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A. Proofs of Theorems 1 and 2
In this section, we present the detailed proof of the main
results of our paper, i.e., Theorem 1 and 2. We begin with
the proof of Theorem 1.

Before the proof, we introduce some necessary notation.
Let φ be the feature vector of a random state generated
according to the stationary distribution π . In other words,
φ = φ(sk) with probability πsk . Let φ ′ be the feature vector
of the next state s′ and let r = r(s,s′). Thus φ and φ ′ are
random vectors and r is a random variable. As shown in
Equation (2) of Bhandari et al. (2018), ḡ(θ) can be written
as

ḡ(θ) = E [φr]+E
[
φ(γφ

′−φ)T ]
θ .

With these notation in place, we begin the proof of Theorem
1.

Proof of Theorem 1. Recall that θ ∗ is the unique vector
with ḡ(θ ∗) = 0 (see Lemma 6 in (Tsitsiklis & Van Roy,
1997)). Consider

ḡ(θ) = ḡ(θ)− ḡ(θ ∗) = E
[
φ(γφ

′−φ)T ](θ −θ
∗). (13)

To conclude that ḡ(θ) is a splitting of the gradient for a
quadratic form f (θ), we need to calculate the gradient of
f (θ). Let us begin with the Dirichlet norm and perform the
following sequence of manipulations:

‖Vθ −Vθ ∗‖2
Dir

=
1
2 ∑

s,s′∈S
π(s)P(s,s′)

[
Vθ ∗(s)−Vθ (s)−Vθ ∗(s

′)+Vθ (s
′)
]2

=
1
2 ∑

s,s′∈S
π(s)P(s,s′)

[
(Vθ ∗(s)−Vθ (s))

2 +
(
Vθ ∗(s

′)−Vθ (s
′)
)2
]

− ∑
s,s′∈S

π(s)P(s,s′)(Vθ ∗(s)−Vθ (s))
(
Vθ ∗(s

′)−Vθ (s
′)
)

=
1
2 ∑

s∈S
π(s)

(
∑

s′∈S
P(s,s′)

)
(Vθ ∗(s)−Vθ (s))

2

+
1
2 ∑

s′∈S

(
∑

s∈S
π(s)P(s,s′)

)
(Vθ ∗(s

′)−Vθ (s
′))2

− ∑
s,s′∈S

π(s)P(s,s′)(θ −θ
∗)T

φ(s)φ(s′)T (θ −θ
∗)

=
1
2 ∑

s∈S
π(s)(Vθ (s)−Vθ ∗(s))

2 +
1
2 ∑

s′∈S
π(s′)

(
Vθ (s

′)−Vθ ∗(s
′)
)2

− (θ −θ
∗)T E

[
φφ
′T
]
(θ −θ

∗)

=‖Vθ −Vθ ∗‖2
D− (θ −θ

∗)T E
[
φφ
′T
]
(θ −θ

∗). (14)

In the above sequence of equations, the first equality is just
the definition of Dirichlet seminorm; the second equality
follows by expanding the square; the third equality follows
by interchanging sums and the definition of Vθ ; the fourth

equality uses that π is a stationary distribution of P, as well
as the definition of φ and φ ′; and the final equality uses the
definition of the || · ||D norm.

Our next step is to use the identity we have just derived to
rearrange the definition of ‖Vθ −Vθ∗‖2

D:

‖Vθ −Vθ∗‖2
D = (Vθ −Vθ∗)

T D(Vθ −Vθ∗)

=(θ −θ
∗)T

Φ
T DΦ(θ −θ

∗)

=(θ −θ
∗)T

∑
s∈S

π(s)φ(s)φ(s)T (θ −θ
∗)

=(θ −θ
∗)T E[φφ

T ](θ −θ
∗). (15)

We now use these identities to write down a new expression
for the function f (θ):

f (θ) =(1− γ)||Vθ −Vθ∗ ||2D + γ||Vθ −Vθ∗ ||2Dir

=(1− γ)||Vθ −Vθ∗ ||2D
+ γ
(
||Vθ −Vθ∗ ||2D− (θ −θ

∗)T E
[
φφ
′T ](θ −θ

∗)
)

=||Vθ −Vθ∗ ||2D− γ(θ −θ
∗)T E

[
φφ
′T ](θ −θ

∗)

=(θ −θ
∗)T E[φφ

T ](θ −θ
∗)

− γ(θ −θ
∗)T E

[
φφ
′T ](θ −θ

∗)

=(θ −θ
∗)T E

[
φ(φ − γφ

′)T ](θ −θ
∗).

In the above sequence of equations, the first equality is
just the definition of f (θ); the second equality is obtained
by plugging in Eq. (14); the third equality is obtained by
cancellation of terms; the fourth equality is obtained by
plugging in Eq. (15); and the last step follows by merging
the two terms together.

As a consequence of writing f (θ) this way, we can write
down a new expression for the gradient of f (θ) directly:

O f (θ) =
(
E
[
φ(φ − γφ

′)T ]+E
[
(φ − γφ

′)φ T ])(θ −θ
∗).

(16)
Combining Equations (13) and (16), it is immediately that
−ḡ(θ) is a splitting of O f (θ). �

We next turn to the proof of Theorem 2. Before beginning
the proof, we introduce some notation.

The operator T (λ ) is defined as:(
T (λ )J

)
(s)

=(1−λ )
∞

∑
m=0

λ
mE

[
m

∑
t=0

γ
tr(st ,st+1)+ γ

m+1J(sm+1)|s0 = s

]
(17)

for vectors J ∈ Rn. The expectation is taken over sample
paths taken by following actions according to policy µ;
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recalling that this results in the transition matrix P, we can
write this as

T (λ )J

=(1−λ )
∞

∑
m=0

λ
m

m

∑
t=0

γ
tPtR+(1−λ )

∞

∑
m=0

λ
m

γ
m+1Pm+1J.

(18)

We next devise new notation that is analogous to the TD(0)
case. Let us denote the quantity δtzt by x(θt ,zt) and its
steady-state mean by x̄(θ). It is known that

x̄(θ) = Φ
T D
(

T (λ )(Φθ)−Φθ

)
, (19)

see Lemma 8 of Tsitsiklis & Van Roy (1997); it also shown
there that TD(λ ) converges to a unique fixed point of a
certain Bellman equation which we’ll denote by θ ∗

λ
, and

which satisfies
x̄(θ ∗

λ
) = 0. (20)

With these preliminaries in place, we can begin the proof.

Proof of Theorem 2. By the properties of T (λ ) and x̄(θ)
given in Equations (19) and (17) respectively, we have

x̄(θ) =x̄(θ)− x̄(θ∗
λ
)

=Φ
T D
(

T (λ ) (Φθ)−Φθ

)
−Φ

T D
(

T (λ )
(
Φθ
∗
λ

)
−Φθ

∗
λ

)
=Φ

T D
(

T (λ )(Φθ)−T (λ )(Φθ
∗
λ
)−Φ(θ −θ

∗
λ
)
)

=

[
(1−λ )

∞

∑
m=0

λ
m

γ
m+1

Φ
T DPm+1

Φ−Φ
T DΦ

]
(θ −θ

∗
λ
),

(21)

where the last line used Eq. (18).

Our next step is to derive a convenient expression for
f (λ )(θ). We begin by finding a clean expression for the
Dirichlet form that appears in the definition of f (λ )(θ):

‖Vθ −Vθ ∗
λ
‖2

Dir,m+1

=
1
2 ∑

s,s′∈S
πsPm+1(s,s′)(Vθ (s)−Vθ ∗

λ
(s)−Vθ (s

′)+Vθ ∗
λ
(s′))2

=
1
2 ∑

s,s′∈S
πsPm+1(s,s′)

[
(Vθ (s)−Vθ ∗

λ
(s))2 +(Vθ (s

′)−Vθ ∗
λ
(s′))2

]
− ∑

s,s′∈S
πsPm+1(s,s′)

(
Vθ (s)−Vθ ∗

λ
(s)
)(

Vθ (s
′)−Vθ ∗

λ
(s′)
)

=
1
2 ∑

s∈S
πs

(
∑

s′∈S
Pm+1(s,s′)

)
(Vθ (s)−Vθ ∗

λ
(s))2

+
1
2 ∑

s′∈S

(
∑

s∈S
πsPm+1(s,s′)

)
(Vθ (s

′)−Vθ ∗
λ
(s′))2

− ∑
s,s′∈S

πsPm+1(s,s′)
(

Vθ (s)−Vθ ∗
λ
(s)
)(

Vθ (s
′)−Vθ ∗

λ
(s′)
)

=
1
2 ∑

s∈S
πs(Vθ (s)−Vθ ∗

λ
(s))2 +

1
2 ∑

s′∈S
πs′(Vθ (s

′)−Vθ ∗
λ
(s′))2

− ∑
s,s′∈S

πsPm+1(s,s′)
(

Vθ (s)−Vθ ∗
λ
(s)
)(

Vθ (s
′)−Vθ ∗

λ
(s′)
)

= ∑
s∈S

πs(Vθ (s)−Vθ ∗
λ
(s))2

− ∑
s∈S

πs

(
Vθ (s)−Vθ ∗

λ
(s)
)

∑
s′∈S

Pm+1(s,s′)
(

Vθ (s
′)−Vθ ∗

λ
(s′)
)

=(θ −θ
∗
λ
)T
(

Φ
T DΦ−Φ

T DPm+1
Φ

)
(θ −θ

∗
λ
). (22)

In the above sequence of equations, the first equality follows
by the definition of the m+ 1-Dirichlet norm; the second
equality follows by expanding the square; the third equal-
ity follows by interchanging the order of summations; the
fourth equality uses that any power of a stochastic matrix is
stochastic, and the πPm+1 = π; the fifth equality combines
terms and rearranges the order of summation; and the last
line uses the definition Vθ = Φθ .

We’ll also make use of the obvious identity

‖Vθ −Vθ∗
λ
‖2

D = (θ −θ
∗
λ
)T

Φ
T DΦ(θ −θ

∗
λ
). (23)

Putting all these together, we can express the function
f (λ )(θ) as:

f (λ )(θ)

=(1− γκ)||Vθ −Vθ∗
λ
||2D

+(1−λ )
+∞

∑
m=0

λ
m

γ
m+1||Vθ −Vθ∗

λ
||2Dir,m+1

=(θ −θ
∗
λ
)T [(1− γκ)ΦT DΦ

+(1−λ )
∞

∑
m=0

λ
m

γ
m+1

Φ
T D(I−Pm+1)Φ

]
(θ −θ

∗
λ
)

=(θ −θ
∗
λ
)T

[(
(1− γκ)+(1−λ )

∞

∑
m=0

λ
m

γ
m+1

)
Φ

T DΦ

−(1−λ )
∞

∑
m=0

λ
m

γ
m+1

Φ
T DPm+1

Φ

]
(θ −θ

∗
λ
)

=(θ −θ
∗
λ
)T
[(

(1− γκ)+ γ
1−λ

1− γλ

)
Φ

T DΦ

−(1−λ )
∞

∑
m=0

λ
m

γ
m+1

Φ
T DPm+1

Φ

]
(θ −θ

∗
λ
)

=(θ −θ
∗
λ
)T [

Φ
T DΦ

−(1−λ )
∞

∑
m=0

λ
m

γ
m+1

Φ
T DPm+1

Φ

]
(θ −θ

∗
λ
).

In the above sequence of equations, the first equality is from
the definition of the function f (λ )(θ); the second line comes
from plugging in Eq. (23) and Eq. (22); the third equality
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from breaking the sum in the second term into two pieces,
one of which is then absorbed into the first term; the fourth
equality follows by using the sum of a geometric series; and
the last equality by the definition of κ from the theorem
statement, which, recall, is κ = (1−λ )/(1− γλ ).

By comparing the expression for f (λ )(θ) we have just de-
rived to Eq. (21), it is immediate that −x̄(θ) is a splitting of
the gradient of f (λ )(θ). �

B. Proof of Corollary 2
We will find it convenient to use several observations made
in (Bhandari et al., 2018). First, Lemma 6 of that paper says
that, under the assumptions of Corollary 2, we have that

‖gt(θt)‖2 ≤ G = rmax +2Rθ . (24)

This holds with probability one; note, however, that because
the number of states and actions is finite, this just means
one takes the maximum over all states and actions to obtain
this upper bound.

A second lemma from (Bhandari et al., 2018) deals with a
measure of “gradient bias,” the quantity ζt(θ) = (ḡ(θ)−
gt(θ))

T (θ ∗−θ). As should be unsurprising, what matters
in the analysis is not the natural measure of gradient bias,
e.g., ḡ(θ)−gt(θ), but rather how the angle with the direc-
tion to the optimal solution is affected, which is precisely
what is measured by ζt(θ). We have the following upper
bound.

Lemma 1 (Lemma 11 in (Bhandari et al., 2018)). Consider
a non-increasing step-size sequence, α0 ≥ α1 ≥ ·· · ≥ αT .
Fix any t < T , and set t∗ = max{0, t− τmix(αT )}. Then

E[ζt(θt)]≤ G2
(

4+6τ
mix(αT )

)
αt∗ .

With these preliminaries in place, we are now ready to prove
the corollary. The proof follows the steps of (Sun et al.,
2018) to analyze Markov gradient descent, using the fact
that the gradient splitting has the same inner product with
the direction to the optimal solution as the gradient.

Proof of Corollary 2. From the projected TD(0) recursion,
for any t,

‖θ ∗−θt+1‖2
2

=‖θ ∗−ProjΘ (θt +αtgt(θt))‖2
2

≤‖θ ∗−θt −αtgt(θt)‖2
2

=‖θ ∗−θt‖2
2−2αtgt(θt)

T (θ ∗−θt)+α
2
t ‖gt(θt)‖2

2

=‖θ ∗−θt‖2
2−2αt

[
ḡ(θt)

T − (ḡ(θt)−gt(θt))
T ](θ ∗−θt)

+α
2
t ‖gt(θt)‖2

2

≤‖θ ∗−θt‖2
2−2αt ḡ(θt)

T (θ ∗−θt)+2αtζt(θt)+α
2
t G2.

In the above sequence of equations, all the equalities are
just rearrangements of terms; whereas the first inequality
follows that the projection onto a convex set does not in-
crease distance, while the second inequality follows by Eq.
(24).

Next we use Corollary 1, rearrange terms, and sum from
t = 0 to t = T −1:

T−1

∑
t=0

2αtE
[
(1− γ)‖Vθ∗ −Vθt‖

2
D + γ‖Vθ∗ −Vθt‖

2
Dir
]

≤
T−1

∑
t=0

(
E
[
‖θ ∗−θt‖2

2
]
−E

[
‖θ ∗−θt+1‖2

2
])

+
T−1

∑
t=0

α
2
t G2

+
T−1

∑
t=0

2αtE [ζt(θt)]

=
(
‖θ ∗−θ0‖2

2−E
[
‖θ ∗−θT‖2

2
])

+
T−1

∑
t=0

α
2
t G2

+
T−1

∑
t=0

2αtE [ζt(θt)]

≤‖θ ∗−θ0‖2
2 +

T−1

∑
t=0

2αtE [ζt(θt)]+
T−1

∑
t=0

α
2
t G2.

Now plugging in the step-sizes α0 = · · ·= αT = 1/
√

T , it
is immediate that

T−1

∑
t=0

E
[
(1− γ)‖Vθ∗ −Vθt‖

2
D + γ‖Vθ∗ −Vθt‖

2
Dir
]

≤
√

T
2
(
‖θ ∗−θ0‖2

2 +G2)+ T−1

∑
t=0

E [ζt(θt)] .

Using Lemma 1, have that

T−1

∑
t=0

E [ζt(θt)]≤
T−1

∑
t=0

G2
(

4+6τ
mix(αT )

)
αt∗

=
√

T G2
(

4+6τ
mix
(

1/
√

T
))

.

Putting all this together and using the convexity of the func-
tion f (θ), we can bound the error at the average iterate
as:

E
[
(1− γ)‖Vθ∗ −V

θ̄T
‖2

D + γ‖Vθ∗ −V
θ̄T
‖2

Dir
]

≤ 1
T

T−1

∑
t=0

E
[
(1− γ)‖Vθ∗ −Vθt‖

2
D + γ‖Vθ∗ −Vθt‖

2
Dir
]

≤‖θ
∗−θ0‖2

2 +G2

2
√

T
+

G2
(
4+6τmix

(
1/
√

T
))

√
T

=
‖θ ∗−θ0‖2

2 +G2
(
9+12τmix

(
1/
√

T
))

2
√

T
.

�
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C. Proof of Corollary 3
Before starting the proof, we will need a collection of defi-
nitions, observations, and preliminary lemmas. We organize
these into subheadings below.

The Dirichlet Laplacian. Let L = (L(i, j))n×n be a sym-
metric matrix in Rn×n defined as

L(i, j) =
{
−(1/2)(πiP(i, j)+π jP( j, i)) if i 6= j

∑i′ 6=i |L(i, i′)| if i = j .

It is immediate that the diagonal elements of L are positive
and its rows sum to zero.

Furthermore, it can be shown that for any vector x, we have
that ‖x‖2

Dir = xT Lx. Indeed:

xT Lx =
n

∑
i=1

[
∑
j 6=i
−1

2
(πiP(i, j)+π jP( j, i))x(i)x( j)

+

(
∑
j 6=i

1
2
(πiP(i, j)+π jP( j, i))

)
x(i)2

]

= ∑
i< j

1
2
(πiP(i, j)+π jP( j, i))(x(i)− x( j))2

=
1
2 ∑

i, j∈[n]

1
2
(πiP(i, j)+π jP( j, i))(x(i)− x( j))2

=
1
2 ∑

i, j∈[n]
πiP(i, j)(x(i)− x( j))2 = ‖x‖2

Dir.

Connection to the reversed chain. We remark that the
matrix L is connected to the so-called “additive reversibi-
lization” of the matrix P, which we explain next. For a
stochastic matrix P with stationary distribution π , it is natu-
ral to define the matrix P∗ as

[P∗]i j =
π( j)
π(i)

Pji.

It is possible to verify that the matrix P∗ has the same station-
ary distribution as the matrix P (see Aldous & Fill (1995)).
Intuitively, the equality

π(i)[P∗]i j = π( j)Pji,

means that it is natural to interpret P∗ as the “reversed” chain
of P: for all pairs i, j, the link from i to j is traversed as
often under the stationary distribution in P∗ as the link from
j to i in P.

It can then be shown that the matrix Q = (P+P∗)/2 is
reversible (see (Aldous & Fill, 1995)); this matrix is called
the “additive reversibilization” of the matrix P. It is easy
to see that Q = I−D−1L; indeed, both the left-hand side
and the right-hand side have the same off-diagonal entries

and have rows that sum to one. Because Q is reversible, its
spectrum is real.

The matrix D−1L is clearly similar to the symmetric ma-
trix D−1/2LD−1/2 and thus has a real spectrum, with all the
eigenvalues nonnegative. Moreover, D−1L has an eigen-
value of zero as D−1L1 = 0. As a consequence of these two
observations, if we denote by r(P) the spectral gap of the
matrix Q, then we have

r(P) =
1

1−λ2(Q)
=

1
λn−1(D−1L)

, (25)

where λn−1(D−1L) is the second smallest eigenvalue of
D−1L.

Equivalence of norms on 1⊥. We will need to pass be-
tween the || · ||D norm and the || · ||Dir norm. To that end, we
have the following lemma.
Lemma 2. For any x with 〈x,111〉D = 0, we have that

‖x‖2
D ≤ r(P)‖x‖2

Dir.

Proof. Indeed,

min
〈x,111〉D=0

‖x‖2
Dir

‖x‖2
D

= min
〈x,111〉D=0

xT Lx
〈x,x〉D

= min
〈x,111〉D=0

〈
x,D−1Lx

〉
D

〈x,x〉D
.

We next observe that the matrix D−1L is self adjoint in the
〈·, ·〉D inner product:

〈x,D−1Ly〉D = xT Ly = 〈D−1Lx,y〉D.

Since the smallest eigenvalue of D−1L is zero with asso-
ciated eigenvector of 1, by the Rayleigh-Ritz theorem we
have

min
〈x,111〉D=0

〈
x,D−1Lx

〉
D

〈x,x〉D
= λn−1(D−1L).

Putting it all together, we obtain

‖x‖2
Dir

‖x‖2
D
≥ λn−1(D−1L) = r(P)−1,

where the last step used Eq. (25). This completes the
proof. �

Error in mean estimation.

Recall that we set V̂T be an estimate for the mean of value
function in Algorithm 1. Our next lemma upper bounds the
error in the estimate V̂T .
Lemma 3. Suppose that V̂T is generated by Algorithm
1 and V̄ = πTV denote the mean of value function. Let
t0 = max

{
t ∈ N|t0 ≤ 2τmix

(
1

2(t0+1)

)}
. Then, for t > t0,

we have

E
[(

V̂t −V̄
)2
]
≤ O

 r2
maxτmix

(
1

2(t+1)

)
(1− γ)2t

 .
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Proof. By the definition of V̂t and Āt given in Algorithm 1,
we can write the recursion:

V̂t =
Āt

1− γ
=

1
1− γ

[
Āt−1 +

1
t +1

(rt − Āt−1)

]
=V̂t−1 +

1
t +1

(
rt

1− γ
−V̂t−1

)
.

We next use this recursion to argue:

E
[(

V̂t −V̄
)2
]

=E

[(
V̂t−1 +

1
t +1

(
rt

1− γ
−V̂t−1

)
−V̄

)2
]

=E

[(
V̂t−1−V̄

)2
+

1
(t +1)2

(
rt

1− γ
−V̂t−1

)2
]

+E
[

2
t +1

(
rt

1− γ
−V̂t−1

)(
V̂t−1−V̄

)]
=E

[(
V̂t−1−V̄

)2
+

1
(t +1)2

(
rt

1− γ
−V̂t−1

)2
]

+E
[

2
t +1

(
rt

1− γ
−V̄ −V̂t−1 +V̄

)(
V̂t−1−V̄

)]
=E

[(
1− 2

t +1

)(
V̂t−1−V̄

)2
+

1
(t +1)2

(
rt

1− γ
−V̂t−1

)2
]

+E
[

2
t +1

(
rt

1− γ
−V̄

)(
V̂t−1−V̄

)]
. (26)

To bound the second term on the right-hand side of Eq. (26),
we will use that, since rmax is the upper bound on absolute
values of the rewards, we have that(

rt

1− γ
−V̂t−1

)2

≤
(

rmax

1− γ
+

rmax

1− γ

)2

=
4r2

max

(1− γ)2 .

We next analyze the third term on the right-hand side of Eq.
(26). Let τt = τmix

(
1

2(t+1)

)
so that for any state s′′,

n

∑
s=1
|Pτt (s′′,s)−πs|= 2dTV(Pτt (s′′, ·),π)≤ 2mρ

τt ≤ 1
t +1

.

(27)
We have that

E
[(

rt

1− γ
−V̄

)(
V̂t−1−V̄

)]
=E
[(

rt

1− γ
−V̄

)(
V̂t−1−V̂t−1−τt +V̂t−1−τt −V̄

)]
=E
[(

rt

1− γ
−V̄

)(
V̂t−1−V̂t−1−τt

)]
+E

[(
rt

1− γ
−V̄

)(
V̂t−1−τt −V̄

)]
.

We now bound each of the two terms in the last equation
separately. For the first term, we have

E
[(

rt

1− γ
−V̄

)(
V̂t−1−V̂t−1−τt

)]

≤2rmax

1− γ

t−1

∑
d=t−τt

E
[
|V̂d−V̂d−1|

]
=

2rmax

1− γ

t−1

∑
d=t−τt

1
d +1

E
[∣∣∣∣ rd

1− γ
−V̂d−1

∣∣∣∣]

≤ 4r2
max

(1− γ)2

t−1

∑
d=t−τt

1
d +1

≤O
(

τtr2
max

(1− γ)2(t +1)

)
,

where the last inequality follows from t > 2τt (which in turn
follows from t ≥ t0).

For the second term, we denote the following sigma al-
gebra χ t denote the sigma algebra generated by the infor-
mation collected by time t, i.e., by the random variables
s0,r0,θ0, · · · ,st ,rt ,θt . We then have that

E
[(

rt

1− γ
−V̄

)(
V̂t−1−τt −V̄

)]
=E
[

E
[(

rt

1− γ
−V̄

)(
V̂t−1−τt −V̄

)
|χ t−1−τt

]]
=E

[
n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)
(
V̂t−1−τt −V̄

)
Pτt (st−1−τt ,s)

]

=E

[
n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)
(
V̂t−1−τt −V̄

)
(Pτt (st−1−τt ,s)−πs +πs)

]

=E

[
n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)
(
V̂t−1−τt −V̄

)
(Pτt (st−1−τt ,s)−πs)

]

+E

[
n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)(
V̂t−1−τt −V̄

)
πs

]

=E

[
n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)
(
V̂t−1−τt −V̄

)
(Pτt (st−1−τt ,s)−πs)

]

+E
[(

V̂t−1−τt −V̄
)] n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)
πs

=E

[
n

∑
s=1

(
∑

n
s′=1 P(s,s′)r(s,s′)

1− γ
−V̄

)
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(
V̂t−1−τt −V̄

)
(Pτt (st−1−τt ,s)−πs)

]
+0

≤ 4r2
max

(1− γ)2(t +1)

≤O
(

r2
max

(1− γ)2(t +1)

)
.

Here the first equality follows by iterating conditional ex-
pectation; the second, third, fourth, and fifth equality is just
rearranging terms; the sixth equality follows from Eq. (12);
and the next inequality follows from Eq. (27) as well as the
fact that all rewards are upper bounded by rmax in absolute
value.

Combining all the inequalities, we can conclude that as long
as t > t0, we have that

E
[(

V̂t −V̄
)2
]

≤
(

1− 2
t +1

)
E
[(

V̂t−1−V̄
)2
]
+O

(
τtr2

max

(1− γ)2(t +1)2

)
.

Let bt = O
(

τt r2
max

(1−γ)2

)
; then the above equation can be com-

pactly written as

E
[(

V̂t −V̄
)2
]
≤
(

1− 2
t +1

)
E
[(

V̂t−1−V̄
)2
]
+

bt

(t +1)2 .

Let Ct = max
{
(t0 +1)

(
V̂t0 −V̄

)2
,bt

}
. We will prove by

induction that t ≥ t0,

E
[(

V̂t −V̄
)2
]
≤ Ct

t +1
.

Indeed, the assertion holds for t = t0. Suppose that the
assertion holds at time t, i.e., suppose that E

[(
V̂t −V̄

)2
]
≤

Ct/(t +1). Then,

E
[(

V̂t+1−V̄
)2
]
≤
(

1− 2
t +2

)
Ct

t +1
+

bt

(t +2)2

=
Ct+1

t +2
+

(
1− 2

t +2

)
Ct

t +1
+

bt

(t +2)2 −
Ct+1

t +2

=
Ct(t +2)2−2Ct(t +2)+bt(t +1)−Ct+1(t +1)(t +2)

(t +1)(t +2)2

+
Ct+1

t +2

=
(Ct −Ct+1)(t +1)(t +2)+(bt −Ct)(t +1)−Ct

(t +1)(t +2)2

+
Ct+1

t +2

≤Ct+1

t +2
,

where the last inequality follows because Ct ≤Ct+1, bt ≤Ct
and Ct ≥ 0. Therefore, we have that, for t ≥ t0,

E
[(

V̂t −V̄
)2
]
≤ Ct

t +1
.

Since
(
V̂t0 −V̄

)2≤ 4 r2
max

(1−γ)2 with probability one, and by def-

inition t0 ≤ 2τmax
(

1
2(t0+1)

)
, we have that Ct = O

(
τt r2

max
(1−γ)2

)
for t ≥ t0; this completes the proof. �

With all these preliminary lemmas in place, we can now
give the main result of this section, the proof of Corollary 3.

Proof of Corollary 3. By the Pythagorean theorem, we
have

‖V ′T −V‖2
D = ‖πTV ′T 111−π

TV 111‖2
D+‖V ′

T,111⊥
−V111⊥‖

2
D, (28)

where V ′
T,111⊥

, V111⊥ are the projections of V ′T , V onto 111⊥ in the
〈·, ·〉D inner product.

Recall, that, in Algorithm 1, we defined

V ′T =V
θ̄T

+111
(
V̂T −π

TV
θ̄T

)
.

Therefore,

π
TV ′T 111 = π

TV
θ̄T

111+π
T 111
(
V̂T −π

TV
θ̄T

)
1

= π
TV

θ̄T
111+V̂T 111−π

TV
θ̄T

111

= V̂T 111.

Plugging this as well as V̄ = πTV into Eq. (28) we obtain:

‖V ′T −V‖2
D = ‖V̂T 111−V̄ 111‖2

D +‖V ′
T,111⊥
−V111⊥‖

2
D. (29)

For the first term on the right hand side of Eq. (29), by the
definition of the square norm under π , it is immediate that

‖V̂T 111−V̄ 111‖2
D =

n

∑
i=1

πi(V̂T −V̄ )2 =
(
V̂T −V̄

)2
.

For the second term on the right hand side of Eq. (29), we
have

‖V ′
T,111⊥
−V111⊥‖

2
D

=‖V ′T,1⊥ −V
θ∗,111⊥ +V

θ∗,111⊥ −V111⊥‖
2
D

≤2‖V ′
T,111⊥
−V

θ∗,111⊥‖
2
D +2‖V

θ∗,111⊥ −V111⊥‖
2
D

≤2r(P)‖V ′
T,111⊥
−V

θ∗,111⊥‖
2
Dir +2‖Vθ∗ −V‖2

D

=2r(P)‖V
θ̄T
−Vθ∗‖2

Dir +2‖Vθ∗ −V‖2
D,

where the third line follows by the Lemma 2 and the
Pythagorean theorem and the fourth line comes from the
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observation that ‖ · ‖Dir does not change when we add a
multiple of 111.

Combining these results and taking expectation of Eq. (29),
we obtain

E
[
‖V ′T −V‖2

D
]

≤E
[
(V̂T −V̄ )2]+2r(P)E

[
‖V

θ̄T
−Vθ∗‖2

Dir
]

+2E
[
‖Vθ∗ −V‖2

D
]

≤O

τmix
(

1
2(T+1)

)
r2

max

(1− γ)2T

+2E
[
‖Vθ∗ −V‖2

D
]

+ r(P) ·
‖θ ∗−θ0‖2

2 +
(
9+12τmix

(
1/
√

T
))

G2

γ
√

T
, (30)

where the second inequality follows by Lemma 3 and Eq.
(11) from the main text.

On the other hand,

E
[
‖V ′T −V‖2

D
]

=E
[
‖V

θ̄T
−V‖2

D
]
+E

[∥∥(V̂T −π
TV

θ̄T

)
111
∥∥2

D

]
−2E

[(
π

TV −π
TV

θ̄T

)(
V̂T −π

TV
θ̄T

)]
=E
[
‖V

θ̄T
−V‖2

D
]
+E

[∥∥(V̂T −π
TV

θ̄T

)
111
∥∥2

D

]
−2E

[(
V̄ −π

TV
θ̄T

)(
V̂T −π

TV
θ̄T

)]
=E
[
‖V

θ̄T
−V‖2

D
]
+E

[(
V̂T −π

TV
θ̄T

)2
]

−2E
[(

V̂T −π
TV

θ̄T
+V̄ −V̂T

)(
V̂T −π

TV
θ̄T

)]
=E
[
‖V

θ̄T
−V‖2

D
]
−E

[(
V̂T −π

TV
θ̄T

)2
]

+2E
[(

V̂T −V̄
)(

V̂T −π
TV

θ̄T

)]
≤E
[
‖V

θ̄T
−V‖2

D
]
−E

[(
V̂T −π

TV
θ̄T

)2
]

+E
[(

V̂T −V̄
)2

+
(
V̂T −π

TV
θ̄T

)2
]

=E
[
‖V

θ̄T
−V‖2

D
]
+E

[(
V̂T −V̄

)2
]

≤2E
[
‖V

θ̄T
−Vθ∗‖2

D
]
+2E

[
‖Vθ∗ −V‖2

D
]
+E

[(
V̂T −V̄

)2
]

≤
2
[
‖θ ∗−θ0‖2

2 +
(
9+12τmix

(
1/
√

T
))

G2
]

(1− γ)
√

T

+2E
[
‖Vθ∗ −V‖2

D
]
+O

 r2
maxτmix

(
1

2(T+1)

)
(1− γ)2T

 . (31)

Here the first four equalities come from rearranging; the
next inequality comes from the identity 2ab≤ a2 +b2); the
next equality comes from cancellation; the next inequality
uses ||u+ v||2D ≤ 2||u||2D + 2||v||2D; and the final inequality
uses Corollary 2 and Lemma 3.

We have just derived two bounds on E[||V ′T −V ||2D], one in
Eq. (30) and one in Eq. (31). We could, of course, take the

minimum of these two bounds. We then obtain:

E
[
‖V ′T −V‖2

D
]

≤2E
[
‖Vθ∗ −V‖2

D
]
+O

τmix
(

1
2(T+1)

)
r2

max

(1− γ)2T


+min

{
r(P) ·

‖θ ∗−θ0‖2
2 +
(
9+12τmix

(
1/
√

T
))

G2

γ
√

T
,

2‖θ ∗−θ0‖2
2 +2

(
9+12τmix

(
1/
√

T
))

G2

(1− γ)
√

T

}
.

Therefore,

E
[
‖V ′T −V‖2

D

]
≤2E

[
‖Vθ ∗ −V‖2

D

]
+O

(
τmix ( 1

T+1
)

r2
max

(1− γ)2T

)

+
‖θ∗−θ0‖2

2 +G2 [1+ τmix(1/
√

T )
]

√
T

·min
{

r(P)
γ

,
2

1− γ

}
,

and the proof is complete. �

D. Error Bound for TD with Eligibility Traces
We now analyze the performance of projected TD(λ ) which
updates as

θt+1 = ProjΘλ
(θt +αtδt ẑt), (32)

where we now use

zt =
t

∑
k=0

(γλ )k
φ(st−k).

We remark that this is an abuse of notation, as previously zt
was defined with the sum starting at negative infinity, rather
than zero; however, in this section, we will assume that the
sum starts at zero. The consequence of this modification
of notation is that Theorem 4 does not imply that −E[zt ] is
the gradient splitting of an appropriately defined function
anymore, as now one needs to account for the error term
coming from the beginning of the sum.

We assume Θλ is a convex set containing the optimal so-
lution θ ∗

λ
. We will further assume that the norm of every

element in Θλ is at most Rλ . Recall that

We begin by introducing some notation. Much of our anal-
ysis follows (Bhandari et al., 2018) with some deviations
where we appeal to Theorem 4, and the notation bellow
is mostly identical to what is used in that paper. First, re-
call that we denote the quantity δtzt by x(θt ,zt). We define
ζt(θt ,zt) as a random variable which can be thought of as
a measure of the bias that TD(λ ) has in estimation of the
gradient:

ζt(θt ,zt) = (x̄(θt)−δtzt)
T (θ ∗

λ
−θt).
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Analogously to the TD(0) case, what turns out to matter for
our analysis is not so much the bias per se, but the inner
product of the bias with the direction of the optimal solution
as in the definition of ζt(θt ,zt).

We will next need an upper bound on how big ||x(θ ,zt)||2
can get. Since under Assumption 2, we have that ||φ(s)||2 ≤
1 for all s, we have that

‖zt‖2 ≤
1

1− γλ
.

Furthermore, we have that

|δt |=
∣∣r(s,s′)+ γφ(s′)T

θt −φ(s)T
θt
∣∣≤ rmax +2Rλ ,

where we used |r(s,s′)| ≤ rmax as well as Cauchy-Schwarz.
Putting the last two equations together, we obtain

‖x(θ ,zt)‖2 ≤
rmax +2Rλ

1− γλ
:= Gλ . (33)

Compared to the result for TD(0), the bound depends on
a slightly different definition of the mixing time that takes
into account the geometric weighting in the eligibility trace.
Define

τ
mix
λ

(ε) = max{τMC(ε),τAlgo(ε)},

where

τ
MC(ε) = min

{
t ∈ N0|mρ

t ≤ ε
}
,

τ
Algo(ε) = min

{
t ∈ N0|(γλ )t ≤ ε

}
.

The main result of this section is the following corollary of
Theorem 2.

Corollary 4. Suppose Assumptions 1-2 hold. Suppose fur-
ther that (θt)t≥0 is generated by the Projected TD(λ ) algo-
rithm of Eq. (32) with θ ∗

λ
belonging to the convex set Θλ

and step-sizes α0 = · · ·= αT = 1/
√

T . Then

E
[

f (λ )(θ)
]
≤
‖θ ∗

λ
−θ0‖2

2 +G2
λ

[
14+28τmix

λ

(
1/
√

T
)]

2
√

T
,

where the function f (λ )(θ) was defined in Theorem 2.

Proof. We begin with the standard recursion for the distance
to the limit:

‖θ ∗
λ
−θt+1‖2

2

=‖θ ∗
λ
−ProjΘλ

(θt +αtδtzt)‖2
2

≤‖θ ∗
λ
−θt −αtδtzt‖2

2

=‖θ ∗
λ
−θt‖2

2−2αtδtzT
t (θ

∗
λ
−θt)+α

2
t ‖δtzt‖2

2

=‖θ ∗
λ
−θt‖2

2−2αt
(
x̄(θt)

T −
(
x̄(θt)

T −δtzT
t
))

(θ ∗
λ
−θt)

+α
2
t ‖δtzt‖2

2

=‖θ ∗
λ
−θt‖2

2−2αt
(
x̄(θt)− x̄(θ ∗

λ
)
)T

(θ ∗
λ
−θt)

+2αtζt(θt ,zt)+α
2
t ‖x(θt ,zt)‖2

2

=‖θ ∗
λ
−θt‖2

2−2αt(1− γκ)‖Vθt −Vθ∗
λ
‖2

D

−2αt(1−λ )
∞

∑
m=0

λ
m

γ
m+1‖Vθt −Vθ∗

λ
‖2

Dir,m+1

+2αtζt(θt ,zt)+α
2
t ‖x(θt ,zt)‖2

2

≤‖θ ∗
λ
−θt‖2

2−2αt(1− γκ)‖Vθt −Vθ∗
λ
‖2

D

−2αt(1−λ )
∞

∑
m=0

λ
m

γ
m+1‖Vθt −Vθ∗

λ
‖2

Dir,m+1

+2αtζt(θt ,zt)+α
2
t G2

λ
.

In the sequence of equations above the first inequality fol-
lows that the projection onto a convex set does not increase
distance; the remaining equalities are rearrangements, using
the quantity x̄(θ) defined in Eq. (19), that x̄(θ ∗

λ
) = 0 from

Eq. (20), and Proposition 1; and the final inequality used
Eq. (33).

We next take expectations, rearrange terms, and sum:

T−1

∑
t=0

2αtE
[
(1− γκ)‖Vθt −Vθ∗

λ
‖2

D

]
+

T−1

∑
t=0

2αtE

[
(1−λ )

∞

∑
m=0

λ
m

γ
m+1‖Vθt −Vθ∗

λ
‖2

Dir,m+1

]

≤
T−1

∑
t=0

(
E[‖θ ∗

λ
−θt‖2

2]−E[‖θ ∗
λ
−θt+1‖2

2]
)

+
T−1

∑
t=0

2αtE[ζt(θt ,zt)]+
T−1

∑
t=0

α
2
t G2

λ

=
(
‖θ ∗

λ
−θ0‖2

2−E[‖θ ∗
λ
−θT‖2

2]
)

+
T−1

∑
t=0

2αtE[ζt(θt ,zt)]+
T−1

∑
t=0

α
2
t G2

λ

≤‖θ ∗
λ
−θ0‖2

2 +
T−1

∑
t=0

2αtE[ζt(θt ,zt)]+
T−1

∑
t=0

α
2
t G2

λ
.

Plugging in the step-sizes α0 = · · ·=αT = 1/
√

T , we obtain

T−1

∑
t=0

E
[
(1− γκ)‖Vθt −Vθ∗

λ
‖2

D

]
+

T−1

∑
t=0

E

[
(1−λ )

∞

∑
m=0

λ
m

γ
m+1‖Vθt −Vθ∗

λ
‖2

Dir,m+1

]

≤
√

T
2
(
‖θ ∗

λ
−θ0‖2

2 +G2
λ

)
+

T−1

∑
t=0

E[ζt(θt ,zt)].

Using Lemma 20 in (Bhandari et al., 2018), we have that

T−1

∑
t=0

E[ζt(θt ,zt)]
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≤6
√

T
(

1+2τ
mix
λ

(αT )
)

G2
λ
+

2τmix
λ

(αT )

∑
t=0

(γλ )tG2
λ

≤6
√

T
(

1+2τ
mix
λ

(αT )
)

G2
λ
+
(

2τ
mix
λ

(αT )+1
)

G2
λ
.

Combining with convexity, we get

E
[
(1− γκ)‖Vθ∗

λ
−V

θ̄T
‖2

D

]
+E

[
(1−λ )

∞

∑
m=0

λ
m

γ
m+1‖Vθ∗

λ
−V

θ̄T
‖2

Dir,m+1

]

≤ 1
T

T−1

∑
t=0

E
[
(1− γκ)‖Vθt −Vθ∗

λ
‖2

D

]
+

1
T

T−1

∑
t=0

E

[
(1−λ )

∞

∑
m=0

λ
m

γ
m+1‖Vθt −Vθ∗

λ
‖2

Dir,m+1

]

≤
‖θ ∗

λ
−θ0‖2

2 +G2
λ

2
√

T

+
6
√

T
(
1+2τmix

λ
(αT )

)
G2

λ
+
(
2τmix

λ
(αT )+1

)
G2

λ

T

≤
‖θ ∗

λ
−θ0‖2

2 +G2
λ

(
14+28τmix

(
1/
√

T
))

2
√

T
.
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