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This supplementary material is organized as follows. In
Section A, we present the detailed proofs of all the theo-
retical results. Section B presents the further details of the
experiments in Section 6 and additional results.

A. Detailed Proofs
We first recall an equivalent definition of epiconvergence
given in (Bonnans & Shapiro, 2013)[page 41].

Definition 1. ϕk
e−→ ϕ iff for all x ∈ Rm the following

two conditions hold:

1. For any sequence {xk} converging to x,

lim inf
k→∞

ϕk(xk) ≥ ϕ(x). (1)

2. There is a sequence {xk} converging to x such that

lim sup
k→∞

ϕk(xk) ≤ ϕ(x). (2)

For a given function f(x,y), we state the property that it
is level-bounded in y locally uniformly in x ∈ X in the
following definition.

Definition 2. Given a function f(x,y) : Rm ×Rn → R, if
for a point x̄ ∈ X ⊆ Rm, for any c ∈ R, there exist δ > 0
along with a bounded set B ∈ Rm, such that

{y ∈ Rn|f(x,y) ≤ c} ⊆ B, ∀x ∈ Bδ(x̄) ∩ X , (3)

then we call f(x,y) is level-bounded in y locally uniformly
in x̄ ∈ X . If the above property holds for each x̄ ∈ X , we
further call f(x,y) is level-bounded in y locally uniformly
in x ∈ X .

The convergence results are given under following standing
assumptions:

Assumption 1. We take the following as our blanket as-
sumption

1. S(x) is nonempty for x ∈ X .
2. Both F (x,y) and f(x,y) are jointly continuous and

continuously differentiable.

3. Either F (x,y) or f(x,y) is level-bounded in y locally
uniformly in x ∈ X .

Proposition 1. Suppose F (x,y) and f(x,y) are continu-
ously differentiable, given x ∈ X and µ, θ, τ > 0, when

y∗µ,θ,τ (x)

= argmin
y∈Rn

F (x,y) +
θ

2
‖y‖2 − τk ln(f∗µ(x)− f(x,y)),

and

z∗µ(x) = argmin
y∈Rn

f(x,y) +
µ1

2
‖y‖2 + µ2,

are unique, then ϕµ,θ,τ is differentiable and

∂ϕµ,θ,τ (x)

∂x
=
∂F (x,y∗µ,θ,τ (x))

∂x
+G(x),

where

G(x) =
τ
(
∂f(x,y∗

µ,θ,τ (x))

∂x − ∂f(x,z∗
µ(x))

∂x

)
f∗µ(x)− f(x,y∗µ,θ,τ (x))

,

and f∗µ(x) = f(x, z∗µ(x)) + µ1

2 ‖z
∗
µ(x)‖2 + µ2.

Proof. Since argminy∈Rn f(x,y) + µ1

2 ‖y‖
2 + µ2 is a sin-

gleton, it follows from (Bonnans & Shapiro, 2013)[Theorem
4.13, Remark 4.14] that

∂f∗µ(x)

∂x
=
∂
(
f(x,y) + µ1

2 ‖y‖
2 + µ2

)
∂x

∣∣∣∣∣
y=z∗

µ(x)

=
∂f(x, z∗µ(x))

∂x
.

As argminy∈Rn F (x,y)+ θ
2‖y‖

2−τ ln
(
f∗µ(x)− f(x,y)

)
is a singleton, (Bonnans & Shapiro, 2013)[Theorem 4.13,
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Remark 4.14] shows that

∂ϕµ,θ,τ (x)

∂x
=

∂
(
F (x,y) + θ

2‖y‖
2 − τ ln

(
f∗µ(x)− f(x,y)

))
∂x

|y=y∗
µ,θ,τ (x)

=
∂F (x,y∗µ,θ,τ (x))

∂x
+
τ
(
∂f(x,y∗

µ,θ,τ (x))

∂x − ∂f∗
µ(x)

∂x

)
f∗µ(x)− f(x,y∗µ,θ,τ (x))

=
∂F (x,y∗µ,θ,τ (x))

∂x
+
τ
(
∂f(x,y∗

µ,θ,τ (x))

∂x − ∂f(x,z∗
µ(x))

∂x

)
f∗µ(x)− f(x,y∗µ,θ,τ (x))

.

Lemma 1. Let {µk} be a positive sequence such that µk →
0. Then for any sequence {xk} converging to x̄,

lim sup
k→∞

f∗µk(xk) ≤ f∗(x̄).

Proof. For any ε > 0, there exists ȳ ∈ Rn such that
f(x̄, ȳ) ≤ f∗(x̄) + ε. And as µk → 0, we can find k1 > 0
such that

f(x̄, ȳ) +
µk,1

2
‖ȳ‖2 + µk,2 ≤ f∗(x) + 2ε

for all k ≥ k1. Next, as {xk} converging to x̄, it follows
from the continuity of f(x,y) that there exists k2 ≥ k1
such that f(xk, ȳ) ≤ f(x̄, ȳ) + ε for any k ≥ k2 and thus

f∗µk(xk) ≤ f(xk, ȳ) +
µk,1

2
‖ȳ‖2 + µk,2 ≤ f∗(x) + 3ε

for all k ≥ k2. By letting k →∞, we obtain

lim sup
k→∞

f∗µk(xk) ≤ f∗(x̄) + 3ε,

and taking ε→ 0 in the above inequality yields the conclu-
sion.

Let ψµ(x) denote the value function of following relaxed
problem:

ψµ(x) = min
y∈Rn

F (x,y), s.t.− 1 ≤ f(x,y)− f∗µ(x) ≤ 0.

Lemma 2. Given x ∈ X , suppose either F (x,y) or f(x,y)
is level-bounded in y locally uniformly in x. Let {µk} be
a positive sequence such that µk → 0, and then for any
sequence {xk} converging to x,

lim inf
k→∞

ψµk(xk) ≥ ϕ(x). (4)

Proof. We assume to arrive a contradiction that there exists
x̄ ∈ Rm satisfying xk → x̄ as k → ∞ with following
inequality

lim inf
k→∞

ψµk(xk) < ϕ(x̄).

Then, there exist ε > 0 and sequences xk → x̄ and {yk}
satisfying

−1 ≤ f(xk,yk)− f∗µk(xk) ≤ 0 (5)
F (xk,yk) ≤ ψµk(xk) + ε < ϕ(x̄)− ε. (6)

Then it follows from Lemma 1 that

lim sup
k→∞

f(xk,yk) ≤ lim sup
k→∞

f∗µk(xk) ≤ f∗(x̄). (7)

Since either F (x,y) or f(x,y) is level-bounded in y locally
uniformly in x̄, we have that {yk} is bounded. Take a
subsequence {yt} of {yk} such that yt → ŷ. Then, it
follows from Eq. (5), Eq. (7) and the continuity of f(x,y)
that

f(x̄, ŷ) ≤ lim sup
t→∞

f(xt,yt) ≤ f∗(x̄),

and thus
ŷ ∈ S(x̄).

Then, Eq. (6) yields that

ϕ(x̄) ≤ F (x̄, ŷ) ≤ lim sup
k→∞

F (xk,yk) ≤ ϕ(x̄)− ε,

which implies a contradiction. Thus we get the conclusion.

Lemma 3. Let {(µk, θk, τk)} be a positive sequence such
that (µk, θk, τk) → 0 and τk lnµk,2 → 0. Then for any
x ∈ X ,

lim sup
k→∞

ϕk(x) ≤ ϕ(x).

Proof. Given any x ∈ X , for any ε > 0, there exists ȳ ∈
Rn satisfying f(x, ȳ) ≤ f∗(x) and F (x, ȳ) ≤ ϕ(x) + ε.
As f∗(x) + µk,2 ≤ f∗µk(x), and by the definition of ϕk, we
have

ϕk(x) ≤ F (x, ȳ) +
θk
2
‖ȳ‖2 − τk ln

(
f∗µk(x)− f(x, ȳ)

)
≤ ϕ(x) + ε+

θk
2
‖ȳ‖2 − τk lnµk,2.

By taking k → ∞ in above inequality, as θk → 0 and
τk lnµk,2 → 0, we have

lim sup
k→∞

ϕk(x) ≤ ϕ(x) + ε.

Then, we get the conclusion by letting ε→ 0.

Proposition 2. Suppose either F (x,y) or f(x,y) is level-
bounded in y locally uniformly in x ∈ X . Let {(µk, θk, τk)}
be a positive sequence such that (µk, θk, τk) → 0 and
τk lnµk,2 → 0, and then

ϕk(x) + δX (x)
e−→ ϕ(x) + δX (x). (8)
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Proof. To prove the epiconvergence of ϕk to ϕ, we just
need to verify that sequence {ϕk} satisfies the two condi-
tions given in Definition 2. Considering any sequence {xk}
converging to x̄, since

F (x,y) ≤ F (x,y)+
θk
2
‖y‖2−τk ln

(
f∗µk(x)− f(x,y)

)
,

for any (x,y) ∈ Rm × Rn satisfying −1 ≤ f(x,y) −
f∗µ(x) < 0, then we have

ψµk(xk) ≤ ϕk(xk), ∀k.

By taking k → ∞ in above inequality, we obtain from
Lemma 2 that when x̄ ∈ X ,

ϕ(x̄) + δX (x̄) = ϕ(x̄)

≤ lim inf
k→∞

ψµk(xk)

≤ lim inf
k→∞

ϕk(xk)

≤ lim inf
k→∞

ϕk(xk) + δX (xk).

We have lim infk→∞ ϕk(xk) + δX (xk) = +∞ when x̄ /∈
X , as X is closed. And thus condition 1 in Definition 2 is
satisfied. Next, for any x ∈ Rm, if x ∈ X , then it follows
from Lemma 3 that

lim sup
k→∞

ϕk(x) + δX (x) ≤ ϕ(x) + δX (x).

When x /∈ X , we have ϕ(x) + δX (x) = +∞. Thus con-
dition 2 in Definition 2 is satisfied. Therefore, we get the
conclusion immediately from Definition 2.

Theorem 1. Suppose either F (x,y) or f(x,y) is level-
bounded in y locally uniformly in x ∈ X . Let {(µk, θk, τk)}
be a positive sequence such that (µk, θk, τk) → 0 and
τk lnµk,2 → 0. Then

1. We have the following inequality

lim sup
k→∞

(
inf
x∈X

ϕk(x)

)
≤ inf

x∈X
ϕ(x). (9)

2. If x` ∈ argminx∈Xϕ`(x), for some sequence {`} ⊂ N
and x` converges to x̃, then x̃ ∈ argminx∈Xϕ(x) and

lim
`→∞

(
inf
x∈X

ϕ`(x)

)
= inf

x∈X
ϕ(x). (10)

Proof. According to Proposition 2, we know that

ϕk(x) + δX (x)
e−→ ϕ(x) + δX (x).

Then the conclusion follows from (Bonnans & Shapiro,
2013)[Proposition 4.6].
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Figure 1. Convergence results for different regularization coeffi-
cients in different initialization settings.

B. Experiments
We use PyTorch 1.6 as our computational framework and
base our implementation on (Grefenstette et al., 2019;
Grazzi et al., 2020). In all the experiments, we use the
Adam method for accelerating the gradient descent of x.
We conducted these experiments on a PC with Intel Core
i7-9700F CPU, 32GB RAM and an NVIDIA RTX 2060S
8GB GPU.

B.1. Numerical Experiment

In numerical experiment, we set T = 100 for ex-
plicit method RHG, T = 100, J = 20 for implicit
method CG, and µ2 = f(x, y) + 1, (µk,1, θk, τk) =
(1.0, 1.0, 1.0)/1.01k, step sizes s1, s2 and α all equal to
0.01, Tz = 50, Ty = 25, and L = 1 in BVFIM.

We can see that our method has a weaker convergence in LL
problem than the existing method under proper initialization
(i.e., the initial point is within a locally convex neighbor-
hood of the global optimal point). This is because the main
purpose of our experiment is to compare the convergence
behavior between different methods and scenarios, so we
have not carefully adjusted the regularization coefficients of
our methods in order to better show the differences. To ver-
ify that our method can also converge as well as the existing
methods under proper initialization, we show how to obtain
better convergence performance by adjusting τ in Figure 1.
It can be seen that an appropriate τ can greatly improve the
convergence behavior. In addition, we validate this with a
larger LLC problem in the section B.3.

B.2. Hyperparameter Optimization

In hyperparameter optimization, we set T = 100 for ex-
plicit method RHG, TRHG and BDA, T = 100, J = 20
for implicit method CG and Neumann, and µ2 = f(x,y),
(µk,1, θk, τk) = (1.0, 1.0, 1.0)/1.01k, step sizes s1, s2 and
α all equal to 0.01, Tz = 50, Ty = 25, and L = 1 for BV-
FIM. We let TRHG truncate at T/2 and αk = 0.5× 0.999k

in BDA.

We set the training set, validation set, and test set as class bal-
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Figure 2. F (x,y) and F1 score between existing methods and
BVFIM. The curves are based on the MNIST and CIFAR10 exper-
iment. The legend is only plotted in the second subfigure.
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Figure 3. Comparison of calculation time of IGBMs and BVFIM
under different LL parameter quantities.

anced. For each contaminated training sample, we randomly
replace its label with a label different from the original one
with equal probability. In the calculation of F1 score, if
xi ≤ 0, we marks the sample ui as contaminated. In the
CIFAR10 experiment, we used an early stop strategy to
avoid over-fitting and report the best results achieved. Since
Ty gradient descent require ∂F

∂y and ∂f
∂y separately, we set

Tz + 2× Ty = T to fairly compare the time consumed by
the algorithm. The UL objective and F1 scores of BVFIM
and compared methods on the MNIST and CIFAR10 dataset
are plotted in Figure 2.

In addition, we verify the computation time variation of
BVFIM and existing gradient-based methods under differ-
ent LL variable dimensions on the FashionMNIST and CI-
FAR10 dataset. In order to show the comparison results
more clearly, we compared with IGBMs which are faster
in the existing gradient-based methods. Figure 3 shows the
computation time with different LL variable parameter quan-
tities. It can be seen that BVFIM is faster than IGBMs at
different parameter quantities, and this advantage becomes
more significant as the number of LL parameters increases.

Table 1. The averaged few-shot classification accuracy on Om-
niglot and MiniImageNet (M=1)

Alg. Omniglot MiniImagenet
5-way 20-way 5-way

RHG 98.60 95.50 48.89
TRHG 98.74 95.82 47.67
BDA 99.04 96.50 49.08
BVFIM 98.85 95.55 49.28

B.3. Additional LLC Experiments

To verify the validity of the BVFIM method in conventional
LLC problems, we supplemented a meta-learning experi-
ment. The goal of meta-learning is to learn an algorithm
that can handle new tasks well. In particular, we consider
the few-shot learning problem, where each task is a N-way
classification and it aim to learn the hyperparameter x so
that each task can be solved by only M training samples.
(i.e. N-way M-shot)

Similar to recent work (Franceschi et al., 2018; Liu et al.,
2020), we modeled the network in two parts: a four-layer
convolution network x as a common feature extraction layer
between different tasks, and logical regression layer y = yi

as separate classifier for each task. We also set dataset
as D = {Dj}, where Di = Ditr ∪ Dival is for the i-th
task. Then we set the loss function of the j-th task to
CE(x,yi;Ditr) for the LL problem, thus the LL objective
can be defined as

f(x,y) =
∑
i

CE(x,yi;Di
tr)

As for the UL objective, we also utilize cross-entropy func-
tion but define it based on {Di

val} as

F (x,y) =
∑
i

CE(x,yi;Di
val)

Our experiment was performed on two widely used bench-
mark datasets: Omniglot (Lake et al., 2015), which contains
examples of 1623 different handwritten characters from 50
alphabets and MiniImagenet (Vinyals et al., 2016), which
is a subset of ImageNet (Deng et al., 2009) that contains
60000 downsampled images from 100 different classes. We
compared our BVFIM to several approaches, such as RHG,
TRHG and BDA (Liu et al., 2020).

For RHG, TRHG and BDA, we follow the settings in (Liu
et al., 2020). For BVFIM, we set Tz = 5, Ty = 10,
µ2 = f(x,y), (µk,1, θk, τk) = (1, 0.1, 10)/k, step sizes
(s1, s2, α) = (0.01, 0.01, 0.001), L = 1 and K = 50000.
We set meta-batch size of 16 episodes for Omniglot dataset
and of 4 episodes for Miniimagenet dataset. We set y0

k,l =

zTz

k,l to warm up.



Supplementary Materials for “A Value-Function-based Interior-point Method for Non-convex Bilevel Optimization”

It can be seen in Table 1 that BVFIM can get slightly poorer
performance than existing methods on Omniglot dataset and
get the best performance on MiniimageNet dataset, which
proves that our method can also obtain competitive results
for LLC problems.
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