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1. Summary of the Appendix
In this appendix, we provide the generalization analysis of
the proposed algorithm and give the detailed proof.

2. The Theoretical Results
Generalization error for k-means clustering has been studied
by fixing the centroids obtained in the training process and
computing their generalization to unseen data (Maurer &
Pontil, 2010; Liu et al., 2016). In this section, we study how
the centroids obtained by the proposed OP-LFMVC gener-
alizes onto test data by deriving its generalization bound.

We now define the error of OP-LFMVC. Let Ĉ =
[Ĉ1, · · · , Ĉk] be the learned matrix composed of the k cen-
troids, β̂ the learned kernel weights and {Ŵp}mp=1 the trans-
formation matrices learned by the proposed OP-LFMVC. By
defining Θ = {e1, · · · , ek}, effective OP-LFMVC should
make the following error small,
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[
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〉]
, (1)

where hp(x) denotes the p-th partition vector corresponding
to the p-th view of x with ‖hp(x)‖ = 1, and e1, · · · , ek
form the orthogonal bases of Rk. Intuitively, it says that
the expected alignment between test points and their closest
centroid should be high. In the following, we show how the
proposed algorithm achieves this goal.

Let us define a function class first:
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〉 ∣∣∣∣∑m

p=1
β2
p = 1, βp ≥ 0,C ∈ Rk×k, C>C = Ik,

Wp ∈ Rk×k, W>
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.
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We have the following claim on the generalization error
bound for the proposed OP-LFMVC.
Theorem 1. For any δ > 0, with probability at least 1− δ,
the following inequality holds for all f ∈ F ,

Ex[f(x)] ≤ 1

n

n∑
i=1

f(xi) +
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π/2k√
n

+ 2

√
log 1/δ

2n
.

(3)

3. Proof of Theorem 1
In the following, we give the detailed proof of Theorem 1.
For i.i.d. given samples {xi}ni=1, OP-LFMVC minimizes
the empirical error, i.e.,
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where Θ = {e1, · · · , ek} and e1, · · · , ek form the orthogo-
nal bases of Rk.

Let

R̂(C,β, {Wp}mp=1) = 1− 1
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Our proof idea is to upper the following bound

sup
C,β,{Wp}mp=1
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]
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)
,

(6)
and then upper bound the term R̂(C,β, {Wp}mp=1) by the
proposed objective.

Let us define a function class F first:

F =
{
f : x 7→ 1−maxy∈Θ

〈∑m

p=1
βpW

>
p hp(x),Cy

〉 ∣∣∣∣∑m

p=1
β2
p = 1, βp ≥ 0,C ∈ Rk×k, C>C = Ik,

Wp ∈ Rk×k, W>
p Wp = Ik, ∀p

}
.

(7)

Then, Eq. (6) can be rewritten as,
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f∈F

(
E [f(x)]− 1

n

n∑
i=1

f(xi)

)
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It is not difficult to check that〈
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By the same way, one can readily prove that −1 ≤〈∑m
p=1 βpW

>
p hp(x),Cy

〉
≤ 1. As a result, we have

f(x) ≤ 2.

By exploiting McDiarmid’s concentration inequality, we
have the following theorem.

Theorem 2. For any δ > 0, with probability at least 1− δ,
the following holds for all f ∈ F:

E [f(x)]− 1

n
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, (10)

where

Rn(F) =
1

n
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f∈F
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γif(xi)

]
(11)

and γ1, . . . , γn are i.i.d. Rademacher random variables
uniformly distributed from {−1, 1}.

Now, we are going to upper bound Rn(F). Since there
is a maximization function in f , it is not easy to directly
upper Rn(F). Similar to the proof method in (Maurer &
Pontil, 2010), we upper bound it by introducing Gaussian
complexities:

Gn(F) =
1

n
E
[
supf∈F
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i=1
γif(xi)

]
, (12)

where γ1, . . . , γn are i.i.d. Gaussian random variables with
zero mean and unit standard deviation.

The following two lemmas (Maurer & Pontil, 2010) will be
used in our proof.

Lemma 1.

Rn(F) ≤
√
π/2Gn(F). (13)

Lemma 2. Let Gf =
∑n
i=1 γiG(xi, f) and Hf =∑n

i=1 γiH(xi, f) be two zero mean, separable Gaussian
processes. If for all f1, f2 ∈ F ,

E
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In our case, let
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and
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we are going to prove that
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Specifically, for any f1, f2 ∈ F , we have
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where the last inequality holds because

∑k
l=1 yl = 1.
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Thus, we have
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Using Hölder’s inequality and Jensen’s inequality, we have
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Combining Lemmas 1 and 2, Eqs. (12), (20), and (21), we
have

Rn(F) ≤ 1
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Putting the above inequality into Theorem 2, with proba-
bility at least 1 − δ, the following holds for all f ∈ F :

E [f(x)] ≤ 1

n

n∑
i=1

f(xi) +

√
π/2k√
n

+ 2

√
log 1/δ

2n
.

(22)
This completes the proof.
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