
DGNOpt: Dynamic Game Theoretic Neural Optimizer

Supplementary Material
A. Notation Summary

Table 6. Abbreviation.

OCT/OCP Optimal Control Theory/Programming
MPDG Multi-Player Dynamic Game
CG Cooperative Game
OLNE Open-loop Nash Equilibria
FNE Feedback Nash Equilibria
GR Group Rationality
IR Individual Rationality

Table 7. Terminology mapping.

MPDG Training generic (non-Markovian) DNNs

t

n

Stage order
Player index

Computation order from input to output
Index of parallel layers aligned at t

}
Layer index (t, n)

ft,n - Layer module indexed by (t, n)

Ft Shared dynamics Joint propagation rule of layers {ft,n : n ∈ [N ]}
θt,n Action committed at stage t by Player n Trainable parameter of layer ft,n
zt,n - Pre-activation vector of layer ft,n
xt State at stage t Augmentation of pre-activation vectors of layers {ft,n : n ∈ [N ]}
`t,n Cost incurred at stage t for Player n Weight decay for layer ft,n
φn Cost incurred at final stage T for Player n Lost w.r.t. network output (e.g. cross entropy in classification)

Table 8. Dynamic game theoretic terminology w.r.t. different optimality principles.

OLNE
ηO
t,n Open-loop information structure
Ht,n Optimality objective (Hamiltonian) for OLNE
pt,n Co-state at stage t for Player n

FNE

ηC
t,n Feedback information structure
Qt,n Optimality objective (Isaacs-Bellman objective) for FNE
Vt,n Value function for FNE
kt,n Open gain of the locally optimal update for FNE
Kt,n Feedback gain of the locally optimal update for FNE

GR

ηO-CG
t,n Cooperative open-loop information structure
ηC-CG
t,n Cooperative feedback information structure
Pt Optimality objective (group Bellman objective) for GR
Wt Value function for GR
k̃t Open gain of the locally optimal update for GR
K̃t Feedback gain of the locally optimal update for GR



DGNOpt: Dynamic Game Theoretic Neural Optimizer

B. OCP Characterization of Training Feedforward Networks
The optimality principle to OCP (2), or equivalently the training process of feedforward networks, can be characterized by
Dynamic Programming (DP) or Pontryagin Principle (PP). We synthesize the related results below.

Theorem 7 (Bellman (1954); Pontryagin et al. (1962)).
(DP) Define a value function Vt computed recursively by the Bellman equation (17), starting from VT (zT ) = φ(zT ),

Vt(zt) = min
πt

Qt(zt, θt), where Qt(zt, θt) := `t(θt) + Vt+1(ft(zt, θt)) (17)

is called the Bellman objective. πt ≡ θt(zt) is an arbitrary mapping from zt to θt. Let π∗t be the minimizer to (17), then
{π∗t : t ∈ [T ]} is the optimal feedback policy to (2).

(PP) The optimal trajectory π∗t ≡ θ∗t (z∗t ) along (17) obeys

z∗t+1 = ∇pt+1
Ht

(
z∗t ,p

∗
t+1, θ

∗
t

)
, z∗0 = z0, (18a)

p∗t = ∇zt
Ht

(
z∗t ,p

∗
t+1, θ

∗
t

)
, p∗T = ∇zT

φ (z∗T ) , (18b)

θ∗t = arg min
θt

Ht

(
z∗t ,p

∗
t+1, θt

)
, (18c)

where (18b) is the adjoint equation for the co-state p∗t and

Ht (zt,pt+1, θt) := `t(θt) + pT
t+1ft(zt, θt)

is the discrete-time Hamiltonian.

Theorem 7 provides an OCP characterization of training feedforward networks. First, notice that the time-varying OCP
objectives (Qt, Ht) are constructed through some backward processes similar to the Back-propagation (BP). Indeed, one
can verify that the adjoint equation (18b) gives the exact BP dynamics. Similarly, the dynamics of Vt in (17) also relate
to BP under some conditions (Liu et al., 2021). The parameter update, θt ← θt − δθt, for standard training methods can
be seen as solving the discrete-time Hamiltonian Ht with different precondition matrices (Li et al., 2017a). On the other
hand, DDPNOpt (Liu et al., 2021) minimizes the time-dependent Bellman objective Qt with θt ← θt − δπt. This elegant
connection is, however, limited to the interpretation between feedforward networks and Markovian dynamical systems (1).

C. Missing Derivations in Section 3

Figure 12. Forward propagation (left) and Back-propagation (right) of a residual block and how each quantity connects to OLNE
optimality.

Proof of Proposition 2. Expand the expression of the Hamiltonian in OLNE:

Ht,n(xt,pt+1,n, θt,1, · · · , θt,N ) := `t,n(θt,1, · · · , θt,N ) + Ft(xt, θt,1, · · · , θt,N )Tpt+1,n,

where pt,n is the co-state whose dynamics obey

pt,n = ∇xt
Ht,n, pT,n = ∇xT

φn(xT ).

Recall §3.1 where we demonstrate that for training generic DNNs, one shall consider `t,n := `t,n(θt,n) and φn := φ. Hence,
the dynamics of pt,n become

pt,n = ∇xt
Ht,n, pT,n = ∇xT

φ(xT ), where Ht,n = `t,n(θt,n) + Ft(xt, θt,1, · · · , θt,N )Tpt+1,n. (19)



DGNOpt: Dynamic Game Theoretic Neural Optimizer

Our goal is to show that (19) gives the exact Back-propagation dynamics. First, notice that the terminal condition of (19),
i.e. pT,n = ∇xT

φ, is already the gradient w.r.t. the network output without any manipulation. Next, to show that pt,n
corresponds to the Back-propagation at stage t, consider, for instance, the computation graphs of the residual block in
Fig. 12, where we replot Fig. 2 together with its Back-propagation dynamic and denote q as the gradient w.r.t. the activation
vector z. Then, it can be shown by induction that pt,n augments all “q”s aligned at stage t. Indeed, suppose pt+1,n is the
augmentation of the Back-propagation gradients at stage t+1, i.e. pt+1,n := [qt+1, qres]

T, then the co-state at the current
stage t can be expanded as

pt,n = ∇xtHt,n = ∇xtF
T
t pt+1,n =

[
∇ztft,1 ∇zt−1ft,1
∇ztft,2 ∇zt−1ft,2

]T [
qt+1

qres

]
=

[
∇ztft,1

Tqt+1

∇zt−1ft,2
Tqres

]
=

[
qt

qt−1

]
,

which augments all “q”s at stage t. Once we connect pt,n to the Back-propagation dynamics, it can be verified that

Ht,n
θ ≡ ∇θt,nHt,n = ∇θt,n`t,n +∇θt,nFT

t pt+1,n.

is indeed the gradient w.r.t. the parameter θt,n of each layer ft,n. Therefore, taking the iterative update θt,n ← θt,n −Ht,n
θ

is equivalent to descending along the SGD direction, up to a learning rate scaling. Similarly, setting different precondition
matrices M will recover other standard methods. Hence, we conclude the proof.

Optimality principle for ηO-CG
t,n . For the completeness, below we provide the optimality principle for the cooperative

open-loop information structure ηO-CG
t,n .

Definition 8 (Cooperative optimality principle by ηO-CG
t,n ). A set of strategy, {θ∗t,n : ∀t, n}, provides an open-loop optimal

solution to the joint optimization (4) if

θ∗t,1, · · ·, θ∗t,N = arg min
θt,n:n∈[N ]

H̃t(xt, p̃t+1, θt,1, · · ·, θt,N ),

where θ∗t,n ≡ θ∗t,n(ηO-CG
t,n ) and H̃t :=

∑N
n=1 `t,n + FT

t p̃t+1

is the “group” Hamiltonian at stage t. Similar to OLNE, the joint co-state p̃t can be simulated by

p̃t = ∇xt
H̃t, p̃T =

∑N
n=1∇xT

φn.

In this work, we focus on solving the optimality principle inherited in ηC-CG
t,n as a representative of the CG optimality. Since

ηO-CG
t,n ⊂ ηC-CG

t,n , the latter captures richer information and tends to perform better in practice, as evidenced by Fig. 3.

D. Missing Derivations in Section 4
D.1. Complete Derivation of the Iterative Updates

Derivation of FNE update. Our goal is to approximately solve the Isaacs-Bellman recursion (6) only up to second-order.
Recall that the second-order expansion of Qt,n at some fixed point (xt, θt,n) takes the form

Qt,n ≈
1

2


1

δxt

δθt,n


T 

Qt,n Qt,nx
T

Qt,nθ
T

Qt,nx Qt,nxx Qt,nθx
T

Qt,nθ Qt,nθx Qt,nθθ




1

δxt

δθt,n

 , where

Qt,nx =

Qt,nθ =

Qt,nθθ =

Qt,nθx =

Qt,nxx=

F tx
T
V t+1,n
x

F tθ
T
V t+1,n
x + `t,nθ

F tθ
T
V t+1,n
xx F tθ + `t,nθθ

F tθ
T
V t+1,n
xx F tx

F tx
T
V t+1,n
xx F tx

(20)

follow standard chain rule (recall Qt,n := `t,n +Vt+1,n ◦Ft) with the linearized dynamics F tθ ≡ ∇θt,nFt and F tx ≡ ∇xt
Ft.

The expansion (20) is a standard quadratic programming, and its analytic solution is given by

−δπ∗t,n ≡ −δθ∗t,n(δxt) = −(Qt,nθθ )†(Qt,nθ +Qt,nθx δxt) =: −(kt,n + Kt,nδxt).



DGNOpt: Dynamic Game Theoretic Neural Optimizer

Substituting this solution back to the Isaacs-Bellman recursion gives us the local expression of Vt,n,

Vt,n ≈ Qt,n −
1

2
(Qt,nθ )T(Qt,nθθ )†Qt,nθ . (21)

Therefore, the local derivatives of Vt,n can be computed by

V t,nx = Qt,nx −Q
t,n
xθ (Qt,nθθ )†Qt,nθ = Qt,nx −Q

t,n
xθ kt,n

V t,nxx = Qt,nxx −Q
t,n
xθ (Qt,nθθ )†Qt,nθx = Qt,nxx −Q

t,n
xθKt,n.

Derivation of GR update. We will adopt the same terminology u ≡ θt,1,v ≡ θt,2. Following the procedure as in the
FNE case, we can perform the second-order expansion of Pt at some fixed point (xt,u,v). The analytic solution to the
corresponding quadratic programming is given by

−
[
δπ∗t,1
δπ∗t,2

]
= −

[
P tuu P tuv

P tvu P tvv

]†([
P tu
P tv

]
+

[
P tux

P tvx

]
δxt

)
, (22)

where the block-matrices inversion can be expanded using the Schur complement.

[
P tuu P tuv

P tvu P tvv

]†
=

[
(

P̃ t
uu︷ ︸︸ ︷

P tuu − P tuvP
t †
vv P

t
vu)† −P̃ t †uuP

t
uvP

t †
vv

−P̃ t †vv P
t
vuP

t †
uu (︸ ︷︷ ︸

P̃ t
vv

P tvv − P tvuP t †uuP
t
uv)†

]
. (23)

Hence, (22) becomes[
δπ∗t,1
δπ∗t,2

]
=

[
P̃ t †uu(P tu − P tuvP

t †
vv P

t
v)

P̃ t †vv (P tv − P tvuP t †uuP
t
u)

]
+

[
P̃ t †uu(P tux − P tuvP

t †
vv P

t
vx)

P̃ t †vv (P tvx − P tvuP t †uuP
t
ux)

]
δxt

=

[
P̃ t †uu(P tu − P tuvIt)

P̃ t †vv (P tv − P tvukt)

]
+

[
P̃ t †uu(P tux − P tuvLt)

P̃ t †vv (P tvx − P tvuKt)

]
δxt

=:

[
k̃t
Ĩt

]
+

[
K̃t

L̃t

]
δxt,

where we denote the non-cooperative iterative update for Player 1 and 2 respectively by

δut(δxt) = kt + Ktδxt, where kt := P t †uuP
t
u and Kt := P t †uuP

t
ux,

δvt(δxt) = It + Ltδxt, where It := P t †vv P
t
v and Lt := P t †vv P

t
vx.

Substituting this solution back to the GR Bellman equation gives the local expression of Wt,

Wt ≈ Pt −
1

2

[
P tu
P tv

]T [
P tuu P tuv

P tvu P tvv

]† [
P tu
P tv

]
. (24)

Finally, taking the derivatives yields the formula for updating the derivatives of Wt,

W t
x = P tx −

1

2

(
P txuk̃t + P txv Ĩt + K̃T

t P
t
u + L̃T

t P
t
v

)
and W t

xx = P t,nxx − P txuK̃t − P txvL̃t, (25)

which is much complex than (10).

D.2. Kronecker Factorization and Proof of Proposition 5

We first provide some backgrounds for the Kronecker factorization (KFAC; Martens & Grosse (2015)). KFAC relies on the
fact that for an affine mapping layer, i.e. zt+1 = ft(zt, θt) := Wtzt + bt, θt := vec([Wt, bt]), the gradient of the training
objective L w.r.t. the parameter θt admits a compact factorization,

∇θtL = ∇θtfTt ∇zt+1
L = zt ⊗∇zt+1

L,



DGNOpt: Dynamic Game Theoretic Neural Optimizer

where ⊗ denotes the Kronecker product. With this, the layer-wise Fisher information matrix, or equivalently the Gauss-
Newton (GN) matrix, for classification can be approximated with

E[∇θtL∇θtLT] = E[(zt ⊗∇zt+1
L)(zt ⊗∇zt+1

L)T] ≈ E[ztz
T
t ]⊗ E[∇zt+1

L∇zt+1
LT].

We can adopt this factorization to our setup by first recalling from our proof of Proposition 2 (see Appendix C) that
(∇θtL,∇zt+1

L) are interchangeable with (Ht
θ,pt+1), or equivalently (Ht

θ, H
t+1
z ). Hence, the GN approximation of

E[Ht
θθ] can be factorized by

E[Ht
θH

t
θ
T

] ≈ E[ztz
T
t ]⊗ E[pt+1p

T
t+1] = E[ztz

T
t ]⊗ E[Ht+1

z Ht+1 T
z ]. (26)

Equation (26) suggests that KFAC factorizes the parameter curvature with two smaller matrices using the activation state zt
and the derivative of some optimality (in this case the Hamiltonian H) w.r.t. zt+1. The main advantage of this factorization
is to exploit the following formula,

(A⊗B)†vec(W ) = (A† ⊗B†)vec(W ) = vec(B†WA−T), (27)

which allows one to efficiently inverse the parameter curvature with two smaller matrices.

Now, let us proceed to the proof of Proposition 5. First notice that for the shared dynamics considered in Fig. 2, we have

Ft(xt,u,v) :=

[
ft,1(z1,u)
ft,2(z2,v)

]
=

[
ft,1(·,u) 0

0 ft,2(·,v)

] [
z1

z2

]
,

which resembles the affine mapping concerned by KFAC. This motivates the following approximation,

E[P tθP
t
θ
T

] ≈ E[xtx
T
t ]⊗ E[W t+1

x W t+1
x

T
]. (28)

Similar to (26), this approximation (28) factorizes the GN matrix with the MPDG state xt and the derivative of an optimality
(in this case it becomes the GR value function Wt+1) w.r.t. xt+1.

If we denote the derivatives w.r.t. the outputs of ft,1 and ft,2 by g1 and g2, i.e. W t+1
x := [g1, g2]T, and rewrite

xt := [z1, z2]T, then (28) can be expanded by

E[xtxt
T] =

[
E[z1z1

T] E[z1z2
T]

E[z2z1
T] E[z2z2

T]

]
=:

[
Auu Auv

Avu Avv

]
E[W t+1

x W t+1
x

T
] =

[
E[g1g1

T] E[g1g2
T]

E[g2g1
T] E[g2g2

T]

]
=:

[
Buu Buv

Bvu Bvv

]
.

Their inverse matrices are given by the Schur component.[
Auu Auv

Avu Avv

]†
=

[
Ã†uu −Ã†uuAuvA

†
vv

−Ã†vvAvuA
†
uu Ã†vv

]
, where

{
Ãuu := Auu −AuvA

†
vvA

T
uv

Ãvv := Avv −AvuA
†
uuA

T
vu[

Buu Buv

Bvu Bvv

]†
=

[
B̃†uu −B̃†uuBuvB

†
vv

−B̃†vvBvuB
†
uu B̃†vv

]
, where

{
B̃uu := Buu −BuvB

†
vvB

T
uv

B̃vv := Bvv −BvuB
†
uuB

T
vu

(29)

With all these, the cooperative open gain can be computed with the formula (27),(
E[xtx

T
t ]⊗ E[W t+1

x W t+1
x

T
]
)†

vec(

[
P tu 0
0 P tv

]
) = vec

([
Buu Buv

Bvu Bvv

]† [
P tu 0
0 P tv

] [
Auu Auv

Avu Avv

]−T)
. (30)

Substituting (29) into (30), after some algebra we will arrive at the KFAC of the cooperative open gain suggested in (15).

k̃t ≈vec(B̃†uuP
t
uÃ
−T
uu + B̃†uuBuvB

†
vvP

t
v(Ã†uuAuvA

†
vv)T)

=vec(B̃†uu(P tu +BuvB
†
vvP

t
vA
−T
vv A

T
uv)Ã−Tuu)

=vec(B̃†uu(P tu +Buvvec†(It)A
T
uv)Ã−Tuu), (31)



DGNOpt: Dynamic Game Theoretic Neural Optimizer

where the last equality follows by another KFAC approximation It ≈ (Avv ⊗Bvv)†vec(P tv) = vec(B†vvP
t
vA
−T
vv ). Finally,

recalling the expression, k̃t := P̃ t †uu(P tu − P tuvIt), from (11) and rewriting (31) by

k̃t ≈vec(B̃†uu(P tu +Buvvec†(It)A
T
uv)Ã−Tuu)

=(Ãuu ⊗ B̃uu)†vec(P tu +Buvvec†(It)A
T
uv)

imply the KFAC representation P̃ tuu ≈ Ãuu ⊗ B̃uu in (14). Hence we conclude the proof.

D.3. Proof of Theorem 6

We first show that setting P tuv := 0 in the update (11) yields (9). To begin, observe that when P tuv vanishes, the cooperative
gains (k̃t, K̃t) appearing in (11) degenerate to k̃t = P t †uuP

t
u and K̃t = P t †uuP

t
ux. Therefore, it is sufficient to prove the

following result.4

Lemma 9. Suppose Qt,n in (6) and Pt in (7) are expanded up to second-order along the same local trajectory
{(xt, θt,n, · · · , θt,N ) : ∀t ∈ [T ]}, then we will have the following relations when P tuv := 0 at all stages.

∀t, Qt,1θ = P tu, Qt,1θθ = P tuu, Qt,1θx = P tux, Qt,2θ = P tv, Qt,2θθ = P tvv, Qt,2θx = P tvx, (32)

where (ut,vt) ≡ (θt,1, θt,2) denotes the actions for Player 1 and 2. Furthermore, we have

∀t, Wt =
∑N
n=1 Vt,n. (33)

Proof. We will proceed the proof by induction. At the terminal stage T − 1, we have

PT−1 =

2∑
n=1

`T−1,n +WT ◦ FT−1 =

2∑
n=1

(`T−1,n + φn ◦ FT−1) =

2∑
n=1

QT−1,n,

since φn = VT,n. This implies that when solving the second-order expansion for πT−1,1 and πT−1,2, we will have

min
πT−1,1,πT−1,2

PT−1 = min
πT−1,1

QT−1,1 + min
πT−1,2

QT−1,2

since the cross-correlation matrix PT−1
uv is discarded. Therefore, all equalities in (32) hold at this stage. Furthermore,

substituting PT−1
uv := 0 into (24) yields the following GR value function

WT−1 = PT−1 −
1

2

(
(PT−1

u )T(PT−1
uu )†PT−1

u + (PT−1
v )T(PT−1

vv )†PT−1
v

)
=

2∑
n=1

(
QT−1,n −

1

2
(QT−1,n

θ )T(QT−1,n
θθ )†QT−1,n

θ

)
=

2∑
n=1

VT−1,n.

So (33) also holds. Now, suppose (32, 33) hold at t+ 1, then

Pt =

2∑
n=1

`t,n +Wt+1 ◦ Ft =

2∑
n=1

(`t,n + Vt+1,n ◦ Ft) =

2∑
n=1

Qt,n.

Together with P tuv := 0, we can see that all equalities in (32) hold. Furthermore, it implies that

Wt = Pt −
1

2

(
P tu

T
P t †uuP

t
u + P tv

T
P t †vv P

t
v

)
=

2∑
n=1

(
Qt,n −

1

2
(Qt,nθ )T(Qt,nθθ )†Qt,nθ

)
=

2∑
n=1

Vt,n.

Hence we conclude the proof.

Next, we proceed to the second case, which suggests that running (9) with (Qt,nθx , Q
t,n
θθ ) := (0, I) yields SGD. Since the

FNE update in this case degenerates to δπ∗t,n = Qt,nθ , it is sufficient to prove the following lemma.

4 We consider the two-player setup for simplicity, yet the methodology applies to the multi-player setup.



DGNOpt: Dynamic Game Theoretic Neural Optimizer

Lemma 10. Suppose Ht,n in (5) and Qt,n in (6) are expanded up to second-order along the same local trajectory
{(xt, θt,n, · · · , θt,N ) : ∀t ∈ [T ]}, then we will have the following relations when (Qt,nθx , Q

t,n
θθ ) := (0, I) for all stages.

∀t, Qt,nθ = Ht,n
θ , V t,nx = pt,n. (34)

Proof. Again, we will proceed the proof by induction. First, notice that V T,nx = φnx = pT,n no matter whether or not Qt,nθx
and Qt,nθθ degenerate. At the terminal stage T − 1, we have

QT−1,n
θ = `T−1,n

θ + (FT−1
θ )TV T,nx = `T−1,n

θ + (FT−1
θ )TpT,n = HT−1,n

θ .

Also, when QT−1,n
θx := 0, (10) becomes

V T−1,n
x = QT−1,n

x = (FT−1
x )TV T,nx = (FT−1

x )TpT,n = HT−1,n
x = pT−1,n.

Hence, (34) holds at T − 1. Now, suppose these relations hold at t+ 1, then

Qt,nθ = `t,nθ + (F tθ)TV t+1,n
x = `t,nθ + (F tθ)Tpt+1,n = Ht,n

θ

and similarly

V t,nx = Qt,nx = (F tx)TV t+1,n
x = (F tx)Tpt+1,n = Ht,n

x = pt,n.

Hence, we conclude the proof.

Finally, the last case follows readily by combining Lemma 9 and 10, so we conclude all proofs.

E. More on the Experiments
All experiments are run with Pytorch on the GPU machines, including GTX 1080 TI, GTX 2070, and TITAN RTX. We
preprocessed all datasets with standardization. We also perform data augmentation when training CIFAR100. Below we
detail the setup for each experiment.

Table 9. Hyper-parameter search in Table 2

Standard Baselines Learning Rate (LR)

SGD (7e-2, 5e-1)
Adam & RMSprop (7e-4, 1e-2)

EKFAC (1e-2, 3e-1)

Classification (Table 2 and 3). For CIFAR10 and CIFAR100, we use stan-
dard implementation of ResNet18 from https://pytorch.org/hub/
pytorch_vision_resnet/. As for SVHN and MNIST, the residual
network consists of 3 residual blocks. The residual block shares a sim-
ilar architecture in Fig. 2 except with the identity shortcut mapping and
without BN. We use 3×3 kernels for all convolution filters. The number
of feature maps in the convolution filters is set to 12 and 16 respectively
for MNIST and SVHN. Meanwhile, the inception network consists of a convolution layer followed by an inception
block (see Fig. 6), another convolution layer, and two fully-connected layers. Regarding the hyper-parameters used
in baselines, we select them from an appropriate search space detailed in Table 9. We use the implementation in
https://github.com/Thrandis/EKFAC-pytorch for EKFAC and implement our own EMSA in PyTorch since
the official code released from Li et al. (2017a) does not support GPU parallelization.

Ablation study (Fig. 5) Each grid in Fig. 5 corresponds to a distinct combination of baseline and dataset. Its numerical
value reports the performance difference between the following two training processes.

• Accuracy of the baseline run with the best-tuned configuration which we report in Table 2 and 3.
• Accuracy of DGNOpt with its parameter curvature set to the precondition matrix implied by the above best-tuned setup.

For instance, suppose the learning rate of EKFAC on MNIST is best-tuned to 0.01, then we simply set Qt,nθθ ≈ 0.01 ×
Qt,nθ Qt,nθ

T
for all t. From Theorem 6, these two training procedures only differ in the presence of Qt,nθx , which allows

EKFAC to adjust its update based on the change of xt ∈ ηC
t,n.

Runtime and memory complexity (Fig. 7). The numerical values are measured on the GTX 2070.

Feedback analysis (Fig. 8). We use the same inception-based network in Table 3.

https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/Thrandis/EKFAC-pytorch


DGNOpt: Dynamic Game Theoretic Neural Optimizer

Remark for EMSA (Footnote 3). Extended Method of Successive Approximations (EMSA) was originally proposed by
Li et al. (2017a) as an OCP-inspired method for training feedforward networks. It considers the following minimization,

θ∗t = arg minHρ
t (zt, zt+1,pt,pt+1, θt) ,

where Hρ
t (zt, zt+1,pt,pt+1, θt) :=Ht (zt,pt+1, θt) +

1

2
ρ ‖zt+1 − ft(zt, θt)‖2 +

1

2
ρ ‖pt −∇ztHt‖2

(35)

essentially augments the original Hamiltonian Ht with the feasibility constraints on both forward states and backward
co-states. EMSA solves the minimization (35) with L-BFGS per layer at each training iteration. In Table 2 and 3, we
extend their formula to accept Ht,n. Due to the feasibility constraints, the resulting modified Hamiltonian Hρ

t,n depends
additionally on xt+1 and pt,n; hence being different from the original Hamiltonian Ht,n. As a result, the ablation analysis
using Theorem 6 is not applicable for EMSA.

Cooperative training (Fig. 9, Fig. 11, and Table 4). The network consists of 4 convolutions followed by 2 fully-connected
layers, and is activated by ReLU. We use 3×3 kernels with 32 feature maps for all convolutions and set the batch size to 128.

Adaptive alignment with bandit (Fig. 10 and Table 5). We use the same ResNet18 as in classification for CIFAR10, and a
smaller residual network with 1 residual block for SVHN. The residual block shares the same architecture as in Fig. 2 except
without BN. All convolution layers use 3×3 kernels with 12 feature maps. Again, the batch size is set to 128. Note that in
this experiment we use a slightly larger learning rate compared with the one used in Table 2. While DGNOpt achieves better
final accuracies for both setups, in practice, the former tends to amplify the stabilization when we enlarge the information
structure during training. Hence, it differentiates DGNOpt from other baselines.

Alg. 2 presents the pseudo-code of how DGNOpt can be integrated with any generic bandit-based algorithm (marked as
blue). For completeness, we also provide the pseudo-code of EXP3++ in Alg. 3. We refer readers to Seldin & Slivkins
(2014) for the definition of ξk(m) and ηk (do not confuse with ηt,n in the main context).

Algorithm 2 DGNOpt with Multi-Armed Bandit (MAB)

Input: dataset D, network {fi(·, θi)}, number of alignments M
Initialize the multi-armed bandit MAB.init(M)
repeat

Draw an alignment m← MAB.sample().
Construct F ≡ {Ft : t ∈ [T ]} according to m.
Compute xt by propagating x0 ∼ D through F
for t = T−1 to 0 do B Solve FNE or GR

Solve the update δπ∗t,n with (9) or (11)
Solve (V t,nx ,V t,nxx ) or (W t

x,W
t
xx) with (10) or (25)

end for
Set x′0 = x0

for t = 0 to T−1 do B Update parameter
Apply θt,n←θt,n−δπ∗t,n(δxt) with δxt=x′t−xt
Compute x′t+1 = Ft(x

′
t, θt,1, · · · , θt,N )

end for
Compute the accuracy r on validation set.
Run MAB.update(r).

until converges

Algorithm 3 EXP3++ (Seldin & Slivkins, 2014)

function init(M)
(k,M)← (1,M)
∀m,Lk(m) = 0

end function

function sample()
∀m, εk(m) = min{ 1

2M , 1
2

√
lnM
kM , ξk(m)}

∀m, ρk(m) = e−ηkLk(m)/
∑
m′ e

−ηkLk(m′)

∀m, ρ̃k(m) = (1−
∑
m′ εk(m′))ρk(m) + εk(m)

Sample action according to ρ̃k(m)
end function

function update(rmk )
`mk = (1− rmk )/ρ̃k(m)
Lk+1(m) = Lk(m) + `mk
k ← k + 1

end function

Additional Experiments.

90

91
SVHN Final Accu.

N=1 2 4 6
71
72
73
74

CIFAR10 Final Accu.

0 1.5k 3k

40

80

SVHN Training Curve

N=1
2
4
6

0 3k 6k
30

60

CIFAR10 Training Curve

N=1
2
4
6

(a) (b)

Ac
cu

ra
cy

 (%
)

Train Iteration Number of Player (N)

Figure 13. (a) Training curve and (b) final accuracy as we vary the number of player
(N ) as a hyper-parameter of game-extended EKFAC. Similar to Fig. 9, we also
observe that N=2 gives the best final accuracy on both datasets.


