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1. Co-PRL(L) Algorithm
We borrow the framework from the co-teaching framework(Han et al., 2018). The only difference is the filtering criteria.
Co-teaching uses loss value as the filtering criteria while Co-PRL(L) uses the loss-layer-gradient norm as the filtering
criteria.

Algorithm 1 Co-PRL(L)
input: initialize wf and wg , learning rate η, fixed τ , epoch Tk and Tmax, iterations Nmax
Return: model parameter wf and wg
for T = 1, 2, ..., Tmax do

for N = 1, ..., Nmax do
random sample a minibatch M from Dx,D

ε
y (noisy dataset)

get the predicted label Ŷf and Ŷg from M by wf . wg
calculate the individual loss lf = L(Y, Ŷf ), lg = L(Y, Ŷg)

calculate the gradient norm of loss layer scoref = ‖ ∂lf
∂ŷf
‖, scoreg = ‖

∂lg
∂ŷg
‖.

sample R(T )% small-loss-layer-gradient-norm instances by scoref and scoreg to get Nf , Ng

update wf = wf − η∇wf
L(Nf , wf ), wg = wg − η∇wg

L(Ng, wg) (selected dataset)
update model xt+1 = xt − γtµ̂

end for
Update R(T ) = 1−min

{
T

Tk
τ, τ

}
end for

2. Further Illustration of the difference between SPL and PRL(G)
In this section, we will further illustrate the difference between SPL and PRL(G). In order to have a more intuitive
understanding of our algorithm, we could look at the Figure 1(a) and 1(b). Since we are in the agnostic label corruption
setting, it is difficult to filtering out the correct corrupted data. We showed two situations when loss filtering failed and
gradient filtering failed. As we could see that when loss filtering method failed, the remaining corrupted data could have
large impact on the overall loss surface while when gradient filtering method failed, the remaining corrupted data only have
limited impact on the overall loss surface, thus gaining robustness.

3. Networks and Hyperparameters
The hyperparameters are in Table 1. For Classification, we use the same hyperparameters in (Han et al., 2018). For CelebA,
we use 3-layer fully connected network with 256 hidden nodes in hidden layer and leakly-relu as activation function. We
also released our code in https://github.com/illidanlab/PRL.

Data\HyperParameter BatchSize Learning Rate Optimizer Momentum
CF-10 128 0.001 Adam 0.9
CF-100 128 0.001 Adam 0.9
CelebA 512 0.0003 Adam 0.9

Table 1. Main Hyperparmeters

https://github.com/illidanlab/PRL
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Data ε− 0.1 ε− 0.05 ε ε+ 0.05 ε+ 0.1
CF10-Pair-45% 65.07±0.83 70.07±0.67 73.78±0.17 77.56±0.55 79.36±0.43
CF10-Sym-50% 69.21±0.35 72.53±0.45 75.43 ± 0.09 77.65±0.27 78.10±0.31
CF10-Sym-70% 53.88±0.64 58.49±0.97 60.26 ± 0.42 60.89±0.43 54.91±0.68
CF100-Pair-45% 32.60±0.45 34.17±0.40 34.43 ± 0.05 36.87±0.41 38.34±0.78
CF100-Sym-50% 37.74±0.41 39.72±0.36 40.64 ± 0.11 43.02±0.36 43.92±0.61
CF100-Sym-70% 24.40±0.47 25.50±0.45 27.27 ± 0.10 27.80±0.50 28.20±0.97

Table 2. sensitivity analysis for estimated ε

4. Learning Curve
We show how testing evaluation changes along the training process for both classifcation and regression tasks in this section.
The regression curve for CelebA data is showed in Figure 2. Note the for regression, the SPL and co-teaching are actually
equivalent to our algorithm (i.e. PRL(L) and (Co-PRL(L))). The classification curve is in Figure 3.

5. Sensitivity Analysis
Since in real-world problems, it is hard to know that the ground-truth corruption rate, we perform the sensitivity analysis
in classification tasks to show the effect of ε. The results are in Table 2. As we could see, the performance is stable if we
overestimate the corruption rate, this is because only when we overestimate the ε, we could guarantee that the gradient norm
of the remaining set is small. However, when we underestimate the corruption rate, in the worst case, there is no guarantee
that the gradient norm of the remaining set is small. By using the empirical mean, even one large bad individual gradient
would ruin the gradient estimation, and according to the convergence analysis of biased gradient descent, the final solution
could be very bad in terms of clean data. That explains why to underestimate the corruption rate gives bad results. Also,
from Table 2, we could see that using the ground truth corruption rate will lead to small uncertainty.

6. Empirical Results on Running Time
As we claimed in paper, the algorithm 2 (PRL(G)) is not efficient. In here we attached the execution time for one epoch for
three different methods: Standard, PRL(G), PRL(L). For fair comparison, we replace all batch normalization module to
group normalization for this comparison, since it is hard to calculate individual gradient when using batch normalization.
For PRL(G), we use opacus libarary to calculate the individual gradient. The results are showed in Table 3

(a) When gradient filtering method failed to pick out right
corrupted data, the remaining corrupted data is relatively
smooth, thus has limited impact on overall loss surface.

(b) When loss filtering method failed to pick out right cor-
rupted data, the remaining corrupted data could be extremely
sharp, thus has large impact on overall loss surface.

Figure 1. Further Illustration of difference between SPL and PRL(G)
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(a) ε = 0.1 linadv noise (b) ε = 0.2 linadv noise (c) ε = 0.3 linadv noise (d) ε = 0.4 linadv noise

(e) ε = 0.1 signflip noise (f) ε = 0.2 signflip noise (g) ε = 0.3 signflip noise (h) ε = 0.4 signflip noise

(i) ε = 0.1 uninoise noise (j) ε = 0.2 uninoise noise (k) ε = 0.3 uninoise noise (l) ε = 0.4 uninoise noise

(m) ε = 0.1 mixture noise (n) ε = 0.2 mixture noise (o) ε = 0.3 mixture noise (p) ε = 0.4 mixture noise

(q) ε = 0.1 pairflip noise (r) ε = 0.2 pairflip noise (s) ε = 0.3 pairflip noise (t) ε = 0.4 pairflip noise

Figure 2. Testing R-square for CelebA during the training phase.

7. Proofs
7.1. Proof of Convergence of Biased SGD

We gave the proof of the theorem of how biased gradient affect the final convergence of SGD. We introduce several
assumptions and definition first:
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(a) CF10 ε = 0.3 symmetric noise
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(b) CF10 ε = 0.5 symmetric noise
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(c) CF10 ε = 0.7 symmetric noisee
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(d) CF10 ε = 0.25 pairflip noise
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(e) CF10 ε = 0.35 pairflip noise
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(f) CF10 ε = 0.45 pairflip noise

0 10 20 30 40 50
epoch

0

10

20

30

40

50

te
st

_a
cc

1

method
Standard
SPL
Decouple
Co-teaching
PRL(L)
Co-PRL(L)
Norm-clip
Bootstrapping
Min-SGD

(g) CF100 ε = 0.3 symmetric noise
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(h) CF100 ε = 0.5 symmetric noise
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(i) CF100 ε = 0.7 symmetric noise
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(j) CF100 ε = 0.25 pairflip noise
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(k) CF100 ε = 0.35 pairflip noise
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(l) CF100 ε = 0.45 pairflip noise

Figure 3. CIFAR10 and CIFAR100 Testing Curve During Training. X axis represents the epoch number, Y axis represents the testing
accuracy. The shadow represents the confidence interval, which is calculated across 3 random seed. As we see, PRL(L), and Co-PRL(L)
are robust against different types of corruptions.

Assumption 1 (L-smoothness) The function φ: Rd → R is differentiable and there exists a constant L > 0 such that for
all θ1, θ2 ∈ Rd, we have φ(θ2) ≤ φ(θ1) + 〈∇φ(θ1), θ2 − θ1〉+ L

2 ‖θ2 − θ1‖
2

Definition 1 (Biased gradient oracle) A map g : Rd ×D → Rd, such that g(θ, ξ) = ∇φ(θ) +b(θ, ξ) +n(θ, ξ) for a bias
b : Rd → Rd and zero-mean noise n : Rd ×D → Rd, that is Eξn(θ, ξ) = 0.

Compared to standard stochastic gradient oracle, the above definition introduces the bias term b. In noisy-label settings, the
b is generated by the data with corrupted labels.

Assumption 2 (σ-Bounded noise) There exists constants σ > 0, such that Eξ‖n(θ, ξ)‖2 ≤ σ, ∀θ ∈ Rd
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Method Standard PRL(G) PRL(L)
CF10-Pair-45% 37.03s 145.55s 54.80s

Table 3. Execution Time of Single Epoch in CIFAR-10 Data

Assumption 3 (ζ-Bounded bias) There exists constants ζ > 0, such that for any ξ, we have ‖b(θ, ξ)‖2 ≤ ζ2, ∀θ ∈ Rd

For simplicity, assume the learning rate is constant γ, then in every iteration, the biased SGD performs update θt+1 ←
θt − γtg(θt, ξ). Then the following theorem showed the gradient norm convergence with biased SGD.

Theorem 1 (Convergence of Biased SGD(formal)) Under assumptions 1, 2, 3, define F = φ(θ0) − φ∗and step size

γ = min

{
1

L
, (

√
LF

σT
)

}
, denote the desired accuracy as k, then

T = O
(
1

k
+
σ2

k2

)
iterations are sufficient to obtain mint∈[T ] E

(
‖∇φ(θt)‖2

)
= O(k + ζ2).

Remark 1 Let k = ζ2, T = O
(

1
ζ2 + σ2

ζ4

)
iterations is sufficient to get mint∈[T ] E

(
‖∇φ(θt)‖2

)
= O(ζ2), and performing

more iterations does not improve the accuracy in terms of convergence.

Since this is a standard results, more general results are showed in (Hu et al., 2020; Ajalloeian & Stich, 2020). For the sake
of completeness, we provide the proof here.
Proof: by L-smooth, we have:

φ(θ2) ≤ φ(θ1) + 〈∇φ(θ1), θ2 − θ1〉+
L

2
‖θ2 − θ1‖2

by using γ ≤ 1

L
, we have

Eφ (θ1t+1) ≤ φ (θ1t)− γ 〈∇φ (θ1t) ,Egt〉+
γ2L

2

(
E ‖gt − Egt‖2 + E ‖Egt‖2

)
= φ (θ1t)− γ 〈∇φ (θ1t) ,∇φ (θ1t) + bt〉+

γ2L

2

(
E ‖nt‖2 + E ‖∇φ (θ1t) + bt‖2

)
≤ φ (θ1t) +

γ

2

(
−2 〈∇φ (θ1t) ,∇φ (θ1t) + bt〉+ ‖∇φ (θ1t) + bt‖2

)
+
γ2L

2
E ‖nt‖2

= φ (θ1t) +
γ

2

(
−‖∇φ (θ1t)‖

2
+ ‖bt‖2

)
+
γ2L

2
E ‖nt‖2

Since we have ‖bt‖2 ≤ ζ2, ‖nt‖2 ≤ σ2, by plug in the learning rate constraint, we have

Eφ (θ1t+1) ≤ φ (θ1t)−
γ

2
‖∇φ (θ1t)‖

2
+
γ

2
ζ2 +

γ2L

2
σ2

Eφ (θ1t+1)− φ (θ1t) ≤ −
γ

2
‖∇φ (θ1t)‖

2
+
γ

2
ζ2 +

γ2L

2
σ2

Then, removing the gradient norm to left hand side, and sum it across different iterations, we could get

1

2T

T−1∑
t=0

E‖φ (θ1t) ‖ ≤
F

Tγ
+
ζ2

2
+
γLσ2

2

Take the minimum respect to t and substitute the learning rate condition will directly get the results.
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7.2. Proof of Corollary 1

We first prove the gradient estimation error.

Denote G̃ to be the set of corrupted minibatch, G to be the set of original clean minibatch and we have |G| = |G̃| = m.
Let N to be the set of remaining data and according to our algorithm, the remaining data has the size |N| = n = (1− ε)m.
Define A to be the set of individual clean gradient, which is not discarded by algorithm 1. B to be the set of individual
corrupted gradient, which is not discarded. According to our definition, we have N = A∪B. AD to be the set of individual
good gradient, which is discarded, AR to be the set of individual good gradient, which is replaced by corrupted data. We
have G = A∪AD∪AR. BD is the set of individual corrupted gradient, which is discarded by our algorithm. Denote the
good gradient to be gi = αiWi, and the bad gradient to be g̃i, according to our assumption, we have ‖g̃i‖ ≤ L.

Now, we have the l2 norm error:

‖µ(G)− µ(N)‖ = ‖ 1
m

m∑
i∈G

gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

m∑
i=1

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

n

m
gi +

1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

1

n

∑
i∈B

g̃i‖

≤ ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi‖+ ‖

1

n

∑
i∈B

g̃i‖

≤ ‖
∑
A

m− n
nm

gi +
∑
AD

1

m
gi +

∑
AR

1

m
gi‖+

∑
B

1

n
‖g̃i‖

≤
∑
A

‖m− n
nm

gi‖+
∑
AD

‖ 1
m
gi‖+

∑
AR

‖ 1
m
gi‖+

∑
B

1

n
‖g̃i‖

By using the filtering algorithm, we could guarantee that ‖g̃i‖ ≤ L. Let |A| = x, we have |B| = n− x = (1− ε)m− x,
|AR| = m− n = εm, |AD| = m− |A| − |AR| = m− x− (m− n) = n− x = (1− ε)m− x. Thus, we have:

‖µ(G)− µ(N)‖ ≤ xm− n
nm

L+ (n− x) 1
m
L+ (m− n) 1

m
L+ (n− x) 1

n
L

≤ x(m− n
nm

− 1

m
)L+ n

1

m
L+ (m− n) 1

m
L+ (n− x) 1

n
L

=
1

m
(
2ε− 1

1− ε
)xL+ L+ L− 1

n
xL

= xL(
2ε− 2

n
) + 2L

To minimize the upper bound, we need x to be as small as possible since 2ε− 2 < 1. According to our problem setting, we
have x = n−mε ≤ (1− 2ε)m, substitute back we have:

‖µ(G)− µ(N)‖ ≤ (1− 2ε)Lm(
2ε− 2

n
) + 2L

=
1− 2ε

1− ε
2L+ 2L

= 4L− ε

1− ε
2L

Since ε < 0.5, we use tylor expansion on
ε

1− ε
, by ignoring the high-order terms, we have

‖µ(G)− µ(N)‖ = O(εL)
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Note, if the Lipschitz continuous assumption does not hold, then L should be dimension dependent (i.e.
√
d).

Combining above gradient estimation error upper bound and Theorem 1, we could get the results in Corollary 1.

7.3. Proof of Randomized Filtering Algorithm

Lemma 1 (Gradient Estimation Error for Randomized Filtering) Given a corrupted matrix G̃ ∈ Rm×d generated in
Problem 2. Let G ∈ Rm×d be the original clean gradient matrix. Suppose we are arbitrary select n = (1− ε)m rows from
G̃ to get remaining set N ∈ Rn×d. Let µ to be the empirical mean function, assume the clean gradient before loss layer has
bounded operator norm: ‖W‖op ≤ C, the maximum clean gradient in loss layer maxi ‖αi‖ = k, the maximum corrupted
gradient in loss layer maxi ‖δi‖ = v, assume ε < 0.5, then we have:

‖µ(G)− µ(N)‖ ≤ Ck 3ε− 4ε2

1− ε
+ Cv

ε

1− ε

7.4. Proof of lemma 1

Denote G̃ to be the set of corrupted minibatch, G to be the set of original clean minibatch and we have |G| = |G̃| = m.
Let N to be the set of remaining data and according to our algorithm, the remaining data has the size |N| = n = (1− ε)m.
Define A to be the set of individual clean gradient, which is not discarded by any filtering algorithm. B to be the set of
individual corrupted gradient, which is not discarded. According to our definition, we have N = A ∪B. AD to be the
set of individual good gradient, which is discarded, AR to be the set of individual good gradient, which is replaced by
corrupted data. We have G = A ∪AD ∪AR. BD is the set of individual corrupted gradient, which is discarded by our
algorithm. Denote the good gradient to be gi = αiWi, and the bad gradient to be g̃i = δiWi, according to our assumption,
we have ‖Wi‖op ≤ C.

Now, we have the l2 norm error:

‖µ(G)− µ(N)‖ = ‖ 1
m

m∑
i∈G

gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

m∑
i=1

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

n

m
gi +

1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

(
1

n

∑
i∈A

gi +
1

n

∑
i∈B

g̃i

)
‖

= ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi −

1

n

∑
i∈B

g̃i‖

≤ ‖ 1
n

∑
i∈A

(
n−m
m

)gi +
1

n

∑
i∈AD

n

m
gi +

1

n

∑
i∈AR

n

m
gi‖+ ‖

1

n

∑
i∈B

g̃i‖ (1)

Let |A| = x, we have |B| = n−x = (1−ε)m−x, |AR| = m−n = εm, |AD| = m−|A|−|AR| = m−x−(m−n) =
n− x = (1− ε)m− x. Thus, we have:

‖µ(G)− µ(N)‖ ≤ ‖
∑
A

m− n
nm

gi +
∑
AD

1

m
gi +

∑
AR

1

m
gi‖+

∑
B

1

n
‖g̃i‖

≤
∑
A

‖m− n
nm

gi‖+
∑
AD

‖ 1
m
gi‖+

∑
AR

‖ 1
m
gi‖+

∑
B

1

n
‖g̃i‖

For individual gradient, according to the label corruption gradient definition in problem 2, assuming the ‖W‖op ≤ C, we
have ‖gi‖ ≤ ‖αi‖‖Wi‖op ≤ C‖αi‖. Also, denote maxi ‖αi‖ = k, maxi ‖δi‖ = v, we have ‖gi‖ ≤ Ck, ‖g̃i‖ ≤ Cv.

‖µ(G)− µ(N)‖ ≤ Cxm− n
nm

k + C(n− x) 1
m
k + C(m− n) 1

m
k + C(n− x) 1

n
v
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Note the above upper bound holds for any x, thus, we would like to get the minimum of the upper bound respect to x.
Rearrange the term, we have

‖µ(G)− µ(N)‖ ≤ Cx(m− n
nm

− 1

m
)k + Cn

1

m
k + C(m− n) 1

m
k + C(n− x) 1

n
v

= C
1

m
(
2ε− 1

1− ε
)xk + Ck + Cv − 1

n
Cxv

= Cx

(
k(2ε− 1)

m(1− ε)
− v

n

)
+ Ck + Cv

= Cx

(
k(2ε− 1)− v
m(1− ε)

)
+ Ck + Cv

Since when ε < 0.5,
k(2ε− 1)− v
m(1− ε)

< 0, we knew that x should be as small as possible to continue the bound. According

to our algorithm, we knew n−mε = m(1− ε)−mε = (1− 2ε)m ≤ x ≤ n = (1− ε)m. Then, substitute x = (1− 2ε)m,
we have

‖µ(G)− µ(N)‖ ≤ Ck(1− 2ε)
2ε− 1

1− ε
+ Ck + Cv − Cv 1− 2ε

1− ε

= Ck
3ε− 4ε2

1− ε
+ Cv

ε

1− ε

7.5. Proof of Theorem 2

According to algorithm2, we could guarantee that v ≤ k. By lemma 1, we will have:

‖µ(G)− µ(N)‖ ≤ Ck 3ε− 4ε2

1− ε
+ Cv

ε

1− ε

≤ Ck 4ε− 4ε2

1− ε
= 4εCk

≈ O(ε√q)(C is constant, k is the norm of q-dimensional vector)

7.6. Proof of Lemma 2

Assume we have a d class label y ∈ Rd, where yk = 1, yi = 0, i 6= k. We have two prediction p ∈ Rd, q ∈ Rd.

Assume we have a d class label y ∈ Rd, where yk = 1, yi = 0, i 6= k. With little abuse of notation, suppose we have two
prediction p ∈ Rd, q ∈ Rd. Without loss of generality, we could assume that p1 has smaller cross entropy loss, which
indicates pk ≥ qk

For MSE, assume we have opposite result

‖p− y‖2 ≥ ‖q− y‖2

⇒
∑
i 6=k

p2i + (1− pk)2 ≥
∑
i 6=k

q2i + (1− qk)2 (2)

For each pi, i 6= k, We have

V ar(pi) = E(p2i )− E(pi)
2 =

1

d− 1

∑
i6=k

p2i −
1

(d− 1)2
(1− pk)2 (3)
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Then ∑
i6=k

p2i + (1− pk)2 ≥
∑
i 6=k

q2i + (1− qk)2

⇒V ari 6=k(pi) +
d

(d− 1)2
(1− pk)2 ≥ V ari 6=k(qi) +

d

(d− 1)2
(1− qk)2

⇒V ari 6=k(pi)− V ari 6=k(qi) ≥
d

(d− 1)2
(
(1− qk)2 − (1− pk)2

)
⇒V ari 6=k(pi)− V ari 6=k(qi) ≥

d

(d− 1)2
((pk − qk)(2− pk − qk))

(4)
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