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Abstract

Temporal difference learning with linear function
approximation is a popular method to obtain a
low-dimensional approximation of the value func-
tion of a policy in a Markov Decision Process.
We provide an interpretation of this method in
terms of a splitting of the gradient of an appropri-
ately chosen function. As a consequence of this
interpretation, convergence proofs for gradient
descent can be applied almost verbatim to tem-
poral difference learning. Beyond giving a fuller
explanation of why temporal difference works,
this interpretation also yields improved conver-
gence times. We consider the setting with 1/

√
T

step-size, where previous comparable finite-time
convergence time bounds for temporal difference
learning had the multiplicative factor 1/(1− γ)
in front of the bound, with γ being the discount
factor. We show that a minor variation on TD
learning which estimates the mean of the value
function separately has a convergence time where
1/(1− γ) only multiplies an asymptotically negli-
gible term.

1. Introduction
Reinforcement learning is a basic machine learning
paradigm which concerns learning optimal policies in
Markov Decision Processes (MDP). It has been applied to
many challenging practical problems, such as, autonomous
driving (Chen et al., 2015), robotics (Gu et al., 2017), bid-
ding and advertising (Jin et al., 2018), and games (Silver
et al., 2016). An important problem in reinforcement learn-
ing is to estimate the value function for a given policy, often
referred to as the policy evaluation problem. Temporal dif-
ference (TD) learning originally proposed by Sutton (1988)
is one of the most widely used policy evaluation algorithms.
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TD uses differences in predictions over successive time
steps to drive the learning process, with the prediction at
any given time step updated via a carefully chosen step-size
to bring it closer to the prediction of the same quantity at
the next time step.

Despite its simple implementation, theoretical analysis of
TD can be involved. This is particularly true when TD
methods are applied to problems with large state-spaces by
maintaining an approximation to the value function. Precise
conditions for the asymptotic convergence of TD with linear
function approximation were established by viewing TD as
a stochastic approximation for solving a suitable Bellman
equation in Tsitsiklis & Van Roy (1997). Before the last
few years, there have been few non-asymptotic analyses of
TD methods. The first non-asymptotic bounds for TD(0)
with linear function approximation were given by Korda &
La (2015), obtaining an exponential convergence rate for
the centered variant of TD(0) when the underlying Markov
chain mixes fast. However, some issues with the proofs of
Korda & La (2015) were listed by the subsequent work of
Narayanan & Szepesvári (2017).

In Lakshminarayanan & Szepesvari (2018), it was shown
that TD algorithms with a problem independent constant
step size and iterate averaging, achieve a problem dependent
error that decays as O(1/t) with the number of iterations
t. Convergence rates in probability with an O(1/t) step-
size were provided by Dalal et al. (2018). Both analyses
of Dalal et al. (2018) and Lakshminarayanan & Szepes-
vari (2018) assume samples used by the algorithm are i.i.d.
rather than a trajectory in the underlying Markov chain. For
the Markov chain observation model, Bhandari et al. (2018)
provide a O(1/

√
T ) convergence rate with step-size that

scales as 1/
√

T and O((log t)/t) convergence rate with step
size O(1/t) for projected TD algorithm. The constant fac-
tors in the latter bounds depend on 1/(1− γ), where γ is the
discount factor; this scaling is one of the things we will be
studying in this paper.

A number of papers also work on algorithms related to
and inspired by the classic TD algorithm in the setting with
Markovian sampling. Srikant & Ying (2019) give finite-time
bounds for the TD algorithms with linear function approxi-
mation and a constant step-size. The two time-scale TD with
gradient correction algorithm under a Markovian sampling
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and linear function approximation are discussed by Xu et al.
(2019b) and shown to converge as fast as O((log t)/t2/3). A
method called TD-AMSGrad under linear function approx-
imation is studied by Xiong et al. (2020); with a constant
step size, TD-AMSGrad converges to a neighborhood of the
global optimum at a rate of O(1/t), and with a diminishing
step size, it converges exactly to the global optimum at a
rate of O((log t)/t). Xu et al. (2019a) present performances
of variance reduced TD and give a reduced bias error over
the classic TD.

In this paper, we will study the convergence of TD(0) and
TD(λ ) with linear function approximation under Markovian
observations. Our main contribution is to provide an inter-
pretation of temporal difference learning: we show how to
view it as a “splitting” (a term we will define later) of an
appropriately chosen quadratic form. As a consequence of
this interpretation, it is possible to apply convergence proofs
for gradient descent almost verbatim to temporal difference
learning.

The convergence times bounds we obtain this way improve
on existing results. In particular, we study step-sizes of
1/
√

T , which are typically recommended because the result-
ing error bounds do not depend on the inverse eigenvalues of
the matrices involved in the linear approximation, which can
be quite large; by contrast, methods that achieve faster than
O(1/

√
T ) decay have performance guarantees that scale

with these same eigenvalues. We provide a minor variation
on TD(0) for which we obtain a convergence rate that scales
as O

[
(1/(1− γ))2

]
/T +Õ(1/

√
T ), with the constant in the

Õ(·) term not blowing up as γ → 1. We will also explain
why a factor of 1/(1− γ)2 multiplying the asymptotically
negligible O(1/T ) term as here is unavoidable.

2. Preliminaries
In this section, we describe the basics of MDPs and TD
learning methods. While all this material is standard and
available in textbooks (e.g., Sutton & Barto (2018)), it is
necessary to standardize notation and make our presentation
self-contained.

2.1. Markov Decision Processes

We consider a discounted reward MDP described by a
5-tuple (S,A,P,r,γ), where S = [n] = {1,2, · · · ,n} is
the finite state space, A is the finite action space, P =
(P(s′|s,a))s,s′∈S,a∈A are the transition probabilities, r =
(r(s,s′))s,s′∈S are rewards which are determined determinis-
tically by the state transition pair (s,s′) and γ ∈ (0,1) is the
discount factor. The (stationary) policy to be evaluated is a
mapping µ: S ×A→ [0,1], where µ(s,a) is the probabili-
ties to select action a when in state s and ∑a∈A µ(s,a) = 1
for all states s∈ S . We adopt the shorthand st for the state at

step t, at for the action taken at step t, and rt+1 = r(st ,st+1).

The value function of the policy µ , denoted V µ : S → R is
defined as

V µ(s) = Eµ,s

[
∞

∑
t=0

γ
trt+1

]
,

where Eµ,s [·] indicates that s is the initial state and the
actions are chosen according to µ .

The immediate reward vector Rµ : S → R is defined as

Rµ(s) = Eµ,s(r1) = ∑
s′∈S

∑
a∈A

µ(s,a)P(s′|s,a)r(s,s′).

For the remainder of the paper, we will be fixing the policy
µ ; consequently, we can talk about the probability transition
matrix Pµ defined as

Pµ(s,s′) = ∑
a∈A

µ(s,a)P(s′|s,a).

In the following, we will treat V µ and Rµ as vectors in Rn,
and treat Pµ as a matrix in Rn×n. It is well-known that
V µ satisfies the Bellman equation (Sutton & Barto, 2018):
defining the Bellman operator T µ : Rn→ Rn as

(T µV µ)(s) =
n

∑
s′=1

Pµ(s,s′)(r(s,s′)+ γV µ(s′))

for s ∈ [n], we can then write Bellman equation as

T µV µ =V µ .

Next, we state some standard assumptions from the liter-
ature. The first assumption is on the underlying Markov
chain.

Assumption 1. The Markov chain whose transition matrix
is the matrix Pµ is irreducible and aperiodic.

Following this assumption, the Markov decision process
induced by the policy µ is ergodic with a unique station-
ary distribution π = (π1,π2, · · · ,πn), a row vector whose
entries are positive and sum to 1. It also holds that πs′ =
limt→∞(Pµ)t(s,s′) for any two states s,s′ ∈ [n]. Note that
we are using π to denote the stationary distribution of Pµ ,
and not the policy (which is denoted by µ).

We will use the notation rmax to denote an upper bound on
the rewards; more formally, rmax is a real number such that

|r(s,s′)| ≤ rmax for all s,s′ ∈ [n],a ∈ A.

Since the number of states is finite, such an rmax always
exists.

We next introduce some notation that will make our analysis
more concise. For a symmetric positive definite matrix A ∈
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Rn×n, we define the inner product 〈x,y〉A = xT Ay and the
associated norm ‖x‖A =

√
xT Ax. Let D = diag(π1, · · · ,πn)

denote the diagonal matrix whose elements are given by
the entries of the stationary distribution π . Given value
functions V and V ′ on the state space S, we define〈

V,V ′
〉

D =V T DV ′ = ∑
s∈S

πsV (s)V ′(s),

and the associated norm

‖V‖2
D =V T DV = ∑

s∈S
πsV (s)2.

Finally, we define the Dirichlet seminorm, which is often
called the Dirichlet form in the Markov chain literature
(Diaconis et al., 1996); we follow here the notation of (Ol-
livier, 2018). The Dirichlet seminorm depends both on the
transition matrix P and the invariant measure π:

‖V‖2
Dir =

1
2 ∑

s,s′∈S
πsP(s,s′)(V (s′)−V (s))2.

It is easy to see that, as a consequence of Assumption 1,
‖V‖Dir = 0 if and only if V is a multiple of the all-ones
vector.

Similarly, we introduce the k-step Dirichlet seminorm, de-
fined as

‖V‖2
Dir,k =

1
2 ∑

s,s′∈S
πsPk(s,s′)(V (s′)−V (s))2.

2.2. Policy Evaluation, Temporal Difference Learning,
and Linear Function Approximation

Policy evaluation refers to the problem of estimating the
value function V µ for a given stationary policy µ . If the size
of the state space is large, computing V µ(s) for all states s
may be prohibitively expensive. A standard remedy is to use
low dimensional approximation V µ

θ
of V µ in the classical

TD algorithm as in Sutton (1988); Sutton & Barto (2018).
For brevity, we omit the superscript µ throughout from now
on.

The classical TD(0) algorithm with function approximation
Vθ starts with an arbitrary value of the parameters θ0; upon
observing the t th transition st → s′t , it computes the scalar-
valued temporal-difference error,

δt = r(st ,s′t)+ γVθt (s
′
t)−Vθt (st),

and updates the parameter vector as

θt+1 = θt +αtδtOVθt (st). (1)

Here OVθt (st) denotes the gradient of the function Vθ (st)
w.r.t to θ evaluated at θ = θt , and αt is the step size. Intu-
itively, updating in the direction δtOVθt (st) moves Vθt (st)
closer to the bootstrapped value of r(st ,s′t)+ γVθt (s

′
t).

We will be considering the TD(0) algorithm with a linear
function approximation Vθ defined as

Vθ (s) =
K

∑
l=1

θlφl(s) ∀s ∈ S,

for a given set of K feature vectors φl : S → R, l ∈ [K]. For
each state s, we will define the vector φ(s) which stacks
up the features of s as φ(s) = (φ1(s),φ2(s), · · · ,φK(s))T ∈
RK . Finally, Φ ∈ Rn×K is defined to be the matrix Φ =
[φ1, · · · ,φK ].

We thus have that Vθ (s) = θ T φ(s) and the approximate
TD(0) update becomes

θt+1 = θt +αt(r(st ,s′t)+ γθ
T
t φ(s′t)−θ

T
t φ(st))φ(st). (2)

Next we state a common assumption on the feature vectors,
which requires that features used for approximation are
linearly independent (Tsitsiklis & Van Roy, 1997; Bhandari
et al., 2018).

Assumption 2. The matrix Φ has full column rank, i.e.,
the feature vectors {φ1, . . . ,φK} are linearly independent.
Additionally, we also assume that ‖φ(s)‖2

2 ≤ 1 for s ∈ S .

It is always possible to make sure this assumption holds. If
the norm bound is unsatisfied, then the standard approach is
to normalize the feature vectors so that it is. If the matrix Φ

does not have full column rank, one can simply omit enough
feature vectors so that it does.

It is well-known that under Assumptions 1-2 as well as
an additional assumption on the decay of the step-sizes
αt , temporal difference learning converges almost surely;
furthermore, its limit is the fixed point of a certain projected
Bellman equation (Tsitsiklis & Van Roy, 1997). Henceforth
we will use θ ∗ to denote this fixed point.

It is convenient to introduce the notation

gt(θ) =
(
r(st ,s′t)+ γφ(s′t)

T
θ −φ(st)

T
θ
)

φ(st)

for the direction taken by TD(0) at time t. Note that gt(θ)
is a scalar multiple of φ(st), the feature vector of the state
encountered at time t.

Furthermore, ḡ(θ) will denote the average of gt(θ) when
the state is sampled according to the stationary distribution:

ḡ(θ) = ∑
s,s′∈S

π(s)P(s,s′)
(

r(s,s′)+ γφ(s′)T
θ −φ(s)T

θ

)
φ(s).

Naturally it can be seen (see Tsitsiklis & Van Roy (1997))
that

ḡ(θ ∗) = 0. (3)
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2.3. Eligibility Traces

We will also study a larger class of algorithms, denoted
by TD(λ ) and parameterized by λ ∈ [0,1], that contains
as a special case the TD(0) algorithm discussed above.
While TD(0) makes parameter updates in the direction of
the (scaled) last feature vector gt(θt), the TD(λ ) algorithm
maintains the “eligibility trace” :

zt =
t

∑
k=−∞

(γλ )k
φ(st−k),

which is a geometric weighted average of the feature vec-
tors at all previously visited states, and takes a step in the
direction of zt .

In practice, the sum will start at k = 0 (or some other finite
time); however, parts of the analysis are done with the sum
starting at negative infinity because many of the results are
much simpler in this setting, and doing so introduces only
an exponentially decaying error term.

It is shown in Tsitsiklis & Van Roy (1997) that, subject to
Assumptions 1-2 and appropriate decay of step-sizes, TD(λ )
converges with probability one, and its limit is a fixed point
of a certain projected & averaged Bellman equation. We
will denote this limit by θ ∗

λ
.

2.4. Markov Chain Observation Model

In this paper, we are interested in TD in the setting where
the data is collected from a single sample path of a Markov
chain. Our final assumption is that the Markov chain mixes
at a uniform geometric rate.
Assumption 3. There are constants m > 0 and ρ ∈ (0,1)
such that

sup
s∈S

dTV(Pt(s, ·),π)≤ mρ
t t ∈ N0,

where dTV(P,Q) denotes the total-variation distance be-
tween probability measures P and Q. In addition, the initial
distribution of s0 is the steady-state distribution π , so that
(s0,s1, · · ·) is a stationary sequence.

Under Assumption 1, i.e., for irreducible and aperiodic
Markov chains, the uniform mixing assumption always
holds (Levin & Peres, 2017). It is worth noting that the
assumption that s0 is the the stationary distribution is pri-
marily done to make the analysis and results tidier: given
the uniform mixing assumption, one can apply analysis after
the Markov chain is close to its steady-state.

3. Temporal Difference Learning as Gradient
Splitting

All existing analyses temporal difference learning proceed
by comparing it, either explicitly or implicitly, to the ex-

pected update, usually referred to as the mean-path update;
for TD(0), this is

θt+1 = θt +αt ḡ(θt).

Stochastic approximation (Robbins & Monro, 1951) is a
common tool to make this comparison. Generally, one wants
to argue that the mean-path TD update brings θt closer to
its final value θ ∗.

The first theoretical analysis of TD(0) in Tsitsiklis &
Van Roy (1997) proceeded based on the observation that
ḡ(θ) forms a positive angle with θ ∗−θ , that is

ḡ(θ)T (θ ∗−θ)> 0. (4)

An explicit version of this inequality was used in (Bhandari
et al., 2018) where it is stated as Lemma 3:

ḡ(θ)T (θ ∗−θ)≥ (1− γ)‖Vθ∗ −Vθ‖2
D. (5)

Our main result is an interpretation of the quantity ḡ(θ)
which explains why such an inequality holds, as well as
allows us to derive stronger results. To do this, we first
introduce the concept of a “gradient splitting.”
Definition 1. Let A be a symmetric positive semi-definite
matrix. A linear function h(θ) = B(θ −a) is called a gra-
dient splitting of the quadratic f (θ) = (θ − a)T A(θ − a)
if

B+BT = 2A.

Note that whenever we state that h(θ) is a splitting of the
gradient f (θ), this presumes that h(θ) is a linear function
of θ while f (θ) is a quadratic.

To the best of our knowledge, the concept is introduced here
for the first time. We next explain why it is useful.

3.1. Gradient Splitting and Gradient Descent

Observe first that, as one should expect from the name,
(1/2)∇ f (θ) is a splitting of the gradient of f since

1
2

∇ f (θ) = A(θ −a).

Of course, it is far from the only splitting, since there are
many B that satisfy B+BT = 2A. In particular, B may be
non-symmetric. For example, one can take B to be equal to
the upper triangular part of 2A plus the diagonal of A.

The key property of splittings that make them useful is the
following.
Proposition 1. Suppose h(θ) is a splitting of the gradient
of f (θ). Then

(θ1−θ2)
T (h(θ1)−h(θ2)) =

1
2
(θ1−θ2)

T (∇ f (θ1)−∇ f (θ2)) .
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Proof. Indeed,

(θ1−θ2)
T (h(θ1)−h(θ2)) = (θ1−θ2)

T B(θ1−θ2)

=
1
2
(θ1−θ2)

T B(θ1−θ2)+
1
2
(θ1−θ2)

T BT (θ1−θ2)

=(θ1−θ2)
T A(θ1−θ2)

=
1
2
(θ1−θ2)

T (∇ f (θ1)−∇ f (θ2)).

�

Thus, while h(θ) may be quite different from ∇ f (θ), the
difference disappears once one looks at the inner products
considered in Proposition 1.

A particular consequence of Proposition 1 can be obtained
by plugging in θ1 = a, the global minimizer of f (θ). In that
case, ∇ f (a) = 0 and h(a) = 0 as well, and we obtain that
for all θ ,

(a−θ)T h(θ) =
1
2
(a−θ)T

∇ f (θ). (6)

Thus the splitting h(θ) has the exact same angle with the
“direction to the optimal solution” a−θ as the true gradient.

Most analysis of gradient descent on convex functions are
ultimately based on the observation that gradient descent
“makes progress” towards the optimal solution because it
has a positive inner product with the direction to optimality.
As a consequence of this discussion, the same argument can
be applied to gradient splittings.

3.2. Our Main Contribution

We now come back to temporal difference learning. To
analyze TD learning, it is tempting to see if we can write
the TD(0) and TD(λ ) updates as gradient descent on some
appropriately chosen function. Unfortunately, it is well-
known (and easy to see) that this cannot work. Indeed, in
the TD(0) case, it is possible to express the average direction
g(θ) as g(θ) = B(θ −θ ∗) and in some cases the matrix B
is not symmetric; this linear map cannot be the gradient
of anything since the non-symmetry of B would contradict
equality of partial derivatives (see (Maei, 2011)).

Our main results show that the temporal difference direction
can, however, be viewed as a splitting of the gradient of an
appropriately chosen function.

Theorem 1. Suppose Assumptions 1-2 hold. Then in the
TD(0) update, −ḡ(θ) is a splitting of the gradient of the
quadratic

f (θ) = (1− γ)‖Vθ −Vθ∗‖2
D + γ‖Vθ −Vθ∗‖2

Dir.

Theorem 2. Suppose Assumptions 1-2 hold. Then, in the
TD(λ ) update, the negative of the expected update −E[δtzt ]

is a splitting of the gradient of the quadratic

f (λ )(θ) =(1− γκ)‖Vθ −Vθ∗
λ
‖2

D

+(1−λ )
+∞

∑
m=0

λ
m

γ
m+1||Vθ −Vθ∗

λ
||2Dir,m+1,

where κ = (1−λ )/(1− γλ ).

The proof of these theorems can be found in the supplemen-
tary information. Assumptions 1 and 2 are not particularly
crucial: they are used only to be able to define the stationary
distribution π and the unique fixed point θ ∗.

These results provide some insights into why temporal differ-
ence learning works. Indeed, there is no immediate reason
why the bootstrapped update of Eq. (2) should produce a
reasonable answer, and it is well known that the version
with nonlinear approximation in Eq. (1) can diverge (see
Tsitsiklis & Van Roy (1997)). Convergence analyses of TD
learning rely on Eq. (4), but the proof of this equation from
(Tsitsiklis & Van Roy, 1997) does not yield a conceptual
reason for why it should hold.

The previous two theorems provide such a conceptual rea-
son. It turns out that TD(0) and TD(λ ) are, on average,
attempting to minimize the functions f (θ) and f (λ )(θ) de-
fined in those theorems, by moving in direction of a gradi-
ent splitting. Moreover, the functions f (θ) and f (λ )(θ) are
plainly convex (they are positive linear combinations of con-
vex quadratics), so that Equation (6) immediately explains
why Eq. (4) holds.

These theorems are inspired by the recent preprint (Ollivier,
2018). It is shown there that, if P is reversible, then −ḡ(θ)
is exactly the gradient of the function f (θ), even in the case
when the function approximation is nonlinear. Theorem
1 may be viewed as a way to generalize this observation
to the non-reversible case for the case of linear function
approximation.

4. Consequences
We now discuss several consequences. These will all be
along the lines of improved convergence guarantees. Indeed,
as we mentioned in the previous section, viewing TD learn-
ing as gradient splitting allows us to take existing results
for gradient descent and “port” them almost verbatim to the
temporal difference setting.

In the main body of the paper, we focus on TD(0); the case
of TD(λ ) is discussed in the supplementary information. As
mentioned earlier, existing analyses of TD(0) rely on Eq. (4)
as well as its refinement Eq. (5). However, as a consequence
of Proposition 1, we can actually write out explicitly the
inner product between the mean TD(0) direction ḡ(θ) and
the direction to optimality θ ∗−θ .



Temporal Difference Learning as Gradient Splitting

Corollary 1. For any θ ∈ RK ,

(θ∗−θ)T ḡ(θ) = (1− γ)‖Vθ ∗ −Vθ‖2
D + γ‖Vθ ∗ −Vθ‖2

Dir.

Proof. Indeed, we can use Eq. (3) to argue that

(θ ∗−θ)T ḡ(θ) = (θ ∗−θ)T (−ḡ(θ ∗)− (−ḡ(θ))))

=
1
2
(θ ∗−θ)T (∇ f (θ ∗)−∇ f (θ)), (7)

where the last step follows by Theorem 1 and Proposition 1;
here f (θ) is the function from Theorem 1.

However, for any quadratic function q(θ) = (θ −a)T P(θ −
a) where P is a symmetric matrix, we have that

(a−θ)T (∇q(a)−∇q(θ)) = 2q(θ).

Applying this to the function f (θ) in Eq. (7), we complete
the proof. �

This corollary should be contrasted to Eq. (4) and Eq. (5).
It is clearly a strengthening of those equations. More impor-
tantly, this is an equality, whereas Eq. (4) and Eq. (5) are
inequalities. We thus see that the average TD(0) direction
makes more progress in the direction of the optimal solution
compared to the previously available bounds.

In the remainder of the paper, we will use Corollary 1 to ob-
tain improved convergence times for TD(0); also, a natural
generalization of that Corollary which appeals to Theorem 2
instead of Theorem 1 results in improved convergence times
for TD(λ ), as explained in the supplementary information.
We focus on a particular property which is natural in this
context: scaling with the discount factor γ .

Indeed, as we discussed in the introduction, an undesir-
able feature of some of the existing analyses of temporal
difference learning is that they scale multiplicatively with
1/(1− γ). It is easy to see why this should be so: it is nat-
ural to rely on Eq. (5) or its variations, and as γ → 1, that
equation guarantees smaller and smaller progress towards
the limit. Unfortunately, it is natural to set the discount
factor close to 1 in order to avoid focusing on short-term
behavior of the policy.

But now we can instead rely on Corollary 1 and this corol-
lary suggests that as γ→ 1, the inner product between the ex-
pected TD(0) direction ḡ(θ) and the direction to the optimal
solution θ ∗−θ will be lower bounded by γ||Vθ −Vθ∗ ||2Dir.
A difficulty, however, is that the Dirichlet seminorm can
be zero even when applied to a nonzero vector. We next
discuss the results we are able to derive with this approach.

4.1. Improved Error Bounds

As mentioned earlier, a nice consequence of the gradient
splitting interpretation is that we can apply the existing proof

for gradient descent almost verbatim to gradient splittings.
In particular, temporal difference learning when the states
are sampled i.i.d. could be analyzed by simply following
existing analyses of noisy gradient descent. However, under
our Markov observation model, it is not true that the samples
are i.i.d; rather, we proceed by modifying the analysis of
so-called Markov Chain Gradient Descent, analyzed in the
papers (Sun et al., 2018; Johansson et al., 2010), where, to
minimize the function F(x) = ∑i fi(x), we have access to
samples ∇ fi1(·),∇ fi2(·), . . . , with the sequence ik following
a Markov chain.

One issue is the choice of step-size. The existing literature
on temporal difference learning contains a range of possible
step-sizes from O(1/t) to O(1/

√
T ) (see (Bhandari et al.,

2018; Dalal et al., 2018; Lakshminarayanan & Szepesvari,
2018)). A step-size that scales as O(1/

√
T ) is often pre-

ferred because, for faster decaying step-sizes, performance
will scale with the inverse of the smallest eigenvalue of
ΦT DΦ or related quantity, and these can be quite small1.
This is not the case, however, for a step-size that decays like
O(1/

√
T ).

We will be using the standard notation

θ̄T =
1
T

T−1

∑
t=0

θt

to denote the running average of the iterates θt .

We will be considering the projected TD(0)2 update

θt+1 = ProjΘ(θt +αtgt(θt)), (8)

where Θ is a convex set containing the optimal solution θ ∗.
Moreover, we will assume that the norm of every element
in Θ is at most Rθ . Setting G = rmax + 2Rθ , we have the
following error bound.

Corollary 2. Suppose Assumptions 1-3 hold. Suppose fur-
ther that (θt)t≥0 is generated by the Projected TD algorithm
of Eq. (8) with θ ∗ ∈Θ and α0 = · · ·= αT = 1/

√
T . Then

E
[
(1− γ)‖Vθ∗ −V

θ̄T
‖2

D + γ‖Vθ∗ −V
θ̄T
‖2

Dir
]

≤
‖θ ∗−θ0‖2

2 +G2
[
9+12τmix

(
1/
√

T
)]

2
√

T
, (9)

where τmix is standard notation for the mixing time of the
Markov chain:

τ
mix(ε) = min

{
t ∈ N, t ≥ 1|mρ

t ≤ ε
}
.

1For example, λ in Theorems of Dalal et al. (2018), ρd in
Theorems of Lakshminarayanan & Szepesvari (2018), and ω in
the Theorem 3 of Bhandari et al. (2018)

2The challenges of analyzing Markovian samples and the rea-
son of using a projected step has been discussed in Section 8 of
Bhandari et al. (2018)



Temporal Difference Learning as Gradient Splitting

The proof is available in the supplementary information.
The bound is very similar to the standard bounds for SGD,
with the exception of the τmix term. That term arises in
the analysis of Markov gradient descent (Sun et al., 2018;
Johansson et al., 2010). Informally, in Markov gradient
descent, one has to wait τmix iterations to obtain a new in-
dependent sample of the gradient, which is why τmix enters
the bound multiplicatively.

We next compare this bound to the existing literature. The
closest comparison is Theorem 3(a) in (Bhandari et al.,
2018) which shows that

E
[
‖Vθ∗ −V

θ̄T
‖2

D
]
≤ ‖θ

∗−θ0‖2
2

2(1− γ)
√

T

+
G2
[
9+12τmix

(
1/
√

T
)]

2(1− γ)
√

T
. (10)

Corollary 2 is stronger than this, because this bound can be
derived from Corollary 2 by ignoring the second term on
the left hand side of Eq. (9). Moreover, we next argue that
Corollary 2 is stronger an interesting way, in that it offers a
new insight on the behavior of temporal difference learning.

Observe that the upper bound of Eq. (10) blows up as γ→ 1.
On the other hand, we can simply ignore the first term on
the left-hand side of Corollary 2 to obtain

E
[
‖Vθ ∗ −V

θ̄T
‖2

Dir

]
≤
‖θ∗−θ0‖2

2

2γ
√

T

+
G2 [9+12τmix (1/√T

)]
2γ
√

T
. (11)

In particular, we see that E
[
||Vθ∗ −V

θ̄T
||2Dir

]
does not blow

up as γ → 1. To understand this, recall that the Dirichlet
seminorm is equal to zero if and only if applied to a multiple
of the all-ones vector. Consequently, ||V ||Dir is properly
thought of as a way to measure norm of the projection of V
onto 1⊥. We therefore obtain the punchline of this section:
the error of (averaged & projected) temporal difference
learning projected on 1⊥ does not blow up as the discount
factor approaches 1.

There are scenarios where this is already interesting. For
example, if TD(0) is a subroutine of policy evaluation, it
will be used for a policy improvement step, which is clearly
unaffected by adding a multiple of the all-ones vector to
the value function. Similarly, Proposition 4 of (Ollivier,
2018) shows that the bias in the policy gradient computed
from an approximation V̂ to the true value function V can
be bounded solely in terms of ||V −V̂ ||2Dir (multiplied by a
factor that depends on how the policies are parameterized).

It is natural to wonder whether the dependence on 1/(1− γ)
can be removed completely from bounds on the performance

of temporal difference learning (not just in terms of projec-
tion on 1⊥). We address this next.

4.2. Mean-adjusted Temporal Difference Learning

Unfortunately, it is easy to see that the dependence on
1/(1− γ) in error bounds for temporal difference learn-
ing cannot be entirely removed. We next give an informal
sketch explaining why this is so. We consider the case where
samples s,s′ are i.i.d. with probability πsP(s,s′) rather than
coming from the Markov chain model, since this only makes
the estimation problem easier.

Estimating the mean of the value function. Let us denote
by V the true value function; because it is the fixed point of
the Bellman operator, V = R+ γPV , we have that

V = (I− γP)−1R =

(
∞

∑
m=0

γ
mPm

)
R.

Define V̄ = πTV ; then

V̄ = π
TV = π

T

(
∞

∑
m=0

γ
mPm

)
R =

πT R
1− γ

. (12)

Under i.i.d. sampling, what we have are samples from a
random variable R̃ which takes the value r(s,s′) with proba-
bility πsP(s,s′). From Eq. (12), we have that

(1− γ)V̄ = E[R̃].

From T samples of the scalar random variable R̃, the best
estimate R̂T will satisfy

E[(R̂T −E[R̃])2] = Ω(1/T )

in the worst-case. This implies that the best estimator V̂ of
V̄ will satisfy

E[(V̂ −V̄ )2] = Ω
(
(1/(1− γ)2)/T

)
.

To summarize, the squared error in estimating just the mean
of the value function will already scale with 1/(1− γ). If
we consider e.g., Φ to be the identity matrix, in which case
Vθ∗ is just equal to the true value function, it can easily be
seen that it is not possible to estimate Vθ∗ with error that
does not scale with 1/(1− γ).

A better scaling with the discount factor. Note, however,
that the previous discussion implied that a term like (1/(1−
γ)2)/T in a bound on the squared error is unavoidable. But
with 1/

√
T step-size, the error will in general decay more

slowly as 1/
√

T as in Corollary 2. Is it possible to derive
a bound where the only scaling with 1/(1− γ) is in the
asymptotically negligible O(1/T ) term?
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As we show next, this is indeed possible. The algorithm is
very natural given the discussion in the previous subsection:
we run projected and averaged TD(0) and estimate the mean
of the value function separately, adjusting the outcome of
TD(0) to have the right mean in the end. Building on Corol-
lary 2, the idea is that the mean will have expected square
error that scales with (1/(1−γ)2)/T while the temporal dif-
ference method will estimate the projection onto 1⊥ without
blowing up as γ → 1.

The pseudocode of the algorithm is given next as Algorithm
1 and Corollary 3 bounds its performance. Note that, in
contrast to the bounds in the last subsection, Corollary 3
bounds the error to the true value function V directly. This
is a more natural bound for this algorithm which tries to
directly match the mean of the true value function.

Algorithm 1 Mean-adjusted TD(0)
1: Initialize Ā0 = 0, s0 ∼ π , and some initial condition θ0.
2: for t = 0 to T −1 do
3: Projected TD(0) update:

θt+1 = ProjΘ (θt +αtgt(θt))

4: Keep track of the average reward: Āt+1 =
tĀt+rt+1

t+1
5: end for
6: Set V̂T = ĀT

1−γ

7: Output V ′T =V
θ̄T

+
(
V̂T −πTV

θ̄T

)
111

Corollary 3. Suppose that (θt)t≥0 and V ′T are generated by
Algorithm 1 with step-sizes α0 = · · · = αT = 1/

√
T . Sup-

pose further that Θ is a convex set that contains θ ∗. Let t0
be the largest integer which satisfies t0 ≤ 2τmix

(
1

2(t0+1)

)
.

Then as long as T ≥ t0, we will have

E
[
‖V ′T −V‖2

D

]
≤ O

E
[
‖Vθ ∗ −V‖2

D

]
+

r2
maxτmix

(
1

2(T+1)

)
(1− γ)2T

+
‖θ∗−θ0‖2

2 +G2 [1+ τmix(1/
√

T )
]

√
T

min
{

r(P)
γ

,
1

1− γ

})
.

Here r(P) is the inverse spectral gap of the additive re-
versibilization of the transition matrix P, defined as follows:

r(P) =
1

1−λ2(Q)
,

where λ2(Q) is the second-largest eigenvalue of the matrix
Q in turn defined as

Q =
P+P∗

2
,

where, finally, P∗ denotes the transition matrix of the re-
versed Markov chain, i.e.,

P∗( j|i) = π( j)
π(i)

P(i| j).

Let us parse the bound of Corollary 3. The bound has three
terms. The first term is just the difference between the
limit of TD(0) and the true value function; such a term is
inevitable in any TD(0)-based method that compares its per-
formance to the true value function (rather than to Vθ∗ ). The
second term comes from the error in mean estimation; as
described earlier, scaling with (1/(1− γ))2/T is inevitable
here. The multiplicative factor of τmix is present because,
due to the Markovian sampling, it can take τmix steps to
obtain an independent sample of the mean.

Finally, the last term of the bound of Corollary 3 is the
one that scales as Õ

(
1/
√

T
)
; compared to it, the second

term is negligible for large T . Crucially, this term does not
blow up as γ → 1, so that the only blowup occurs in the
asymptotically negligible second term. Indeed, observe that
while 1/(1− γ) appears in the third term, it appears as a
minimum of 1/(1− γ) and a quantity that depends on the
matrix P, so that it does not blow up as γ → 1.

Note that, unlike the previous bounds discussed in this paper,
this bound does depend on an eigenvalue gap associated with
(a function of) the matrix P. However, this dependence is in
such a way that it only helps: when 1/(1−γ) is small, there
is no dependence on the eigenvalue gap, and it is only when
γ→ 1 that performance “saturates” at something depending
on P.

5. Conclusion
We have provided an interpretation of temporal difference
learning in terms of a splitting of gradient descent. As
a consequence of this interpretation, analyses of gradient
descent can apply to temporal difference learning almost
verbatim.

We have exploited this interpretation to observe that tem-
poral difference methods learn the projection of the value
function onto 1⊥ without any blowup as γ → 1; by contrast,
previous work tended to have error bounds that scaled with
1/(1− γ). While, as we explain, it is not possible to remove
the dependence on O(1/(1− γ)) in general, we provide
an error bound for a simple modification to TD(0) where
the only dependence on 1/(1− γ) is in the asymptotically
negligible term.

An open problem might be to improve the scaling of the
bounds we have obtained in this paper with P. Our focus
has been on scaling with 1/(1−γ) but one could further ask
what dependence on the transition matrix P is optimal. It is
natural to wonder, for example, whether the r(P) factor in
the last term of Corollary 3 measuring how the performance
“saturates” as γ → 1, could be improved. Typically, error
bounds in this setting scale with the spectral gap of P, which
can be much smaller than r(P). We thus do not believe our
bound is tight.
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More broadly, if temporal difference learning is a splitting
of gradient descent, this opens up several possibilities for
future work. For example, one might wonder whether there
are other, more attractive, ways to split gradient descent
amenable to a bootstrapped interpretation. Alternatively,
instead of splitting gradient descent, one might attempt to
split mirror descent whenever there are further constraints
on the parameter θ .
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