ 3

(
n∑
i=1

‖h(x′i)‖2H?
+ n‖h(x)‖2H?

+ nτ4β2

)
.

Proof. Denote the dimension of x as n, and let U be an orthogonal matrix in Rn×n, where we denote its column vectors as
ui ∈ Rn for i ∈ [n]. Applying the mean value theorem, there exists ξi ∈ (0, 1) such that

h(x+ τui)− h(x) = ∇h(x+ τξiui)
>τui

= τ
(
∇h(x)>ui + (∇h(x+ τξiui)

> −∇h(x)>)ui
)
.

Rearranging the equality, we have

∇h(x)>ui =
1

τ
γi,
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where we denote

γi = h(x+ τui)− h(x)− τ(∇h(x+ τξiui)
> −∇h(x)>)ui.

Collecting each γi for i ∈ [n] into a matrix Γ = [γ1...γn], we can re-formulate the above equality as

τ∇h(x)>U = Γ

τ∇h(x)> = ΓU>,

where the last equality is because that U is orthogonal.

Taking the ‖ · ‖2H?
on both sides, with some linear algebra manipulation we can derive

τ2 · ‖∇h(x)>‖2H?
= ‖ΓU>‖2H?

= tr(UΓ>H?ΓU
>) = tr(Γ>H?Γ) = tr(H?ΓΓ>)

= tr(H?

n∑
i=1

γiγ
>
i ) =

n∑
i=1

tr(H?γiγ
>
i ) =

n∑
i=1

tr(γ>i H?γi)

=

n∑
i=1

‖γi‖2H?
. (32)

Taking ‖γi‖H?
to work on further, we can derive its upper bound as

‖γi‖H?
= ‖h(x+ τui)− h(x)− τ(∇h(x+ τξiui)

> −∇h(x)>)ui‖H?

≤ ‖h(x+ τui)‖H?
+ ‖h(x)‖H?

+ τ‖(∇h(x+ τξiui)
> −∇h(x)>)ui‖H?

≤ ‖h(x+ τui)‖H?
+ ‖h(x)‖H?

+ τ‖∇h(x+ τξiui)
> −∇h(x)>‖H?

≤ ‖h(x+ τui)‖H?
+ ‖h(x)‖H?

+ τ2βξi

≤ ‖h(x+ τui)‖H? + ‖h(x)‖H? + τ2β, (33)

where the first inequality is by triangle inequality, the second inequality is by Lemma E.1 and the fact that ‖ui‖2 = 1, the
third inequality is done by applying the β-smoothness assumption, and the last inequality is by the fact that ξi ∈ (0, 1) from
the mean value theorem.

Plugging the equation 33 into equation 32, we have

τ2 · ‖∇h(x)>‖2H?
≤

n∑
i=1

(
‖h(x+ τui)‖H?

+ ‖h(x)‖H?
+ τ2β

)2
≤

n∑
i=1

3
(
‖h(x+ τui)‖2H?

+ ‖h(x)‖2H?
+ τ4β2

)
= 3

n∑
i=1

‖h(x+ τui)‖2H?
+ 3n‖h(x)‖2H?

+ 3nτ4β2,

where the inequality is done Cauchy-Schwarz inequality.

Denoting x′i = x+ τui, we have the lemma proved.

Theorem D.2 (Theorem 3.2 Restated). Given a data distribution D and τ > 0, there exist distributions D1,D2 such that
the type-1 Wasserstein distance W1(D,D1) ≤ τ and W1(D,D2) ≤ τ satisfying

1
2B2 ‖h?,�‖2D,H?

≤ ‖∇h′>?,�‖2D1,H?
+ β2(B − τ)2+

1
3n‖∇h′>?,�‖2D,H?

≤ 2
τ2 ‖h?,�‖2D2,H?

+ β2τ2,

where n is the dimension of x ∼ D, and B = infx0∈Rn supx∈supp(D) ‖x− x0‖2 is the radius of the supp(D). The (·)+ is
an operator defined by ∀x ∈ R: (x)+ = x if x ≥ 0 and (x)+ = 0 otherwise.
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Proof. Let us begin with recalling the definition of h?,� and h′?,�.

The optimal affine transformation g ∈ G in the function matching distance (13) is g̃, and one of the optimal g ∈ G in the
gradient matching distance is (14) g̃′. Accordingly, we denote

h?,� := f? − g̃ ◦ f� and h′?,� := f? − g̃′ ◦ f�,

and we can see that the gradient matching distance and the function matching distance can be written as

(13) = ‖h?,�‖D,H?
and (14) = ‖∇h′?,�

>‖D,H?
. (34)

The first inequality. Then, we can prove the first inequality using Lemma D.3.

Let x0 ∈ Rn be a free variable, and then set b = h′?,�(x0). Noting that ‖h?,�‖2D,H?
by definition is the minimum of this

function distance, we have

‖h?,�‖2D,H?
≤ ‖h′?,� − b‖2D,H?

. (35)

Denoting h := h′?,� − b, we can see h(x0) = 0. Therefore, h can be used to invoke Lemma D.3. That is, there exists x′ as a
function of x such that ‖x− x′‖2 ≤ τ , and

‖h(x)‖2H?
≤ 2

(
‖∇h(x′)>‖2H?

+ β2 (‖x− x0‖2 − τ)
2
+

)
· ‖x− x0‖22,

Taking the expectation of x ∼ D of the both sides, and denote the induced distribution for x′ as D1, we have

Ex∼D‖h(x)‖2H?
≤ 2Ex∼D

(
‖∇h(x′)>‖2H?

+ β2 (‖x− x0‖2 − τ)
2
+

)
· ‖x− x0‖22.

Recall that x0 is a free variable, we can tighten the bound by

Ex∼D‖h(x)‖2H?
≤ inf
x0∈Rn

2Ex∼D
(
‖∇h(x′)>‖2H?

+ β2 (‖x− x0‖2 − τ)
2
+

)
· ‖x− x0‖22. (36)

Note that we can have tighter but similar results if we keep the inf x0 ∈ Rn. However, by plugging in the radius

B = inf
x0∈Rn

sup
x∈supp(D)

‖x− x0‖2

we can make the presentation much more simplified without losing its core messages.

That is,

(36) ≤ 2
(
Ex′∼D1

‖∇h(x′)>‖2H?
+ β2 (B − τ)

2
+

)
B2.

Combining the above inequality and equation 35, and noting that

Ex∼D‖h(x)‖2H?
= ‖h‖2D,H?

Ex′∼D1‖∇h(x′)>‖2H?
= ‖∇h>‖2D1,H?

,

we have

‖h?,�‖2D,H?
≤ ‖h′?,� − b‖2D,H?

= Ex∼D‖h(x)‖2H?

≤ 2
(
Ex′∼D1

‖∇h(x′)>‖2H?
+ β2 (B − τ)

2
+

)
B2

= 2
(
‖∇h>‖2D1,H?

+ β2 (B − τ)
2
+

)
B2

Noting that h and h′?,� only differs by a constant shift b, we can see ∇h = ∇h′?,�. Therefore, by replacing ∇h> by ∇h′>?,�
we finally have the first inequality in Theorem 3.2

‖h?,�‖2D,H?
≤ 2

(
‖∇h′>?,�‖2D1,H?

+ β2 (B − τ)
2
+

)
B2.
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It remains to show the Wasserstein distance between D1 and D. As x′ is a function of the random variable x ∼ D with
‖x′ − x‖2 ≤ τ , and D1 is the induced distribution of x′ as a function of x, we can see that by the definition of type-1
Wasserstein distance between D and D1 is bounded by τ .

Denote J(D,D′) as the set of all joint distributions that have marginals D and D′, and recall the definition of type-1
Wasserstein distance is

W1(D,D1) = inf
J∈J(D,D1)

∫
‖x− x′‖2 dJ (x,x′).

Denote J0 as the joint distribution such that in (x,x′) ∼ J we always have x′ being a function of x as how x′ is defined.
We can see that

W1(D,D1) = inf
J∈J(D,D1)

∫
‖x− x′‖2 dJ (x,x′) ≤

∫
‖x− x′‖2 dJ0(x,x′) ≤

∫
τ dJ0(x,x′)

= τ. (37)

Therefore, we have the first inequality in the theorem proved .

The second inequality. Invoking Lemma D.4 with h?,�, and rearranging the inequality, we have

1
3n‖∇h?,�(x)>‖2H?

≤ 2
τ2

(
n∑
i=1

1
2n‖h?,�(x′i)‖2H?

+ 1
2‖h?,�(x)‖2H?

)
+ τ2β2.

Taking the expectation on both sides, we have

1
3nEx∼D‖∇h?,�(x)>‖2H?

≤ 2
τ2 Ex∼D

(
n∑
i=1

1
2n‖h?,�(x′i)‖2H?

+ 1
2‖h?,�(x)‖2H?

)
︸ ︷︷ ︸

X

+τ2β2. (38)

Note that X can be reformulated to be the expectation of an induced distribution from x ∼ D, since x′i is a pre-defined
function of x. Denote D2 as the distribution induced by the following sampling process: first, sample x ∼ D; then,

x′ = x with probability 1
2

x′ = x′i with probability 1
2n for ∀i ∈ [n].

Therefore, we can write X as

X = ‖h?,�‖2D2,H?
. (39)

Similarly to equation 37, it also holds that W1(D,D2) ≤ τ .

To finally complete the proof, noting that ‖∇h′>?,�‖2D,H?
is the minimum of this gradient distance (equation 34), we have

‖∇h′>?,�‖2D,H?
≤ Ex∼D‖∇h?,�(x)>‖2H?

. (40)

Combining equation 38, equation 39 and equation 40, we have the second inequality proved.

Hence, we have proved Theorem 3.2.

D.4. Proof of Theorem 3.3

Theorem D.3 (Theorem 3.3 Restated). The surrogate transfer loss (16) and the true transfer loss (17) are close, with an
error of ‖fT − y‖D,HT

.

−‖fT − y‖D,HT
≤ (17)− (16) ≤ ‖fT − y‖D,HT
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Proof. Let us begin by recall the definition of the surrogate transfer loss (16) and the true transfer loss (17).

(16) := min
g∈G
‖fT − g ◦ fS‖D,HT

(17) := min
g∈G
‖y − g ◦ fS‖D,HT

.

Denote

g̃′ := arg min
g∈G

‖fT − g ◦ fS‖D,HT

g̃ := arg min
g∈G

‖y − g ◦ fS‖D,HT
.

First, we show an upper bound for (16).

(16) ≤ ‖fT − g̃ ◦ fS‖D,HT
≤ ‖y − g̃ ◦ fS‖D,HT

+ ‖fT − y‖D,HT
= (17) + ‖fT − y‖D,HT

, (41)

where the last inequality is by triangle inequality.

Similarly, we can derive its lower bound.

(16) = ‖fT − g̃′ ◦ fS‖D,HT
≥ ‖y − g̃′ ◦ fS‖D,HT

− ‖fT − y‖D,HT

≥ min
g∈G
‖y − g ◦ fS‖D,HT

− ‖fT − y‖D,HT
= (17)− ‖fT − y‖D,HT

, (42)

where the first inequality is by triangle inequality.

Combining equation 41 and equation 42, we have the proposition proved.

D.5. Proof of Theorem B.1

Theorem D.4 (Theorem B.1 Restated). Denote g̃T,S : Rm → Rd as the optimal solution of equation 16, and g̃S,T :
Rd → Rm as the optimal solution of equation 18. Suppose the two optimal affine maps g̃T,S , g̃S,T are both full-rank. For
v ∈ Rm, denote the matrix representation of g̃T,S as g̃T,S(v) = W̃T,Sv + b̃T,S . Similarly, for w ∈ Rd, denote the matrix
representation of g̃S,T as g̃S,T (w) = W̃S,Tw + b̃S,T . We have the following statements.

If d < m, then g̃S,T is injective, and we have:

‖fT − g̃T,S ◦ fS‖D,HT
≤
√
‖(W̃>

S,TW̃S,T )−1‖F · ‖HT ‖F · ‖fS − g̃S,T ◦ fT ‖D. (19)

If d > m, then g̃T,S is injective, and we have:

‖fS − g̃S,T ◦ fT ‖D,HS
≤
√
‖(W̃>

T,SW̃T,S)−1‖F · ‖HS‖F · ‖fT − g̃T,S ◦ fS‖D. (20)

If d = m, then both g̃S,T and g̃T,S are bijective, and we have both (19) and (20) stand.

Proof. Observing the symmetry, we only need to prove the following claim.

Claim. For ?, � ∈ {S, T} and ? 6= �, if g̃?,� is injective, then

‖f� − g̃�,? ◦ f?‖2D,H� ≤ ‖(W̃>
?,�W̃?,�)

−1‖F · ‖H�‖F · ‖f? − g̃?,� ◦ f�‖2D.

Proof of the Claim. We have mostly done with this claim with Lemma E.3. Noting that g̃�,? is the minimizer of
ming∈G ‖f� − g ◦ f?‖2D,H� , we have

‖f� − g̃�,? ◦ f?‖2D,H� ≤ ‖f� − g̃−1?,� ◦ f?‖2D,H� = Ex∼D
[
‖f�(x)− g̃−1?,�(f?(x))‖2H�

]
≤ Ex∼D

[
‖(W̃>

?,�W̃?,�)
−1‖F · ‖H�‖F · ‖f?(x)− g̃?,�(f�(x))‖22

]
= ‖(W̃>

?,�W̃?,�)
−1‖F · ‖H�‖F · ‖f? − g̃?,� ◦ f�‖2D,

where the second inequality is by invoking Lemma E.3.
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Taking the square root of this claim, and applying (� = T, ? = S) or (� = S, ? = T ), we immediatly have the first two
statements about the case of d < m or d > m. Finally, noting that when m = d, both g̃S,T and g̃T,S are bijective and thus
also injective, we can see that both (19) and (20) stand.

E. Auxiliary Lemmas
Lemma E.1 (Compatibility of ‖ ·‖H and ‖ ·‖2). LetH ∈ Rm×m be a positive semi-definite matrix, and denoteH = T>T
as its symmetric decomposition with T ∈ Rm×m. ForW ∈ Rm×n and v ∈ Rn, we have

‖Wv‖H ≤ ‖W ‖H · ‖v‖2.

Proof.

‖Wv‖2H = v>W>T>TWv = ‖TWv‖22
≤ ‖TW ‖22 · ‖v‖22 ≤ ‖TW ‖2F · ‖v‖22,

where ‖ · ‖F is the Frobenius norm. Then, we can continue as

‖TW ‖2F = tr(W>T>TW ) = tr(W>HW ) = ‖W ‖2H .

Combining the above two parts, we have the lemma proved.

Lemma E.2 (Expectation Preserves the Inclusion Relationship Between Linear Spaces). Given a distribution x ∼ D in Rn,
we denote the associated probability measure as µ. Given linear mapsMx : Rn → Rm andNx : Rn → Rd, noting that
they are both functions of x, we have the following statement.

ker
(
Ex∼DM>

x Mx

)
⊆ ker

(
Ex∼DN>x Mx

)
,

where ker(·) denotes the kernel space of a given liner map.

Proof. It suffice to show for ∀v ∈ ker
(
Ex∼DM>

x Mx

)
, we also have v ∈ ker

(
Ex∼DN>x Mx

)
.

Denote P := Ex∼DM>
x Mx, and let v ∈ ker(P ), we have

Pv = 0.

Noting that P is positive semi-definite, we have the following equivalent statements.

v ∈ ker(P ) ⇐⇒ v>Pv = 0,

where the ’ =⇒ ’ direction is trivial, and the ’⇐= ’ direction can be proved by decomposing P = T>T as two matrices
and noting that

v>T>Tv = 0 =⇒ ‖Tv‖22 = 0 =⇒ Tv = 0 =⇒ T>Tv = 0 =⇒ Pv = 0.

Therefore, we have

v>Pv = 0

=⇒ Ex∼D
[
v>M>

x Mxv
]

= 0

=⇒ Ex∼D
[
‖Mxv‖22

]
= 0

=⇒
∫
‖Mxv‖22 dµ = 0,

which impliesMxv = 0 almost everywhere w.r.t. µ.
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Therefore, applying v to Ex∼D[N>x Mx] and we have

Ex∼D
[
N>x Mx

]
v =

∫
N>x Mxv dµ

=

∫
a.e.

N>x 0 dµ

= 0,

which means v ∈ ker
(
Ex∼DN>x Mx

)
.

Lemma E.3 (Inverse an Injective Linear Map). Given a full-rank injective affine transformation g : Rm → Rd, we denote
its matrix representation as g(v) = Wv + b where v ∈ Rm,W ∈ Rd×m, b ∈ Rd. The inverse of g is g−1 : Rd → Rm
defined by g−1(w) := W †w −W †b for w ∈ Rd, i.e., g−1 ◦ g is the identity function. Moreover, given a positive
semi-definite matrixH , for ∀v ∈ Rm and ∀w ∈ Rd, we have√

‖(W>W )−1‖F · ‖H‖F · ‖w − g(v)‖2 ≥ ‖v − g−1(w)‖H .

Proof. First, let us verify that g−1 ◦g is the identity function. The conditions of g being full-rank and injective are equivalent
to W being full-rank and d ≥ m. That is being said, W>W is invertible and W † = (W>W )−1W>. Therefore, for
∀v ∈ Rm, we have

g−1 ◦ g(v) = W †(Wv + b)−W †b = W †Wv

= (W>W )−1W>Wv = v.

That is, g−1 ◦ g is indeed the identity function.

Next, to prove the inequality, let us start from the right-hand-side of the inequality.

‖v − g−1(w)‖H = ‖g−1 ◦ g(v)− g−1(w)‖H
= ‖W †(g(v)−w)‖H
≤ ‖W †‖H · ‖g(v)−w‖2, (43)

where the inequality is done by applying Lemma E.1.

To complete the prove, we can see that

‖W †‖2H = ‖(W>W )−1W>‖2H = tr(W (W>W )−1H(W>W )−1W>)

= tr((W>W )−1H(W>W )−1W>W ) = tr((W>W )−1H)

= 〈(W>W )−1,H〉
≤ ‖(W>W )−1‖F · ‖H‖F . (44)

Plugging the square root of equation 44 into equation 43, we have the lemma proved.

F. Additional Details of Synthetic Experiments
In this section, we complete the description of the settings and methods used in the synthetic experiments. Moreover, we
report two additional sets of results in cross-architecture scenarios.

In the main paper (section 4), the synthetic experiments are done on the setting where source models have the same
architecture as the target model, i.e., all the models are one-hidden-layer neural networks with width m = 100. A natural
question is what would the results be if using different architectures? That is, the architecture of the source models are
different from the target model. To answer this question, we present two additional sets of synthetic experiments where the
width of the source models is m = 50 or m = 200, different from the target model (width m = 100).
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(a) width=50, δ(1)
f?

(b) width=50, δ(2)
f?

(c) width=200, δ(1)
f?

(d) width=200, δ(2)
f?

Figure 3. In this figure, ’width’ is the width of the source models (one-hidden-layer neural networks). As defined in equation 9, δ(1)
f?

corresponds to the regular adversarial attacks, while δ(2)
f?

the secondary adversarial attack. That is, δ(2)
f?

represents the other information in
the adversarial transferring process compared with the first. The x-axis shows the scale of perturbation t ∈ [0, 1] that controls how much
the source model deviates from its corresponding reference source model. There are in total 6 quantities reported. Specifically, αfT→fS

1 is
black solid; αfS→fT

1 is black dotted; αfT→fS
2 is green solid; αfS→fT

2 is green dotted; the gradient matching loss is red solid; and
the knowledge transferability distance is blue solid.

As we have presented in the main paper about the description of the methods and models used in this experiment, here we
present the detailed description of the settings and the datasets being used.

Settings. We follow the small-ε setting used in the theory, i.e., the adversarial attack are constrained to a small magnitude,
so that we can use its first-order Talyor approximation.

Dataset. Denote a radial basis function as φi(x) = e−‖x−µi‖22/(σi)
2

, and for each input data we form its corresponding
M -dimensional feature vector as φ(x) = [φ1(x), . . . , φM (x)]>. We set the dimension of x to be 50. For each radial basis
function φi(x), i ∈ [M ], µi is sampled from U(−0.5, 0.5)50, and σ2

i is sampled from U(0, 100). We use M = 100 radial
basis functions so that the feature vector is 100-dimensional. Then, we set the target ground truth to be y(x) = Wφ(x) + b
whereW ∈ R10×100, b ∈ R10 are sampled from U(−0.5, 0.5) element-wise. We generate N = 5000 samples of x from a
Gaussian mixture formed by 10 Gaussians with different centers but the same covariance matrix Σ = I . The centers are
sampled randomly from U(−0.5, 0.5)50. That is, the dataset D = {(xi,yi)}Ni=1 consists of N = 5000 sample from the
distribution, where xi is 50-dimensional, yi is 10-dimensional. The ground truth target yi are computed using the ground
truth target function y(xi). That is, we want our neural networks to approximate y(·) on the Gaussian mixture.

Methods of Additional Experiments. Note that we have provided the detailed description of the methods used in the main
paper synthetic experiments. Here, we present the methods for two additional sets of synthetic experiments, using the same
dataset and settings, but different architectures. In the main paper, the source model and the target model are of the same
architecture, and the source models are perturbed target model. Here, we use the same target model fT (width m = 100)
trained on the dataset D, but two different architectures for source models. That is, the source models and the target model
are of different width.

To derive the source models, we first train two reference source models on D with width m = 50 and m = 200. For each of
the reference models, denoting the weights of the model asW , we randomly sample a direction V where each entry of V is
sampled from U(−0.5, 0.5), and choose a scale t ∈ [0, 1]. Subsequently, we perturb the model weights of the clean source
model as W ′ := W + tV , and define the source model fS to be a one-hidden-layer neural network with weights W ′.
Then, we compute each of the quantities we care about, including α1, α2 from both fS → fT and fT → fS , the gradient
matching distance (equation 7), and the actual knowledge transfer distance (equation 17). We use the standard `2 loss as the
adversarial loss function.

Results. We present four sets of result in Figure 3. The indication relations between adversarial transferability and
knowledge transferability can be observed in the cross-architecture setting. Moreover: 1. the metrics α1, α2 are more
meaningful if using the regular attacks; 2. the gradient matching distance tracks the actual knowledge transferability loss; 3.
the directions of fT → fS and fS → fT are similar.
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G. Details of the Empirical Experiments
All experiments are run on a single GTX2080Ti.

G.1. Datasets

G.1.1. IMAGE DATASETS

• CIFAR10:1: it consists of 60000 32×32 colour images in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images.

• STL10:2: it consists of 13000 labeled 96×96 colour images in 10 classes, with 1300 images per class. There are 5000
training images and 8000 test images. 500 training images (10 pre-defined folds), 800 test images per class.

G.1.2. NLP DATASETS

• IMDB:3 Document-level sentiment classification on positive and negative movie reviews. We use this dataset to train
the target model.

• AG’s News (AG): Sentence-level classification with regard to four news topics: World, Sports, Business, and Sci-
ence/Technology. Following Zhang et al. (2015), we concatenate the title and description fields for each news article.
We use this dataset to train the source model.

• Fake News Detection (Fake): Document-level classification on whether a news article is fake or not. The dataset
comes from the Kaggle Fake News Challenge4. We concatenate the title and news body of each article. We use this
dataset to train the source model.

• Yelp: Document-level sentiment classification on positive and negative reviews (Zhang et al., 2015). Reviews with a
rating of 1 and 2 are labeled negative and 4 and 5 positive. We use this dataset to train the source model.

G.2. Adversarial Trasnferability Indicating Knowledge Transferability

G.2.1. IMAGE

For all the models, both source and target, in the Cifar10 to STL10 experiment, we train them by SGD with momentumn
and learning rate 0.1 for 100 epochs. For knowledge tranferability, we randomly reinitialize and train the source models’
last layer for 10 epochs on STL10. Then we generate adversarial examples with the target model on the validation set
and measure the adversarial transferability by feeding these adversarial examples to the source models. We employ two
adversarial attacks in this experiments and show that they achieve the same propose in practice: First, we generate adversarial
examples by 50 steps of projected gradient descent and epsilon 0.1 (Results shown in Table 1). Then, we generate adversarial
examples by the more efficient FGSM with epsilon 0.1 (Results shown in Table 6) and show that we can efficiently identify
candidate models without the expensive PGD attacks.

To further visualize the averaged relation presented in Table 1 and 6, we plot scatter plots Figure 5 and Figure 4 with per
sample α1 as x axis and per sample transfer loss as y axis. Transfer loss is the cross entropy loss predicted by the source
model with last layer fine-tuned on STL10. The Pearson score indicates strong correlation between adversarial transferability
and knowledge transferability.

We note that in the figures where we report per-sample α1, although ideally α1 ∈ [0, 1], we can observe that for some
samples they have α1 > 1 due to the attacking algorithm is not ideal in practice. However, the introduced sample-level
noise does not affect the overall results, e.g., see the averaged results in our tables, or the overall correlation in these figures.

G.2.2. NLP

In the NLP experiments, to train source and target models, we finetune BERT-base models on different datasets for 3
epochs with learning rate equal to 5e− 5 and warm-up steps equal to the 10% of the total training steps. For knowledge

1https://www.cs.toronto.edu/˜kriz/cifar.html
2https://cs.stanford.edu/˜acoates/stl10/
3https://datasets.imdbws.com/
4https://www.kaggle.com/c/fake-news/data

https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/~acoates/stl10/
https://datasets.imdbws.com/
https://www.kaggle.com/c/fake-news/data
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Figure 4. Distribution of per sample knowledge transfer loss and α1. The adversarial samples are generated by PGD. The Pearson score
shows strong negative correlation between α1 and the knowledge transfer loss. The higher the transfer loss is, the lower the knowledge
transferability is, and the lower the α1 is.
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Figure 5. Distribution of per-sample knowledge transfer loss and α1. The adversarial samples are generated by FGSM. The Pearson score
shows negative strong correlation between α1 and transfer loss. The higher the transfer loss is, the lower the knowledge transferability is,
the lower the α1 should be.

tranferability, we random initialize the last layer of source models and fine-tune all layers of BERT for 1 epoch on the
targeted dataset (IMDB). Based on the test data from the target model, we generate 1, 000 textual adversarial examples via
the state-of-the-art adversarial attacks T3 (Wang et al., 2020) with adversarial learning rate equal to 0.2, maximum iteration
steps equal to 100, and c = κ = 100.

G.2.3. ABLATION STUDIES ON CONTROLLING ADVERSARIAL TRANSFERABILITY

We conduct series of experiments on controlling adversarial transferability between source models and target model by
promoting their Loss Gradient Diversity. Demontis et al. (2019) shows that for two models fS and fT , the cosine similarity
between their loss gradient vectors ∇x`fS and ∇x`fT could be a significant indicator measuring two models’ adversarial
transferability. Moreover, Kariyappa & Qureshi (2019) claims that adversarial transferability betwen two models could be
well controlled by regularizing the cosine similairity between their loss gradient vectors. Inspired by this, we train several
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Model Knowledge Trans. α1 α2 α1 ∗ α2

Fully Connected 28.30 0.279 0.117 0.0103
AlexNet 45.65 0.614 0.208 0.0863
LeNet 55.09 0.803 0.298 0.205

ResNet18 76.60 1.000 0.405 0.410
ResNet50 77.92 0.962 0.392 0.368

Table 6. Knowledge transferability (Knowledge Trans.) among different model architectures. Adversarial examples are generated using
FGSM attacks. Our correlation analysis shows Pearson score of -0.57 between the transfer loss and α1. Lower transfer loss corresponds
to higher transfer accuracy. More details can be found in Figure 5
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Figure 6. Distribution of per-batch knowledge transfer confidence and α1. The Pearson score shows positive correlation between α1 and
transfer confidence. The higher the confidence, the higher the knowledge transferability.

Table 7. Knowledge transferability (Knowledge Trans.) among different source models (controlling adversarial transferability by
promoting Loss Gradient Diversity). Adversarial transferability is measured by using the adversarial examples generated against the
Target Model to attack the Source Models and estimate α1 and α2.

Model Knowledge Trans. α1 α2 α1 ∗ α2

ρ = 0.0 73.91 0.394 0.239 0.103
ρ = 0.5 73.11 0.385 0.246 0.102
ρ = 1.0 72.47 0.371 0.244 0.100
ρ = 2.0 71.62 0.370 0.244 0.100
ρ = 5.0 72.16 0.378 0.240 0.098

source models fS to one target model fT with following training loss:

Ltrain = LCE(fS(x), y)) + ρ · Lcos(∇x̂`fS ,∇x̂`fT )

where LCE refers to cross-entropy loss and Lcos(·, ·) the cosine similarity metric. x presents source domain instances while
x̂ presents target domain instances. We explore ρ ∈ {0.0, 0.5, 1.0, 2.0, 5.0} and finetune each source model for 50 epochs
with learning rate as 0.01. For knowledge transferability, we random initialize the last layer of each source model and
finetune it on STL-10 for 10 epochs with learning rate as 0.01. During the adversarial example generation, we utilize
standard `∞ PGD attack with perturbation scale ε = 0.1 and 50 attack iterations with step size as ε/10.

Table 7 shows the relationship between knowledge transferability and adversarial transferability of different source model
trained by different ρ. With the increasing of ρ, the adversarial transferabiltiy between source model and target model
decreases (α1, α1 ∗ α2 become smaller), and the knowledge transferability also decreases. We also plot the α1 with its
corresponding transfer loss on each instance, as shown in Figure 7. The negative correlation between α1 and transfer loss
confirms our theoretical insights.
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Figure 7. Distribution of per-sample knowledge transfer loss and α1. The Pearson score shows negative correlation between α1 and
transfer loss. The higher the loss is, the lower the knowledge transferability is, the lower the α1 should be.

G.3. Knowledge Trasnferability Indicating Adversarial Transferability

G.3.1. IMAGE

We follow the same setup in the previous image experiment for source model training, transfer learning as well as generation
of adversarial examples. However, there is one key difference: Instead of generating adversarial examples on the target
model and measuring adversarial transferability on source models, we generate adversarial examples on each source model
and measure the adversarial transferability by feeding these adversarial examples to the target model.

Similarly, we also visualize the results (Table 3) and compute the Pearson score. Due to the significant noise introduced by
per-sample calculation, the R score is not as significant as figure 5, but the trend is still correct and valid, which shows that
higher knowledge transferability indicates higher adversarial transferability.
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Figure 8. Distribution of per-sample knowledge transfer loss and α. The Pearson score shows negative strong correlation between α and
transfer loss. The higher the loss is, the lower the knowledge transferability is, and the lower the α1 is.
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G.3.2. NLP

We follow the same setup to train the models and generate textual adversarial examples as §G.2 in the NLP experiments. We
note that to measure the adversarial transferability, we generate 1, 000 adversarial examples on each source model based on
the test data from the target model, and measure the adversarial transferability by feeding these adversarial examples to the
target model.
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Figure 9. Distribution of per-batch knowledge transfer confidence and α1. The Pearson score shows positive correlation between α1 and
transfer confidence. The higher the confidence, the higher the knowledge transferability.


