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Abstract
In deep model compression, the recent finding
“Lottery Ticket Hypothesis” (LTH) (Frankle &
Carbin, 2018) pointed out that there could ex-
ist a winning ticket (i.e., a properly pruned sub-
network together with original weight initializa-
tion) that can achieve competitive performance
than the original dense network. However, it is not
easy to observe such winning property in many
scenarios, where for example, a relatively large
learning rate is used even if it benefits training
the original dense model. In this work, we in-
vestigate the underlying condition and rationale
behind the winning property, and find that the un-
derlying reason is largely attributed to the correla-
tion between initialized weights and final-trained
weights when the learning rate is not sufficiently
large. Thus, the existence of winning property
is correlated with an insufficient DNN pretrain-
ing, and is unlikely to occur for a well-trained
DNN. To overcome this limitation, we propose
the “pruning & fine-tuning” method that consis-
tently outperforms lottery ticket sparse training
under the same pruning algorithm and the same
total training epochs. Extensive experiments over
multiple deep models (VGG, ResNet, MobileNet-
v2) on different datasets have been conducted to
justify our proposals.

1. Introduction
Weight pruning has been widely studied and utilized to
effectively remove the redundant weights in the over-
parameterized deep neural networks (DNNs) while main-
taining the accuracy performance (Han et al., 2015a; 2016;
Wen et al., 2016; He et al., 2017; Min et al., 2018; He et al.,
2019; Dai et al., 2019; Lin et al., 2020; He et al., 2020). The
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typical pruning pipeline has three main stages: 1) train an
over-parameterized DNN, 2) prune the unimportant weights
in the original DNN, and 3) fine-tune the pruned DNN to
restore accuracy.

Many works have been proposed to investigate the behaviors
on weight pruning (Tanaka et al., 2020; Ye et al., 2020;
Renda et al., 2020; Malach et al., 2020). The Lottery Ticket
Hypothesis (LTH) (Frankle & Carbin, 2018) reveals that,
inside a dense network with randomly initialized weights,
a small sparse subnetwork, when trained in isolation using
the identical initial weights, can reach a similar accuracy
as the dense network. Such a sparse subnetwork with the
initial weights is called the winning ticket.

For a more rigorous definition, let f(x; θ0) be a given
network initialization, where θ0 ∼ Dθ denotes the ini-
tial weights. We then formalize pre-training, pruning and
sparse training below. Pre-training: The network is trained
for T epochs arriving at weights θT and network function
f(x; θT ). Pruning: Based on the pretrained weights θT ,
adopt certain pruning algorithm to generate a sparse mask
m ∈ {0, 1}|θ|. Sparse Training: The LTH paper considers
two cases of sparse training. The first (“winning ticket”) is
the direct application of mask m to initial weights θ0, result-
ing in weights θ0 �m and network function f(x; θ0 �m).
The second (random reinitialization) is the application of
mask m to a random initialization of weights θ′0 ∼ Dθ, re-
sulting in weights θ′0�m and network function f(x; θ′0�m).
The winning property has two aspects ¬- for identifica-
tion: ¬ Training f(x; θ0 �m) for T epochs (or fewer) will
result in similar accuracy as that of the dense pre-trained
network f(x; θT ).  There should be a notable accuracy
gap between training f(x; θ0�m) for T epochs and training
f(x; θ′0 �m), and the former shall be higher.

In the standard LTH setup (Frankle & Carbin, 2018), the
winning property can be observed in the case of low learning
rate via the simple iterative magnitude pruning algorithm,
but fails to occur at higher initial learning rates especially
in deeper neural networks. For instance, the LTH work
identifies the winning tickets on the CIFAR-10 dataset for
the CONV-2/4/6 architectures (the down-scaled variants
of VGG (Simonyan & Zisserman, 2014)), with the initial
learning rate as low as 0.0001. For deeper networks such as
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ResNet-20 and VGG-19 on CIFAR-10, the winning tickets
can be identified only in the case of low learning rate. At
higher learning rates, additional warm up is needed to find
the winning tickets. In Liu et al. (2018) (the latest ArXiv
version), it revisits LTH and finds out that with a widely-
adopted learning rate, the winning ticket has no accuracy
advantage over the random reinitialization. This questions
the second aspect of winning property on the accuracy gap
between training f(x; θ0 �m) and training f(x; θ′0 �m).

Further, the following work Frankle et al. (2019) proposes
the iterative pruning with rewinding to stabilize identifying
the winning tickets. Specifically, it resets the weights to
θk in each pruning iteration, where θk denotes the weights
trained from θ0 for a small number of k epochs.

In this paper, we investigate the underlying condition and
rationale behind winning property. We ask if such a property
is a natural characteristic of DNNs across their architectures
and/or applications. We revisit LTH via extensive experi-
ments built upon various representative DNN models and
datasets, and have confirmed that the winning property only
exists at a low learning rate. In fact, such a “low learning
rate” (e.g., 0.01 for ResNet-20 and 0.0001 for CONV-2/4/6
architectures on CIFAR-10) is already significantly deviated
from the standard learning rate, and results in notable accu-
racy degradation in the pretrained DNN. Besides, training
from the “winning ticket” at such a low learning rate can
only restore the accuracy of the pretrained DNN under the
same insufficient learning rate, instead of that under the de-
sirable learning rate. By introducing a correlation indicator
for quantitative analysis, we found that the underlying rea-
son is largely attributed to the correlation between initialized
weights and final-trained weights when the learning rate is
not sufficiently large. We draw the following conclusions:

• As a result of low learning rate, such weight correlation
results in low accuracy in DNN pretraining.

• Such weight correlation is also a key condition of win-
ning property, concluded through a detailed analysis of
the cause of winning property.

• Thus, the existence of winning property is correlated
with an insufficient DNN pretraining, i.e., it is unlikely
to occur for a well-trained DNN.

Different from sparse training under lottery ticket setting,
we propose the “pruning & fine-tuning” method, i.e., apply
mask m to pre-trained weights θT and perform fine-tuning
for T epochs. The generated sparse subnetwork can largely
achieve the accuracy of the pretrained dense DNN. Through
comprehensive experiments and analysis we draw the fol-
lowing conclusions:

• “Pruning & fine-tuning” consistently outperforms lot-

tery ticket setting under the same pruning algorithm for
mask generation, and the same total training epochs.

• The pruning algorithm responsible for mask generation
plays an important role in the quality of generated
sparse subnetwork.

• Thus, if one wants to optimize the accuracy of sparse
subnetwork and restore the accuracy of the pretrained
dense DNN, we suggest adopting the pruning & fine-
tuning method instead of lottery ticket setting.

2. Related Work
2.1. DNN Weight Pruning

DNN weight pruning as a model compression technique can
effectively remove the redundant weights in DNN models
and hence reduce both storage and computation costs. The
general flow of weight pruning consists of three steps: (1)
train the neural network first; (2) derive a sub-network struc-
ture (i.e., removing unimportant weights) using a certain
pruning algorithm; and (3) fine-tune the remaining weights
in the sub-network to restore accuracy. Different pruning
algorithms will deliver different capabilities to search for
the best-suited sparse sub-network and lead to different final
accuracies.

The most straightforward method is the magnitude-based
one-shot pruning, which will directly zero-out a given per-
centage of trained weights with the smallest magnitude.
However, this method usually leads to a severe accuracy
drop under a relatively high pruning rate. Iterative mag-
nitude pruning is proposed in (Han et al., 2015b), which
removes the weights with the smallest magnitude in an iter-
ative manner. It repeats step (1) and step (2) multiple times
until reaching the target pruning rate. In (Frankle & Carbin,
2018), iterative pruning is adopted to find the sparse sub-
network (i.e., winning ticket). The iterative pruning process
is still a greedy search, and has been extended in (Zhu &
Gupta, 2017; Tan & Motani, 2020; Liu et al., 2020) to derive
better sub-network structures.

To overcome the greedy nature in the heuristic pruning meth-
ods, the more mathematics-oriented regularization-based
algorithm (Wen et al., 2016; He et al., 2017) has been
proposed, to generate sparsity by incorporating `1 or `2
structured regularization in the loss function. However, this
method directly applies fixed regularization terms that penal-
ize all weights equally and will lead to a potential accuracy
drop. Later work (Zhang et al., 2018; Ren et al., 2019)
incorporate Alternating Direction Methods of Multipliers
(ADMM) (Boyd et al., 2011; Ouyang et al., 2013) to solve
the pruning problem as an optimization problem, which
adopts dynamic regularization penalties and maintains high
accuracy.
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2.2. Lottery Ticket Hypothesis

2.2.1. THE ORIGIN AND CONTROVERSY OF LOTTERY
TICKET HYPOTHESIS

The recent work (Frankle & Carbin, 2018) reveals that,
inside a dense network with randomly initialized weights, a
small sparse subnetwork can reach a similar test accuracy
when trained in isolation using the identical initial weights
as training the dense network. Such sparse subnetwork is
called the winning ticket and can be found by pruning the
pre-trained dense network under a non-trivial pruning ratio.

As demonstrated in (Frankle & Carbin, 2018), winning tick-
ets can be found in small networks and small dataset when
using relatively low learning rates (e.g., 0.01 for SGD). The
work from the same period (Liu et al., 2018) finds that,
when using a relatively large learning rate (e.g., 0.1 for
SGD), training a “winning ticket” with identical initialized
weights will not provide any unique advantage in accuracy
compared to training with randomly initialized weights. The
following work (Frankle et al., 2019; Renda et al., 2020)
also confirms that, for deeper networks and using relatively
large learning rates, the winning property can hardly be
observed. They propose a weight rewinding technique to
identify small subnetworks, which can be trained in isola-
tion to achieve competitive accuracy as the dense pretrained
network.

2.2.2. OTHER ASPECTS AND APPLICATIONS

Later work (Chen et al., 2020) further extends the lottery
ticket hypothesis to a pre-trained BERT model to evaluate
the transferability of the sparse subnetworks among different
downstream NLP tasks. Recent works (Morcos et al., 2019;
Chen et al., 2020) have studied the lottery ticket hypothesis
in computer vision tasks and in unsupervised learning.

The potential of sparse training suggested by the lottery
ticket hypothesis has motivated the study of deriving the
“winning tickets” at an early stage of training, thereby accel-
erating training process. There is a number of work in this
direction (Frankle et al., 2020a; You et al., 2019; Frankle
et al., 2020b), which are orthogonal to the discussions in
this paper.

3. Notations in this Paper
In this paper, we follow the notations from (Frankle &
Carbin, 2018) and generalize to the “pruning & fine-tuning”
setup. Detailed notations (as shown in Figure 1) are illus-
trated as follows:

• Initialization: Given a network f(x; θ0), where θ0 ∼
Dθ denotes the initial weights.

• Pre-training: Train the network for T epochs arriving

at weights θT and network function f(x; θT ).

• Pruning: Based on the trained weights θT , adopt
certain algorithm to generate a pruning mask m ∈
{0, 1}|θ|. The LTH paper (Frankle & Carbin, 2018)
uses the iterative pruning algorithm. We start from
this algorithm for a fair evaluation, but are not re-
stricted to it. Other algorithms, e.g., one-shot prun-
ing and ADMM-based pruning are also employed to
evaluate the impact on sparse training and pruning &
fine-tuning, as shown in Section 5.

• Sparse Training (Lottery Ticket Setting): The LTH
paper considers two cases in the sparse training setup.
The first is the direct application of mask m to initial
weights θ0, resulting in weights θ0 �m and network
function f(x; θ0�m). The LTH paper termed this case
the “winning tickets”1. The second is the application of
mask m to a random initialization of weights θ′0 ∼ Dθ,
resulting in weights θ′0�m (network function f(x; θ′0�
m)). This case is termed “random reinitialization” in
the LTH paper. The weights after training f(x; θ0�m)
for T epochs are denoted by (θ0 � m)T , while the
weights after training f(x; θ′0 �m) for T epochs are
denoted by (θ′0 �m)T . Please note that the mask m is
kept through this training process.

• Pruning & fine-tuning: After generating the mask m,
we directly apply it to the trained weights θT , resulting
in weights θT�m, and perform fine-tuning (retraining)
for another T ′ epochs. The final weights are denoted
by (θT �m)T ′ . To maintain the same number of total
epochs as the lottery ticket setting, we set T ′ = T .
Please note that the mask m is kept through this fine-
tuning process.

The winning property has twofold meaning: First, training
f(x; θ0 �m) for T epochs (or fewer) will result in similar
accuracy as f(x; θT ) (pre-training result of the dense net-
work), under a non-trivial pruning rate. Second, there should
be a notable accuracy gap between training f(x; θ0�m) for
T epochs and training f(x; θ′0 �m), and the former shall
be higher.

4. Why Lottery Ticket Exists? An Analysis
from the Weight Correlation Perspective

4.1. Revisiting Lottery Ticket: When does this winning
property exist?

We revisit the lottery ticket experiments on various DNN ar-
chitectures including VGG-11, ResNet-20, and MobileNet-
V2 on the CIFAR-10 and CIFAR-100 datasets. Our goal is

1We inherit this terminology, although it does not result in the
winning property in many of our testing results.
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Figure 1. Illustration of notations: “pre-training”, “pruning” (mask
generation), “sparse training”, and “pruning & fine-tuning”.

to investigate the precise condition when winning property
exists. We explore two different initial learning rates. The
pruning approach for deriving masks follows the iterative
pruning in Frankle & Carbin (2018). Namely, iteratively
remove a percentage of the weights with the least magni-
tudes in each layer. In each iterative pruning round, reset
the weights to the initial weight θ0. We use the uniform
per-layer pruning rate. Note the first convolutional layer is
not pruned for all DNNs in this work.
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(a) Iterative pruning at learning
rate of 0.01.
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(b) Iterative pruning at learning
rate of 0.1.

Figure 2. Illustration of random reinitialization and “winning tick-
ets” for ResNet-20 on CIFAR-10 at learning rates 0.01 and 0.1.

Figure 2 illustrates the experiments of accuracy comparison
between random reinitialization and “winning ticket” (both
sparse training) for ResNet-20 on CIFAR-10 at learning
rates 0.01 and 0.1 over a range of different sparsity ratios
(Frankle & Carbin (2018) uses the low learning rate 0.01).
We conduct each experiment five times (result variation
shown in the figure). We set the same training epochs 150
rounds for training the original DNN with initial weights
f(x; θ0) (i.e., pretraining), training from randomly reinitial-
ized weights with the mask f(x; θ′0 �m) (random reinitial-
ization), and training from the initial weights with the mask
f(x; θ0�m) (“winning ticket”). The hyperparameters used
are the same as (Frankle & Carbin, 2018): SGD with mo-

mentum (0.9), and the learning rates decrease by a factor
of 10 after 80 and 120 epochs. The batch size is 128. No
additional training tricks are utilized throughout the paper
for fairness in comparison.

In the case of the initial learning rate of 0.01, the pre-trained
DNN’s accuracy is 89.62%. The “winning tickets” consis-
tently outperform the random reinitialization over different
sparsity ratios. It achieves the highest accuracy 90.04%
(higher than the pre-trained DNN) at sparsity ratio of 62%.
This is similar to the observations found in (Frankle &
Carbin, 2018) on the same network and dataset. On the
other hand, in the case of the initial learning rate of 0.1,
the pre-trained DNN’s accuracy is 91.7%. In this case, the
“winning ticket” has a similar accuracy performance as the
random reinitialization, and cannot achieve the accuracy
close to the pre-trained DNN with a reasonable sparsity
ratio (say 50% or beyond). Thus no winning property is
satisfied. Similar results can be found in the experiments of
ResNet-20, VGG-11 and MobileNet-v2 on both CIFAR-10
and CIFAR-100, while the results of the rest of the experi-
ments are detailed in Appendix A.

From these experiments, the winning property exists at a low
learning rate but does not exist at a relatively high learning
rate, which is also observed in (Liu et al., 2018). However,
we would like to point out that the relatively high learning
rate 0.1 (which is in fact the standard learning rate on these
datasets) results in a notably higher accuracy in the pre-
trained DNN (91.7% vs. 89.6%) than the low learning rate2.
The associated sparse training results (“winning ticket”, ran-
dom reinitialization) in the lottery ticket setting are also
higher with the learning rate 0.1. This point is largely miss-
ing in the previous discussions. Now the key question is:
Are the above two observations correlated? If the answer is
yes, it means that the winning property is not universal to
DNNs, nor is it a natural characteristic of DNN architecture
or application. Rather, it indicates that the learning rate is
not sufficiently large, and the original, pretrained DNN is
not well-trained.

Our hypothesis is that the above observations are correlated,
and this is largely attributed to the correlation between ini-
tialized weights and final-trained weights when the learning
rate is not sufficiently large. Before validating our hypothe-
sis, we will introduce a correlation indicator (CI) for quan-
titative analysis.

4.2. Weight Correlation Indicator

Consider a DNN with two collections of weights θ and
θ′. Note that this is a general definition that applies to
both the original DNN and sparse DNN (when the mask is

2As CIFAR-10 is a relatively small dataset, 2% accuracy is a
notable accuracy difference that should not be ignored.
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Figure 3. Scenarios for quantitative analysis of the weight corre-
lation with an example of sparsity ratio = 50% and p = 0.5.
This example is one DNN layer, while our actual computation is
on the whole DNN.

applied and a portion of weights eliminated). We define the
correlation indicator to quantify the amount of overlapped
indices of large-magnitude weights between θ and θ′. More
specifically, given a DNN with L layers, where the l-th layer
has Nl weights, the weight index set Tp

(
(θ)l
)

(p ∈ [0, 1]) is
the top-p · 100% largest-magnitude weights in the l-layer.
Similarly, we define Tp

(
(θ′)l

)
. Please note that for a sparse

DNN, the portion p is defined with respect to the number
of remaining weights in the sparse (sub-)network3. The
intersection of these two sets includes those weights that
are large (top-p · 100%) in magnitude in both θ and θ′, and
card

(
Tp
(
(θ)l
)
∩ Tp

(
(θ′)l

))
denotes the number of such

weights in layer l. The correlation indicator (overlap ratio)
between θ and θ′ is finally defined as:

Rp(θ, θ
′) =

∑
l card

(
Tp
(
(θ)l
)
∩ Tp

(
(θ′)l

))
p ·
∑
lNl

(1)

When Rp(θ, θ′) ≈ p, the top-p · 100% largest-magnitude
weights in θ and θ′ are largely independent. In this case
the correlation is relatively weak4. On the other hand, if
there is a large deviation of Rp(θ, θ′) from p, then there is
a strong correlation. Especially when Rp(θ, θ′) > p, the
weights that are large in magnitude in θ are likely to also
be large in θ′, indicating a positive correlation. Otherwise,
when Rp(θ, θ′) < p, it implies a negative correlation.

As shown in Figure 3, the above correlation indicator will
be utilized to quantify the correlation between a dense DNN
and a dense DNN, i.e., Rp(θ0, θT ) for DNN pre-training,
and between a sparse DNN and a sparse DNN, i.e., Rp(θ0�
m, (θT �m)T ) and Rp(θ′0 �m, (θT �m)T ) for the cases
of “winning ticket” and random reinitialization under lottery
ticket setting. Next, we will use the former to demonstrate

3In this way the formula can be unified for dense and sparse
DNNs.

4We cannot say that there is no correlation here because
Rp(θ, θ

′) ≈ p is only a necessary condition.

the effect of different learning rates in DNN pre-training
and the latter to demonstrate the rationale and condition of
winning property.

4.3. Weight Correlation in DNN Pre-Training

Intuitively, the weight correlation means that if a weight is
large in magnitude at initialization, it is likely to be large
after training. The reason for such correlation is that the
learning rate is too low and weight updating is slow. Such
weight correlation is not desirable for DNN training and
typically results in lower accuracy, as weights in a well-
trained DNN should depend more on the location of those
weights instead of initialization (Liu et al., 2018). Thus
when such weight correlation is strong, the DNN accuracy
will be lower, i.e., not well-trained.

To validate the above statement, we have performed ex-
periments to derive Rp(θ0, θT ) on DNN pretraining with
different initial learning rates. Using ResNet-20 on CIFAR-
10 dataset as an illustrative example. Figure 4 illustrates the
correlation indicator between the initial weights θ0 and the
trained weights θT from DNN pretraining at learning rates
of 0.01 and 0.1, respectively. We use T = 150 the same
as Section 4.1, also the same other hyperparameters and no
additional training tricks. We can observe that Rp(θ0, θT )
at learning rate 0.01 has a notably higher correlation com-
pared to the case of learning rate 0.1. This observation
indicates that the large-magnitude weights of θ0 are not
fully updated at a low learning rate 0.01, indicating that the
pre-trained DNN is not well-trained. In the case of learning
rate 0.1, the weights are sufficiently updated thus largely in-
dependent from the initial weights (Rp(θ0, θT ) ≈ p, where
p = 10%, 20%, 30%, 40%, 50%), indicating a well-trained
DNN. Results on other DNN models and datasets are pro-
vided in Appendix B, and a similar conclusion can be drawn.
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Figure 4. The overlap ratios (when p = 10%, 20%, 30%, 40% and
50%) between the initial weights θ0 and the pretrained weights θT
at learning rate of 0.01 and 0.1.

As shown in the result discussions, learning rates 0.1 and
0.01 (for ResNet-20) are not merely two candidate hyperpa-
rameter values. Rather, they result in a well-trained DNN
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(so a desirable learning rate) and a not well-trained DNN
(so a not-so-good learning rate), respectively. We shall not
rely on the conclusion drawn from the latter that results in
an insufficient DNN pre-training.

4.4. Cause and Condition of the Winning Property

Weight Correlation under Lottery Ticket Setting: In this
subsection, our goal is to understand the different accuracy
from training f(x; θ0 �m) (“winning ticket”) and training
f(x; θ′0 �m) (random reinitialization) when the learning
rate is low, thereby revealing the cause and condition of
winning property. We will achieve this goal by studying the
weight correlation.

Consider the “pruning & fine-tuning” case formally defined
in Section 3, in which we apply mask m on the trained
weights θT from DNN pretraining, and then perform fine-
tuning for another T epochs. The final weights are denoted
by (θT �m)T . Using ResNet-20 on CIFAR-10 as an illus-
trative example. Figure 5(a) and 5(b) show the accuracy
of the “pruning & fine-tuning” result f

(
x; (θT �m)T

)
at

different sparsity ratios, with learning rates 0.01 and 0.1,
respectively. Again we use T = 150 epochs and the same
other hyperparameters. The accuracies of the pretrained
DNN with corresponding learning rates are also provided.
One can observe that f

(
x; (θT �m)T

)
achieves relatively

high accuracy, close to or higher than the accuracy of the
pretrained DNN at the same learning rate (even at the de-
sirable learning rate 0.1)5. Results on other DNN models
and datasets are provided in Appendix C, and a similar
conclusion can be drawn.

We study the correlation between θ0 � m (θ′0 � m) and
(θT � m)T to shed some light on the cause of winning
property. Again use ResNet-20 on CIFAR-10 as an illustra-
tive example, while the results on other DNN models and
datasets are provided in Appendix D with similar conclu-
sion. Figure 5(c) shows the correlation indicator between
θ0 � m (“winning ticket”) and (θT � m)T , and between
θ′0 �m (random reinitialization) and (θT �m)T , under the
insufficient learning rate 0.01. While Figure 5(d) shows
the correlation indicator results under the desirable learning
rate 0.1. One can observe the positive correlation between
θ0 �m and (θT �m)T at the low learning rate, when the
winning property exists. Such correlation is minor in the
other cases.

Analysis of Weight Correlation and Condition of Win-
ning Property: Let us investigate the cause of correlation
between θ0 �m and (θT �m)T at low learning rate. As

5In fact, the relatively high accuracy of f
(
x; (θT �m)T

)
is

one major reason for us to explore the correlation between θ0 �m
(θ′0 �m) and (θT �m)T . In Section 5 we will generalize to the
conclusion that “pruning & fine-tuning” results in higher accuracy
in general than sparse training (the lottery ticket setting).
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(b) Pruning&fine-tuning at learn-
ing rate of 0.1.
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(c) The overlap ratio comparison
at learning rate 0.01.
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(d) The overlap ratio comparison
at learning rate 0.1.

Figure 5. (a), (b): Accuracies of f
(
x; (θT �m)T

)
(“pruning &

fine-tuning”) at different sparsity ratios with masks generated by
iterative pruning. (c), (d): The weight correlation (overlap ratio)
comparison at p = 0.2, between θ0 �m (“winning ticket”) and
(θT �m)T (pruned&fine-tuned weights), and between θ′0�m (ran-
dom reinitialization) and (θT �m)T (pruned&fine-tuned weights)
under 0.3, 0.5, 0.7 sparsity ratios.

shown in Section 4.3, there is a correlation between θ0 and
θT at the insufficient learning rate. Then there is also a
correlation between θ0 �m and θT �m (both applied the
same mask). As θT �m includes the pretrained weights
and (θT �m)T only applies additional fine-tuning, there
will be positive correlation between θT �m and (θT �m)T .
Combining the above two statements will yield the correla-
tion between θ0 �m and (θT �m)T . When we consider
random reinitialization, there is no correlation between θ′0
and θT as a reinitialization is applied. So there is no correla-
tion between θ′0 �m and θT �m, or between θ′0 �m and
(θT �m)T .

At a desirable learning rate 0.1, there is a minor (or no)
correlation between θ0 and θT as shown in Section 4.3. As a
result, there is minor (or no) correlation between θ0�m and
θT �m, or between θ0�m and (θT �m)T . From the above
analysis, one can observe that the correlation between θ0
and θT is the key condition in weight correlation analysis.

The positive correlation between θ0 �m and (θT �m)T
helps to explain the winning property at low learning rate.
Compared with random reinitialization θ′0�m, the “winning
ticket” θ0 �m is “closer” to a reasonably accurate solution.
As the weight upscaling is slow (learning rate insufficient),
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it takes less effort to reach a higher accuracy starting from
θ0 �m compared with starting from θ′0 �m. Besides, as
pointed out in Section 4.3, the insufficient learning rate (and
correlation between θ0 and θT ) results in a low accuracy
in the pre-trained DNN, which makes it easier for sparse
training to reach its accuracy. On the other hand, at a suf-
ficient learning rate, such correlations do not exist (or are
very minor), and then the winning property does not exist.

Remarks: From the above analysis, we conclude that a key
condition of winning property is the correlation between θ0
and θT . However, as already demonstrated in Section 4.3,
under the same condition the pretrained network will not
be well-trained, as weights in a well-trained DNN should
depend more on the location of those weights instead of
initialization. In fact, as shown in Figure 2 and Appendix A,
the “winning ticket” can only restore the accuracy of the
pretrained DNN under the same insufficient learning rate,
instead of reaching the pretrained DNN accuracy at a de-
sirable learning rate. This makes the value of the winning
property questionable.

4.5. Takeaway

As discussed above, the existence of winning property is
correlated with an insufficient DNN pretraining. It seems
that winning property is not a natural characteristic of DNN
architecture or application, and is unlikely to occur for a
well-trained DNN (with a desirable learning rate). As a
result, we do not suggest investigating the winning property
under an insufficient learning rate.

5. Pruning & Fine-tuning – A Better Way to
Restore Accuracy under Sparsity

As concluded from the above discussions, it is difficult for
sparse training to restore the accuracy of the pre-trained
dense DNN, when a desirable learning rate is applied. On
the other hand, as already hinted in Section 4.4, the “pruning
& fine-tuning” (i.e., fine-tuning from (θT �m)T ) exhibits a
higher capability in achieving the accuracy of a pre-trained
DNN, no matter what the learning rate is. Compared with
the lottery ticket setting, the only difference in “pruning &
fine-tuning” is that the mask m is applied to the pretrained
weights θT . Is this the key reason for the high accuracy? Is
this a universal property for different DNN architectures and
applications? If the answer is yes, what is the underlying
reason? We aim to answer these questions.

In this section, we only consider the desirable learning
rate (e.g., 0.1 for ResNet-20 on CIFAR-10 dataset) and
sufficient DNN pre-training, as the associated conclusions
will be more meaningful.

Fair Comparison with Lottery Ticket Setting: We claim
that under the same T epochs for fine-tuning and sparse

training, it is a fair comparison. The generation of mask
m is the same. The only difference is that pruning & fine-
tuning applies mask m to the pre-trained weights θT , while
sparse training applies m to θ0. Note that θT is available
before m as the latter is derived based on θT using prun-
ing algorithm. Thus pruning & fine-tuning will have no
additional training epochs compared with sparse training.

Comparison between Pruning & Fine-tuning and
Sparse Training: We use ResNet-20 on CIFAR-10 dataset
as an illustrative example, and the rest of results are pro-
vided in Appendix E (with the similar conclusion). We use
the desirable learning rate 0.1, T = 150 epochs, and the
same as Section 4.1 for the rest of hyperparameters. Fig-
ure 6(a) shows the accuracy comparison between pruning &
fine-tuning (i.e., training (fine-tuning) from θT �m) and the
two sparse training scenarios “winning ticket” (i.e., train-
ing from θ0 �m) and random reinitialization (i.e., training
from θ′0 �m) at different sparsity ratios. Iterative pruning
algorithm is used to derive mask m here. One can clearly
observe the accuracy gap between pruning & fine-tuning
and the two sparse training cases (lottery ticket setting).
In fact, the pruning & fine-tuning scheme can consistently
outperform the pretrained dense DNN up to sparsity ratio
70%. Again, there is no accuracy difference between the
two sparse training cases.

Furthermore, we consider other two candidate pruning al-
gorithms, ADMM-based pruning (Zhang et al., 2018) and
one-shot pruning, for pruning mask generation. Figure 6(b)
and Figure 6(c) demonstrate the corresponding accuracy
comparison results between pruning & fine-tuning and the
two sparsity training scenarios. Again one can observe
the notable advantage of pruning & fine-tuning over the
lottery ticket setting, even with a weak one-shot pruning al-
gorithm for mask generation. In fact, pruning & fine-tuning
under ADMM-based pruning can restore the accuracy of
pretrained DNN with 80% sparsity. The property is not
found under any of these pruning algorithms. Clearly, the
consistent advantage of pruning & fine-tuning is attributed
to the fact that mask m is applied to pretrained weights θT
instead of the initialized weights θ0. In fact, information
in θT is important for the sparse subnetwork to maintain
accuracy of the pretrained dense network. Or in other words,
weights in the desirable sparse subnetwork should have cor-
relation with θT instead of θ0.

Effect of Different Pruning Algorithms – Towards a Bet-
ter Mask Generation: We have tested three pruning algo-
rithms for mask generation. How to evaluate their relative
performance? Figure 7 combines the above results and
demonstrates the accuracy performances of pruning & fine-
tuning and sparse training (“winning ticket” case), under
all three pruning algorithms. The rest of results are in Ap-
pendix E. One can observe the order in the accuracy perfor-
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(a) The iterative pruning at learning rate of
0.1.
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(b) The ADMM-based pruning at learning
rate of 0.1.
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(c) The least magnitude one-shot pruning
at learning rate of 0.1.

Figure 6. Accuracy performance of pruning & fine-tuning vs. two sparse training cases (“winning ticket” and random reinitialization).
Three pruning algorithms are utilized for mask generation: iterative pruning (a), ADMM-based pruning (Zhang et al., 2018) (b), and
one-shot pruning (c).
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Figure 7. Accuracy performances of pruning & fine-tuning and
sparse training (“winning ticket” case), under all three pruning
algorithms (iterative pruning, ADMM-based pruning, and one-
shot pruning) for mask generation.

mance: ADMM-based pruning on top, iterative pruning in
the middle, and one-shot pruning the lowest. This order is
the same for pruning & fine-tuning and sparse training. Note
that the pruning algorithm is utilized to generate mask m,
while the other conditions are the same (i.e., θT , fine-tuning
T epochs on θT �m, or sparse training on θ0 �m). Hence,
the relative performance is attributed to the quality in mask
generation. One can conclude that the selection of pruning
algorithm is critical in generating the sparse subnetwork as
the quality of mask generation plays a key role here.

An Analysis from Weight Correlation Perspective: We
conduct a weight correlation analysis of pruning & fine-
tuning results that can largely restore the accuracy of pre-
trained, dense DNN, between the final weights (θT �m)T
and the initialization θ0. Detailed results and discussions
are provided in Appendix F. The major conclusion is that
there is a lack of correlation between (θT �m)T and θ0, but
there is a correlation between (θT �m)T and θT . It further
strengthens the conclusion that it is not desirable to have the
weight correlation between final-trained weights and weight
initialization.

Comparison with Frankle et al. (2019): The work Fran-
kle et al. (2019) suggests applying mask m to θk and then
apply sparse training, where θk denotes the weights trained
from θ0 for a small number of k epochs. This technique
is training from θk �m, and is in between sparse training
(training from θ0 �m) and pruning & fine-tuning (training
from θT �m). We point out that these three cases require
the same number of total epochs under the same pruning
algorithm, as mask m is generated later than θk or θT . We
conduct a comprehensive comparison on the relative perfor-
mance, with detailed results and discussions in Appendix G.
The major conclusion is that pruning & fine-tuning consis-
tently outperforms the method Frankle et al. (2019) over
different sparsity ratios, DNN models, and datasets. As they
exhibit the same number of training epochs, we suggest
directly applying the mask m to θT and perform fine-tuning,
instead of applying to θk.

Remarks: If one wants to optimize the accuracy of sparse
subnetwork and restore the accuracy of the pretrained
dense DNN, we suggest adopting the pruning & fine-tuning
method instead of lottery ticket setting.

6. Conclusion
In this work, we investigate the underlying condition and
rationale behind lottery ticket property. We introduce a
correlation indicator for quantitative analysis. Extensive
experiments over multiple deep models on different datasets
have been conducted to justify that the existence of winning
property is correlated with an insufficient DNN pretraining,
and is unlikely to occur for a well-trained DNN. Meanwhile,
the sparse training of lottery ticket setting is difficult to
restore the accuracy of the pre-trained dense DNN. To over-
come this limitation, we propose the “pruning & fine-tuning”
method that consistently outperforms lottery ticket sparse
training under the same pruning algorithm and total training
epochs over various DNNs on different datasets.
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