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Abstract

The scarcity of available samples and the high an-
notation cost of medical data cause a bottleneck in
many digital diagnosis tasks based on deep learn-
ing. This problem is especially severe in pediatric
tumor tasks, due to the small population base of
children and high sample diversity caused by the
high metastasis rate of related tumors. Targeted
research on pediatric tumors is urgently needed
but lacks sufficient attention. In this work, we pro-
pose a novel model to solve the diagnosis task of
small round blue cell tumors (SRBCTs). To solve
the problem of high noise and high diversity in the
small sample scenario, the model is constrained to
pay attention to the valid areas in the pathological
image with a masking mechanism, and a length-
aware loss is proposed to improve the tolerance
to feature diversity. We evaluate this framework
on a challenging small sample SRBCTs dataset,
whose classification is difficult even for profes-
sional pathologists. The proposed model shows
the best performance compared with state-of-the-
art deep models and generalization on another
pathological dataset, which illustrates the poten-
tiality of deep learning applications in difficult
small sample medical tasks.

1. Introduction
Deep learning-based methods have enjoyed marvelous suc-
cess over a variety of tasks in recent years, and their appli-
cation in the medical field also illustrates excellent poten-
tiality. The outstanding performance of deep models heav-
ily depends on the availability of vast training databases.
Nevertheless, this is a considerable obstacle when tackling
medical data due to several reasons. First, different from
labeling natural images or language with the help of ordi-
nary volunteers, annotating medical data requires experts
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to devote a lot of time and endeavors during busy work.
Second, for the protection of data privacy, many hospitals or
institutions are unwilling or not allowed to share data about
specific diseases. Third, although some diseases have high
mortality and are worthy of attention, the affected patients
have a small population base and incidence. Under such
difficulties, designing effective deep models becomes a chal-
lenge that researchers focusing on medical data processing
have to face.

Strong dependence on large datasets makes deep learning
challenging to be applied to diseases whose cases are scarce.
As the experimental analysis in (Campanella et al., 2019)
concludes, when the number of pathological slices is less
than 10,000, the performance of deep models is often un-
satisfactory. This problem is especially severe in many
pediatric diseases. The small round blue cell tumors (SR-
BCTs) (Sharma et al., 2017) we studied in this work are one
kind of such diseases due to their small number and diverse
shapes.

The reason for the common small sample problem in pe-
diatric pathology research is that pediatric cancer data are
very difficult to collect. Compared with adults, the cancer
incidence is lower in children. For example, the most com-
mon tumor in adults is hepatocellular carcinoma, which has
an incidence rate of about 40 per million (Di Bisceglie et al.,
1988), while the hepatoblastoma in children, the most com-
mon pediatric liver malignancy, is only 1.5 per million on
incidence (Tang et al., 2011). Coupled with the considerable
difference in the population base, the number of pathologi-
cal tumor slices in children is significantly lower than the
number of adult tumor slices, which is a huge challenge
for deep learning. At the same time, the severe shortage of
pediatric pathologists and expensive time cost bring more
obstacles.

Faced with such a pediatric cancer research problem with
small data size, a simple idea is to directly use a model
from adult cancer pathology research for transfer learning.
However, compared with adult tumors, children tumors are
very different in terms of tumor origin, cell source, frequent
location, and disease spectrum (Ma et al., 2018)(Marshall
et al., 2014), which in turn leads to significant differences
in cell morphology on pathological slices. In most cases,
models suitable for adult pathology tasks cannot be directly
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applied to pediatric cancers.

In this work, we present a novel small sample gated network,
named SagaNet, for the pathological image classification
task of SRBCTs. The problem we face is that challenging
small datasets usually have much noise and high diversity,
and are difficult to distinguish visually even for experts. In
terms of probability, 50% diagnostic accuracy is an average
performance of pathologists. In the actual diagnosis process,
ancillary techniques such as immunohistochemical markers
are often used (Shimada et al., 1999) (Barden & Lewey,
1949). However, when performing immunohistochemistry,
a definite diagnosis can still be impossible due to insufficient
available slices, considering that making slice samples from
living children via surgeries is a costly and risky task. Thus,
we hope that the classification task can be performed directly
from the pathological slides through deep learning, and a
reasonable reference can be provided before the pathologist
makes the immunohistochemistry.

When data are insufficient, the first problem to be solved
is removing image noise caused by various cell tissues or
impurities. Therefore, we propose to generate a mask for
the input pathological image to roughly shield the noise
area and design the gating mechanism cooperating with
a partial reconstruction loss to force the network to focus
on the meaningful tissue regions. Another problem is the
diversity of feature patterns themselves. If massive training
data are available, the model can be gradually taught to
assimilate various feature patterns of the same category. For
the current small sample problem, we redesigned the final
classification loss, utilizing the length of features as the
basis for classification. Feature patterns of the same length
can be very different, which improves the model’s tolerance
for output feature diversity.

Our model shows outstanding performance, which is much
higher than human attempts, and illustrates dramatic su-
periority compared with state-of-the-art deep models. In
addition, we also conducted training and verification on
another small-scale pathology dataset. The experimental
results far exceeded the performance of baseline models
on this dataset, confirming the generalization of SagaNet.
This work provides a promising prospect for the auxiliary
diagnosis of pediatric tumors and starts a good exploration
for further research on small sample pathological problems
with deep learning.

2. Overview of Related Work
At present, most medical research based on deep learning
has focused on some mainstream adult diseases, and child-
hood diseases have not received much attention. These
studies generally use neural networks to detect or segment
the corresponding objects in the disease or directly make

classification diagnoses.

In some research problems of high incidence adult diseases,
many studies have utilized deep learning to make relevant
explorations and obtained good achievements. Chen et al.
(2017) proposed a deep contour-aware network to automati-
cally detect and segment histological objects by combining
multi-layer contextual features. They added three weighted
auxiliary classifiers into the network to alleviate gradient
vanishing, and the experimental results demonstrated the
superior performance of their method. In the same year,
Harrison et al. (2017) applied a fully connected convolu-
tional network in the task of pathological lung segmentation
through merging output maps from different layers, finally
obtaining a detailed mask as the result.

In the work of Titano et al. (2018), a 3D convolutional
neural network architecture was demonstrated to detect
acute neurologic events on head CT images by perform-
ing weakly-supervised classification. Their method shows
excellent performance and greatly reduces diagnosis time.
A pathological descriptor was proposed in (Niu et al., 2019)
to describe the position and quantity of lesions in diabetic
retinopathy. They trained a generative adversarial network
(GAN) to synthesize the corresponding retinal image of the
given descriptor and a binary vessel segmentation, and this
method improved the interpretability of deep learning on
medical tasks. Campanella et al. (2019) presented a deep
learning model based on multi-instance learning through
weakly-supervised training on a massive amount of whole
slide images from several different cancers and obtained
accurate results on several common tumors. These research
efforts are mainly focused on mainstream diseases because
it is easier to obtain a large amount of medical data on these
disease tasks.

Compared with numerous research works in the field of
adult medical care, there are far fewer works related to child
medical care (Shu et al., 2019). Larson et al. (2017) esti-
mates the skeletal maturity of children through deep neural
networks, achieving similar performance compared with
experts. In the work of Lakhani & Sundaram (2017), an en-
semble of AlexNet (Krizhevsky et al., 2012) and GoogLeNet
(Szegedy et al., 2015) was utilized to detecting tuberculosis
in chest radiographs. Tabrizi et al. (2018) combined a deep
neural network and a weighted fuzzy active shape model
in pediatric 3DUS images to automatically segment kid-
neys with various shapes, sizes, and texture characteristics.
Through training on images of entire hands and specific
parts of hands with deep learning, Iglovikov et al. (2018)
successfully automatically estimated the pediatric skeletal
bone age with high accuracy.

In pediatric cancer research works discussed above, datasets
are small but with a relatively stable positional relationship
with images, which is different from highly diverse patho-
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logical images in our dataset. The SRBCTs classification
task in our work is more challenging to solve.

3. SagaNet
When a dataset is small, the two problems of high noise
and high diversity will be particularly prominent, which
will greatly reduce the performance of the model on the
dataset. For these two problems, we proposed two sets of
schemes: mask filtering and diversity tolerance respectively,
and integrated them into the same network model, named
SagaNet.

In this section, we will elaborate on the ideas and imple-
mentation strategies of the two sets of schemes and show
the details of each module of the corresponding scheme in
subsections.

3.1. Noise Filtering

Massive image noises are inevitable in pathological images
of SRBCTs due to several factors. The first one is SRBCTs
can happen in many parts of a child’s body, such as the
abdomen, neck, chest, and pelvis, and spread to other parts
of the body with high probability (Janoueix-Lerosey et al.,
2010) (Brereton et al., 1975). This makes the form of tis-
sue in slices highly varies with different sample positions,
sometimes accompanied by muscles, red blood cells, or
vascular cavity, and sometimes not. The second one is that
the blade may deform a small part of the tissue when the
doctor cuts the sample to make slices, and some operations
may cause tissue breaks or air bubbles in the slice. Last
but not least, because the samples of SRBCTs are rare, the
sample collection covers a long-time span (usually 3 to 10
years). Some slices may discolor due to improper or long-
time storage. As the number of available training samples
is limited, the problem of noise may significantly degrade
model performance.

In order to shield this disturbing classification information,
we propose a set of architecture to force the network to
ignore the noise area in the pathological image. This mech-
anism is composed of image masks, gating mechanism, and
a partial reconstruction loss. First, we unsupervisely gener-
ate masks for pathological images to shield areas such as
cavities, blood clots, etc. These masks are used as the input
of the network together with pathological images. Then, we
equip the network with gating layers (Dauphin et al., 2017),
which can dynamically determine whether to spread the in-
formation to the next layer with some probability, and thus
selectively filter out the information shielded by the mask.
The objective function which guides this information filter-
ing process is a partial reconstruction loss with the mask.
Under such a design, the network is forced to pay attention
to the unmasked image regions and focus on useful potential

discriminant information, leading to the improvement of the
classification performance with less noise.

3.1.1. MASK GENERATING

We consider constructing masks of these pathological im-
ages by exploiting the visual attributes of stained slices
themselves. The mask results are gained via an unsuper-
vised segmentation algorithm inspired by (Kanezaki, 2018).
Different from their work, we propose a recognition mecha-
nism for the valid area after the initial training process and
change the architecture of convolutional networks to make
the optimization process more smooth. Non-linear layers
are placed in front of batch normalization layers in the orig-
inal work, which is found to make optimization unstable
in our experiments. Therefore, we adjust the structure and
further improve the architecture to be four convolutional
layers with the squeeze-and-excitation mechanism as SENet
(Hu et al., 2018).

First, an initial segmentation result of the input image
X = {xn}N with N pixel values is gained via traditional
clustering like SLIC (Achanta et al., 2010). We record
a pixel location set of every unique segmentation label,
namely A = {Ayk

}K , where yk is the kth label. Then,
during each epoch, a convolutional network accepts the im-
age as an input and output probabilities for segmentation
labels at each pixel, namely P = {pn}N . A target im-
age T = {tn}N is constructed by marking each pixel with
the most probable label, namely lk = argmax(|ln|n∈Ayk

),
where |ln| is the count number of the label ln. Afterwards,
each area in T corresponding to the segmented area in A
will be marked to the most frequently occurring label. The
backpropagation process is performed by minimizing the
cross-entropy loss between P and T , until the number of
segmented areas S reaches the minimum label number u.
The pseudo code of the specific process is shown in Algo-
rithm 1.

After obtaining a coarse result by applying the steps above,
we need to merge valid parts and mark the collection of
remaining parts as the mask of this image by a special
judgment mechanism. To allow pathologists to clearly see
where the cells are, slices are often stained by H&E (Tit-
ford, 2005). Thus, we can utilize color and texture char-
acteristics to detect valid areas. We use T as an abbrevia-
tion for threshold. The first one is that the average value
of (Rm, Gm, Bm) must be within [Tlow, Thigh], where m
means the mean value of the corresponding area, such that
dark points and blank areas can be excluded. The second
one is the (Rm + Bm)/2 − Gm ≤ Tred, removing red
regions. The last one is mean(Rs, Gs, Bs) ≥ Tsmooth,
where s is the standard variance of the color channel in that
field so that only rough-textured areas (cell regions) will be
considered. Some examples of generated masks are shown
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Algorithm 1 Mask Construction

Input: image X = {xn}N
Output: mask M

{Ayk
}K = Slic(X)

SENet.parameters = Init()

repeat
{pn}N = SENet(X)

{tn}N = {argmax(pn)}N
for k = 1 to K do
lk = argmax(|ln|n∈Ayk

)
tnewn = lk for n ∈ Ayk

Loss = Cross-entropy(xn, tn)
SENet.SGD(Loss)

end for
S = unique({lk})

until S ≤ u

for s = 1 to S do
means = mean(RGBAs

)
stds = std(RGBAs

)
if V alidOrNot(means, stds) is true then

Merge V with As

Update M
end if

end for

in Figure 1. In order to make the proportion of the cell tissue
area in the image as large as possible, we rotate and ran-
domly shift this area within a specific range to fill masked
regions, and update the mask at the same time. In most
cases, this direct method will not completely fill the blank
area but can provide the model more useful information.

3.1.2. FEATURE GATING

Gated layers are proven to be good at handling masked
input in previous works (Yu et al., 2019) (Chang et al.,
2019) to achieve image inpainting tasks. In these tasks,
when networks based on vanilla convolutional layers are ill-
fitted with large holes existing in image inputs, non-signal
information will cause a bad effect on gradient updates
and lead to blurriness, color discrepancy, and obvious edge
responses surrounding holes of filled parts. That is because
the model treats the pixel at any location of the whole image
as equally valid. By applying a gating mechanism, trainable
dynamic feature selection can be achieved at each local
spatial region across layers. It is formulated as:

Gatingx,y =WgI,

Featurex,y =WfI,

Ox,y = σ(Gatingx,y)� φ(Featurex,y),

where I represents the input feature and Ox,y is the output
feature at the location (x, y). Wg and Wf are the convolu-
tional filters for gating and feature representation, respec-
tively. σ(·) is the sigmoid non-linear function such that the
gating value can be restricted within (0, 1) and φ(·) is an
activation function such as ReLU and ELU.

(a) EWS

(b) NBUD

Figure 1: Some examples of masks for EWS and NBUD
categories, where the black parts in the second row of each
image represent valid areas.

3.1.3. RECONTRUCTION REGULARIZATION

During the optimization, it is undesired for the classifica-
tion model to know any original information that should
be masked. To let the network aware of signal-containing
regions, we introduce mask into the loss by only calculat-
ing the least-squares loss between unmasked pixels of the
input and output, written in a formula: Lreconst.(x, y) =
||(Ix,y − Ox,y) � M ||2, where Ix,y and Ox,y means the
input and output of the auto-encoder at the location (x, y)
and M means the corresponding mask.

This reconstruction loss can impose a straining effect on
the dynamic feature filtering mechanism of gated layers and
lead the network to discover available visual regions.
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3.2. Diversity Tolerance

The high diversity of samples from the same category is
caused by the various possibilities of sample appearances.
For the SRBCTs studied in this paper, the tissue morphology
on pathological slices is ever-changing due to the diversity
of its frequent sites and easy metastasis. The high diversity
of samples brings a great challenge when training data are
insufficient. When a large dataset is available, the network
adjusts the parameters during the training process to obtain
a uniform and reasonable probability output after the feature
goes through a series of linear and nonlinear transformations.
However, when a small sample problem occurs, the high
diversity of features cannot be accurately digested by the
network. Therefore, we consider relaxing the probability
calculation step. Instead of using the precise linear and
non-linear calculations, we utilize the vector length of the
feature to compute the probability. The advantage of this
method is that the features of many different patterns can
correspond to the same length. For instance, the different
patterns (0, 0, 1, 1) and (1, 0, 1, 0) have the same value

√
2.

This explicitly models the loss function with the relaxation
condition, which we call a length-aware hinge loss.

3.2.1. LENGTH-AWARE HINGE LOSS

The original cross-entropy function is undoubtedly the most
commonly utilized loss in the field of deep learning. How-
ever, it often does not work well on small sample datasets
because it tends to consider the entire feature pattern, which
reduces the flexibility of the model. For a small sample
dataset, we utilize a length-aware hinge loss, which can
treat different feature vectors extracted by the network as
the same length value. This loss was also used in (Sabour
et al., 2017), in conjunction with the dynamic routing mech-
anism, to solve a problem of structuring features. We use
it based on a new starting point, i.e., the vector length can
correspond to many different vector patterns. Our approach
potentially allows the features coming from the same cate-
gory to have higher diversity. In a multinomial classification
problem with C categories, we can separately write the
cross-entropy loss CEc and the length-aware hinge loss
LHc as follows:

CEc = − tc log(φc(W f)),

LHc = tc(max(0, Tmax − |fc|))2+
α(1− tc)(max(0, |fc| − Tmin))

2,

where f is the feature vector to be input into the last layer and
fc is the feature for class c, which is obtained by performing
matrix transformation on the convolved features u, namely
fc =

∑
j Wc,juj . tc equals 1 if the sample belongs to class

c and 0, otherwise. φ(·) is the softmax layer and W is the
weights of the last fully connected layer. Tmax and Tmin

are respectively the upper and lower threshold of the hinge

loss and α is the loss down-weighting for absent classes.

3.3. Model Backbone

The architecture of SagaNet for easier understanding is
displayed in Figure 2 and the final loss of the model is:

Loss =

C∑
c

LHc + Lreconst..

One important difference between natural images and patho-
logical ones is that the latter’s bottom features are more
important. Thus, we choose a relatively light DenseNet
(Huang et al., 2017) architecture as the base of our model,
whose densely connected residual structure prevents the net-
work from losing low-level representations. Upsampling
followed by convolution is applied with kernel size 1× 1 to
replace deconvolution, which can lead to more stable opti-
mization. To preserve the bottom signal of input, we also
add skip-connections (Ronneberger et al., 2015) into the
auto-encoder architecture. These connections help store and
spread low-level information, which is essential to patholog-
ical images, throughout the whole network.

4. Experiments
In this section, we first introduce the pediatric cancer dataset
which we mainly focus on. Then the experimental configu-
rations are detailed and specific comparisons of results are
reported. Furthermore, to show the generalization of the
model, the comparison results on another dataset BreakHist
(Spanhol et al., 2015) are also provided.

4.1. SRBCT2 Dataset

We train and evaluate our model on a small sample SRBCTs
dataset with two tumor categories: neuroblastoma, undif-
ferentiated subtype (NBUD) and Ewing sarcoma (EWS),
named SRBCT2. The two tumor categories are usually con-
sidered impossible to visually diagnose without auxiliary
techniques (immunohistochemistry, electron microscopy,
and/or cytogenetics) (Shimada et al., 1999) (Barden &
Lewey, 1949). There is a high degree of morphological
diversity within either single category but a high degree of
similarity between the two, which makes them challeng-
ing to classify. All the pathological images were collected
from a national pediatric hospital. The record time of pa-
tient cases varies from 2010 to 2015, and 17 patients are
involved in total, in which eight patients suffer NBUD and
nine patients suffer EWS. There are 25 whole slide images
in total, and each patient has 1 to 5 slices. Through taking
screenshots with the size of 768× 768 from them without
overlapping, smaller patches were organized and labeled by
a professional pathologist, and the patch number of each
patient varies from 10 to 141. As a consequence, we got
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(a)

(b)

(c)

(d)

(e)

Figure 2: The schematic structure of SagaNet and the inter-
nal structure of major modules. The green circles represent
input and output data, and the blue circles mean the features
between layers. In gated dense layers, there is the growth of
feature channel number marked with orange, which is one
of the characteristics of DenseNets.

300 annotated patches for either of the two categories.
After obtaining the SRBCT2 dataset, we performed data aug-
mentation with rotating and flipping, and finally expanded
the number of images by eight times. Then we split the
dataset for model evaluation, in accordance with the practi-
cal and challenging situation that patches for training and
evaluation should not come from the same patients. The
patch number of each patient is different, and so the dataset
is unable to be split evenly. Thus, we split the dataset with
the constraint that the patients of the training set, the valida-
tion set, and the test set cannot overlap each other and the
number of patches in the last two parts is within the range
[45, 55]. Finally, we randomly take 20 splits.

4.2. Configurations

In this paper, we train our model from scratch and con-
sider comparison deep models with and without pre-trained
weights. When constructing masks for input images, we
use the SGD optimizer with the learning rate of 0.05 when
training the SENet network and set the number of minimum
segmented areas as 7. In the process of merging segmented
areas, we set Tlow = 78, Thigh = 158, Tred = 37 and
Tsmooth = 35.

Considering that different comparison models may have
different levels of adaptability to inputs with masks, we
perform experiments on two forms of the image input for
fairness: one is the raw image without any mask, and the
other is the image multiplied with its mask. In the proposed
model, four gated dense blocks are used, and the number of
gated convolutional blocks is set to one and two for the first
two and the last two blocks, respectively. The growth rate
of each dense block is 32, and the first convolutional layer
contains 64 filters. We use ELU (Clevert et al., 2015) as the
nonlinear function in the proposed model. When training
neural networks, we configure the initial learning rate to
5e−6 with the Adam optimizer and multiply it by 0.7 at the
end of each epoch. The whole number of training epochs is
set to 300, and an early stopping mechanism is applied with
the patience of 20 epochs. After the training process stops,
the best-saved model is used to evaluate the performance on
the test set. One GPU (NVIDIA GeForce RTX 2080 Ti) is
used.

4.3. Comparison with Deep Models

The state-of-the-art deep models used for comparison are
DenseNet121, DenseNet169, DenseNet201 (Huang et al.,
2017), Inception-v3 (Szegedy et al., 2016), ResNet50 (He
et al., 2016), Xception (Chollet, 2017), Mobilenets (Howard
et al., 2017) and NASnet (Zoph et al., 2018).

A new top classifier with two fully connected layers and
one dropout layer with the probability of 0.5 is applied
to each model for the SRBCTs classification task. The
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Table 1: Classification accuracies, p values of paired t-test and parameter numbers (Param. Num.) for state-of-the-art deep
models and SagaNet.

MASK INPUT RAW INPUT

MODEL ACCURACY Pt-test ACCURACY Pt-test PARAM. NUM.

DENSENET121 0.6150± 0.1055 5.1107e−6 0.6007± 0.1121 5.4310e−4 3.27e7

DENSENET121pre 0.7568± 0.0576 2.1010e−4 0.6793± 0.0832 9.5404e−1 −
DENSENET169 0.5613± 0.0956 7.1318e−12 0.6082± 0.1323 5.0798e−6 5.44e7

DENSENET169pre 0.7799± 0.0658 1.9576e−2 0.6720± 0.0810 9.6755e−1 −
DENSENET201 0.5440± 0.0977 1.9573e−12 0.5159± 0.0561 1.1007e−8 6.65e7

DENSENET201pre 0.7847± 0.0606 1.0021e−2 0.6925± 0.0709 5.9305e−1 −
INCEPTION-V3 0.5265± 0.1039 1.5035e−12 0.6175± 0.1549 4.5514e−4 4.80e7

INCEPTION-V3pre 0.6565± 0.0657 1.3520e−15 0.6611± 0.0847 5.7810e−1 −
RESNET50 0.4898± 0.0153 2.1705e−17 0.6512± 0.1111 9.5022e−4 7.50e7

RESNET50pre 0.7268± 0.0826 1.1542e−3 0.6396± 0.0970 2.4182e−1 −
XCEPTION 0.6004± 0.1459 1.1690e−7 0.5216± 0.0671 2.2246e−9 7.22e7

XCEPTIONpre 0.7257± 0.0614 1.8365e−7 0.6766± 0.1042 8.7516e−1 −
MOBILENETS 0.5798± 0.0918 8.5734e−11 0.6402± 0.1325 2.2565e−3 2.11e7

MOBILENETSpre 0.7550± 0.0523 5.2889e−4 0.6715± 0.0865 6.7780e−1 −
NASNET 0.4943± 0.0162 5.4818e−18 0.4848± 0.0132 2.1779e−10 1.86e8

NASNETpre 0.6867± 0.0547 1.1731e−9 0.6848± 0.0819 8.0931e−1 −
SAGANET 0.8031± 0.0578 − 0.7457± 0.0763 − 1.96e6

performance results are shown in Table 1. Considering that
these comparison models may be disadvantaged on small
datasets due to a large number of parameters, which may
lead to unfair comparisons, we also consider loading pre-
trained weights for them and making the last 4 layers of
parameters trainable. In the table, we use the subscript pre
to indicate that the model has been loaded with pre-trained
weights. Moreover, paired t-test experiments were also
performed on the results of 20 data splits, and when the
p-value is less than 0.05, the difference between results will
be considered significant. The parameter numbers of each
model are shown in the last column.

As is shown in Table 1, the proposed model with masked
inputs achieves the highest accuracy, and its superiority is
also evident as the p-value is far lower than 0.05 for any
other deep model. Considering that this dataset is very
small and the accuracy of visual classification alone in pro-
fessional pathologists’ recognition is only 50%, the current
performance improvement is actually very remarkable. The
performance of the comparison model has increased after
using the pre-trained weights, and uniformly shows better
performance when using masks. This phenomenon shows
that when with good initialization settings, using masks
can indeed help reduce noises. SagaNet surpassed these
models with high significance, indicating that the gating
and partial reconstruction designs for masks are necessary
and effective. These designs inside the network may not be
fully functional without masks. What can prove this is that
when only raw images are used as input, the significance
of SagaNet performance advantage compared with the pre-
trained comparison model is reduced. All in all, the mask
input and the corresponding designs inside the model are

closely matched and indispensable.

For SagaNet, the performance of the model has taken a
qualitative leap. This is because the combination of gated
layers and reconstruction loss enables the information in the
valid area to be exploited more fully without interference
from other noises. When we use raw inputs, there is no
explicit noise-filtering mechanism, but the model still shows
a certain degree of advantage, showing that the design of
length-aware hinge loss is more suitable for small datasets
than the cross-entropy loss.

These results may illustrate that when the dataset is small
and highly diverse within each class, popular deep models
cannot be directly applied to the task, and some targeted
designs for data as in SagaNet are necessary. Thus, it is
very meaningful to build such a delicate model to solve
real problems. We also perform comparison experiments on
traditional classifiers and results are shown in Appendix A.

4.4. Ablation Experiments

To evaluate the influence of each novel part in SagaNet, we
performed ablation experiments in the same condition as
the proposed model. The parts that we take into consider-
ation are the gated layer, the reconstruction regularization
term, the length-aware hinge loss, and the masked input.
Models that lack one of these parts are respectively named
as MaskedC , GatedC , ReconstC , and HingeC , which
means the complement set of the corresponding design part.
We use raw images as inputs for MaskedC , use vanilla
convolutional layers to replace gated layers for GatedC ,
remove the reconstruction loss term from the total loss
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for ReconstC , and use a cross-entropy loss to replace the
length-aware hinge loss for HingeC . The baseline model
has the same mainframe as SagaNet but without all of the
parts mentioned above. Experimental results are shown in
Table 2.

Table 2: Classification accuracies and p values of paired
t-test in the ablation experiments of SagaNet.

MODEL ACCURACY Pt-test

MaskedC 0.7457± 0.0763 2.6499e−4

GatedC 0.7058± 0.0904 4.8692e−5

ReconstC 0.6268± 0.1221 1.4353e−6

HingeC 0.6086± 0.1039 3.9894e−7

BASELINE 0.5550± 0.1146 4.2072e−12

SAGANET 0.8031± 0.0578 −

It can be found that the performance of the baseline is dra-
matically improved by applying our thoughts. Furthermore,
the results show that loss design plays a crucial role in the
optimization of the model. Both the hinge loss and recon-
struction regularization term are necessary for the current
design. The former provides the model the outstanding abil-
ity to tolerate high sample diversity, and the latter guides
gated layers to filter features dynamically. Masks and gated
layers also help improve accuracies significantly, which
shows either of them cannot be ignored for the aim of filter-
ing image noises. No matter which part of SagaNet’s design
is removed, noticeable performance degradation will oc-
cur, which shows the rationality and integrity of our model
design.

4.5. Experiements on BreakHist

In order to verify the generalization of SagaNet in other
small-scale pathological images, we conducted experiments
on another dataset named BreakHist (Spanhol et al., 2015).
This dataset contains pathological images of the same case
set at four magnifications, 40×, 100×, 200×, and 400×.
All images are of size 700× 460. Each set of magnification
has two types of tissue images, benign and malignant, and
the data distribution is shown in Table 3. We perform 5 data
splits according to the requirements in (Spanhol et al., 2015),
and make the test set account for about 30% of the total
data while ensuring that the test set and training set cases
do not overlap. In order to use the same hyperparameters
when generating the mask, we use the image hue in the
SRBCTs dataset as the reference hue for BreakHist color
normalization (Vahadane et al., 2016). The final result is
shown in Table 4. We also evaluate the model according to a
recognization rate defined in that work. If Nreg images are
correctly recognized from NP cancer images of a patient,
the formulation of a patient score Nps can be written as
Nps =

Nreg

NP
. The recognition rate Preg of Npat patients

Table 3: Data distribution of BreakHist dataset

MAGNIFICATION BENIGN MALIGNANT TOTAL

40× 652 1,370 1,995
100× 644 1,437 2,081
200× 623 1,390 1,995
400× 588 1,232 1,820
Total 2,480 5,429 7,909

Table 4: Recognition rates for comparison classifiers and
SagaNet.

MAGNIFICATION FACTORS

MODEL 40× 100× 200× 400×

1-NN 80.9± 2.0 80.7± 2.4 81.5± 2.7 79.4± 3.9
QDA 83.8± 4.1 82.1± 4.9 84.2± 4.1 82.0± 5.9
RF 81.8± 2.0 81.3± 2.8 83.5± 2.3 81.0± 3.8
SVM 81.6± 3.0 79.9± 5.4 85.1± 3.1 82.3± 3.8
SAGANET 96.2± 0.6 96.0± 1.5 94.4± 1.2 92.7± 1.3

is Preg =
∑

Nps

Npat
. The results shown in the table illustrate

that the proposed method has very high superiority and
stability, and combining mask-based noise filtering and a
length-aware loss is very reasonable and effective, which
can better deal with small-scale pathological datasets.

5. Conclusion
Artificial intelligence assisted diagnosis is an important di-
rection that has attracted much attention in the medical
diagnosis field. The pediatrics field faces a more serious
data shortage than adult medicine, which makes it very chal-
lenging for deep models to provide excellent and stable
performance. In this work, we start by solving a difficult
pediatric tumor pathological problem and propose a general
deep network model for small sample classification, named
SagaNet.

Due to the high similarity of the two considered cancer
types, even professional pathologists have difficulty in dis-
tinguishing them via observing the slices with microscopes.
In this model, we propose to extract masks based on the
characteristics of pathological images and use them as the
input of the network together with the corresponding images.
In order to make the network focus on non-masked areas, we
use gating layers to filter the information and use a partial
reconstruction loss to guide the training process. To further
improve the network’s tolerance to feature diversity, we pro-
pose a length-aware hinge loss. In experiments, SagaNet
largely outperforms other state-of-the-art deep models and
shows good generalization.
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