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A. Appendix
A.1. Proofs

Proposition A.1. Let D̃ ∈ Xn and D̂ ∈ Xm. Let Q be a finite set of statistical queries q : X → [0, 1]. Let ε̃ > 0 and
T ∈ N. Let A be the output of Algorithm 1 with parameters ε̃ and T , query class Q, and inputs D̃ as the private dataset and
D̂ as the public dataset. Then A is a distribution on X̂ = supp(D̂) ⊂ X . For all β ∈ (0, 1), if T ≥ 7 log(3/β), then
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thus proving Theorem 4.4.

Proof. We follow the analysis of Hardt et al. (2012). Let At, qt, at be as in Algorithm 1. Let α0 = fD̃,Q(X̂ ) be the error of
the optimal reweighting of the public data. Let

D∗ = arg min
D∈∆(X̂ )

max
q∈Q
|q(D)− q(D̃)|

be the optimal reweighting so that maxq∈Q |q(D∗)− q(D̃)| = α0. We define a potential function Ψ : ∆(X̂ )→ R by

Ψ(A) = D1(D∗‖A) =
∑
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D∗(x) log
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.

Since Ψ is a KL divergence, it follows that, for all A ∈ ∆(X̂ ),

0 ≤ Ψ(A) ≤ log

(
1
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)
.

In particular, Ψ(AT ) ≥ 0 and Ψ(A0) ≤ logm, since any x ∈ X̂ must be one of the m elements of D̂ and hence has
A0(x) ≥ 1/m.
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Fix an arbitrary t ∈ [T ]. For all x ∈ X̂ , we have At(x) = At−1(x) exp(qt(x)(at−qt(At−1))/2)∑
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where the final inequality follows from the fact that |qt(D∗)− qt(D̃)| ≤ α0 by the definition of D∗.
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Putting together what we have so far gives

2

T
logm ≥ 2

T
(Ψ(A0)−Ψ(AT ))

=
2

T

∑
t∈[T ]

Ψ(At−1)−Ψ(At)

≥ 2

T

∑
t∈[T ]

1

4
(qt(D̃)− qt(At−1))2 − 2

T

∑
t∈[T ]

1

2
α0|qt(D̃)− qt(At−1)|

+
2

T

∑
t∈[T ]

1

2
(qt(D

∗)− qt(D̃))(at − qt(D̃))− 2

T

∑
t∈[T ]

1

4
(at − qt(D̃))2

≥ 1

2

 1

T

∑
t∈[T ]

|qt(D̃)− qt(At−1)|

2

− α0

T

∑
t∈[T ]

|qt(D̃)− qt(At−1)|

+
1

T

∑
t∈[T ]

(qt(D
∗)− qt(D̃))(at − qt(D̃))− 1

2T

∑
t∈[T ]

(at − qt(D̃))2,

where the final inequality uses the relationship between the 1-norm and 2-norm.

Now, for each t ∈ [T ] independently, at − qt(D̃) is distributed according to N (0, 1/ε2
0n

2). Thus the sum
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Now we invoke the properties of the permute-and-flip or exponential mechanism that selects qt. For each t ∈ [T ], we have
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Since 0 ≤ |qt(D̃)− qt(At−1)| ≤ 1, we can apply Azuma’s inequality to obtain
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for all ν ≥ 0. Finally, for A = 1
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Substituting in α0 = fD̃,Q(X̂ ) ≤ 1 and ε0 = ε̃√
2T

yields the result.

We remark that the proof above uses the bound Ψ(A0) = D1

(
D∗
∥∥∥D̂) ≤ logm. This is tight in the worst case, but is likely

to be loose in practice, as the private and public datasets are likely to be relatively similar. We could also alter Algorithm 1
to initialize A0 to be uniform on X̂ , in which case we can replace logm with log |X̂ | in the final bound.

Lemma A.2. For any support S ∈ 2X and set of linear queries Q, the best mixture error function fD,Q is 1
n sensitive. That

is for any pair of neighboring datasets D,D′ of size n, |fD,Q(S)− fD′,Q(S)| ≤ 1
n .

Proof. First, we show that the maximum of s-sensitive functions is an s-sensitive function and by symmetry the minimum
of s-sensitive functions is s-sensitive. For any s ≤ 1, let G = {g : X → [0, 1]} be a class of s-sensitive functions and define
a function f : X → [0, 1] as f(X) = maxg∈G g(X), for X ∈ X .

Fix any support S ∈ 2X and neighboring dataset D,D′ with size n. Also fix the set Q and note each query q ∈ Q is
bounded in [0,1] and it’s 1

n -sensitive. Let g′ = arg maxg∈G g(D′) and g = arg maxg∈G g(D), then for neighboring D,D′

we have

f(D)− f(D′) ≤ f(D)− g(D′) Since f(D′) ≥ g(D′)

≤ f(D)− g(D) + s Since |g(D)− g(D′)| ≤ s
= s Since f(D) = g(D)

Similarly, we can show that f(D′)− f(D) ≤ s, therefore f is s-sensitive.

Since a marginal query q ∈ Q, is 1
n -sensitive, after fixing any µ the expression
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∣∣∣∣∣q(D)−
∑
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µxq(x)

∣∣∣∣∣
is a max of 1

n sensitive functions, then by the argument above it is a 1
n -sensitive function. It follows that fD,Q(S) is a

minimum of 1
n -sensitive functions therefore fD,Q(S) is 1

n -sensitive.
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A.2. Data

Attributes for our experiments on ACS, ACS (reduced), and ADULT:

• ACS: ACREHOUS, AGE, AVAILBLE, CITIZEN, CLASSWKR, DIFFCARE, DIFFEYE, DIFFHEAR, DIFFMOB,
DIFFPHYS, DIFFREM, DIFFSENS, DIVINYR, EDUC, EMPSTAT, FERTYR, FOODSTMP, GRADEATT, HCOV-
ANY, HCOVPRIV, HINSCAID, HINSCARE, HINSVA, HISPAN, LABFORCE, LOOKING, MARRINYR, MAR-
RNO, MARST, METRO, MIGRATE1, MIGTYPE1, MORTGAGE, MULTGEN, NCHILD, NCHLT5, NCOUPLES,
NFATHERS, NMOTHERS, NSIBS, OWNERSHP, RACAMIND, RACASIAN, RACBLK, RACE, RACOTHER,
RACPACIS, RACWHT, RELATE, SCHLTYPE, SCHOOL, SEX, SPEAKENG, VACANCY, VEHICLES, VET01LTR,
VET47X50, VET55X64, VET75X90, VET90X01, VETDISAB, VETKOREA, VETSTAT, VETVIETN, VETWWII,
WIDINYR, WORKEDYR

• ACS (reduced): DIFFEYE, DIFFHEAR, EMPSTAT, FOODSTMP, HCOVPRIV, HINSCAID, HINSCARE, OWNER-
SHP, RACAMIND, RACASIAN, RACBLK, RACOTHER, RACPACIS, RACWHT, SEX

• ADULT: sex, income>50K, race, relationship, marital-status, workclass, occupation, education-num, native-country,
capital-gain, capital-loss, hours-per-week, age

In addition, we discretize the following continuous attributes (with the number of bins after preprocessing) into categorical
attributes:

• ACS: AGE (10)

• ACS (reduced): AGE (10)

• ADULT: capital-gain (16), capital-loss (6), hours-per-week (10), age (10)

A.3. Hyperparameters

We report hyperparameters used across all experiments in Table 2.

Table 2: Hyperparameter selection for experiments on all datasets.

Method Parameter Values

PMWPub T
300, 250, 200, 150,
125, 100, 75, 50,

25, 10, 5

MWEM T
300, 250, 200, 150,
125, 100, 75, 50,

25, 10, 5

DualQuery samples 500 250 100 50
η 5 4 3 2

A.4. Experimental results

A.4.1. EVALUATIONS USING MEAN ERROR AND RMSE

In Figures 4 and 5, we evaluate on ACS PA-18 and ACS GA-18 with respect to mean error and mean squared error
respectively. Like in Figure 1, in which we present results with respect to max error, PMWPub performs well when using
public datasets with low best mixture error. In the case where PMWPub uses a poor dataset (i.e., CA-18), we observe the
performance of PMWPub suffers, and the algorithm does not improve even when the privacy budget is increased. However,
we note that PMWPub still performs better than DualQuery in this setting (where ε ≤ 1.0).

A.4.2. ADDITIONAL RESULTS

In Figure 6, we plot results for ACS PA-18 and ACS GA-18 comparing PMWPub using the 2010 ACS data (PA-10 and
GA-10) with the remaining public datasets (TX-18, FL-18, IL-18) not presented in Figure 1. In addition, we present results



Leveraging Public Data for Practical Private Query Release

Figure 4: Mean error for ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1
n2 , evaluated on 3-way marginals with a workload size

of 4096. Results are averaged over 5 runs, and error bars represent one standard error. The x-axis uses a logarithmic scale.
Top row: 2018 ACS for Pennsylvania. Bottom row: 2018 ACS for Georgia.

Figure 5: Mean squared error for ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1
n2 , evaluated on 3-way marginals with a

workload size of 4096. Results are averaged over 5 runs, and error bars represent one standard error. The x-axis uses a
logarithmic scale. Top row: 2018 ACS for Pennsylvania. Bottom row: 2018 ACS for Georgia.

on 2018 ACS data for the states of New York (NY-18) and California (CA-18). To run PMWPub, we choose Texas (TX-18),
Florida (FL-18), and Illinois (IL-18) for New York and choose Texas (TX-18), Nevada (NV-18), and New York (NY-18) for
California.

A.4.3. USING THE LAST ITERATE

In this work, we present theoretical guarantees of PMWPub in which we output the average distribution A = avgt≤TAt (see
Algorithm 1), mimicking the output in the original formulation of MWEM. However, Hardt et al. (2012) note that while
they prove guarantees for this variant of MWEM, in practical settings, one can often achieve better results by outputting the
distribution from the last iterate, AT . In Figure 8, we compare PMWPub to the variant of PMWPub that outputs AT and
observe that indeed, outputting the last iterate achieves better performance across all experiments (excluding those in which
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Figure 6: Additional plots of the max error (3-way marginals and workload size of 4096) for ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1}
and δ = 1

n2 on PA-18 (Row 1), GA-18 (Row 2), NY-18 (Row 3), and CA-18 (Row 4). Results are averaged over 5 runs, and
error bars represent one standard error. The x-axis uses a logarithmic scale. Given the support of each public dataset, we
shade the area below the best mixture error to represent max error values that are unachievable by PMWPub.

Table 3: Max error (averaged over 5 runs, best results in bold) comparison on the 2018 ACS (reduced)-PA, 2018 ACS-PA,
and 2018 ACS-GA datasets. At each privacy budget parametrized by ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 , PMWPub

uses the public dataset (and corresponding hyperparameter T ) that achieves the lowest max error on the validation set.

DATASET ALGO. ε = 0.1 ε = 0.15 ε = 0.2 ε = 0.25 ε = 0.5 ε = 1

ACS (RED.)-PA PMWPub 0.0301 0.0197 0.0196 0.0172 0.0097 0.0067
DualQuery 0.1115 0.0871 0.0816 0.0625 0.0473 0.0330

ACS-PA PMWPub 0.0499 0.0458 0.0332 0.0298 0.0195 0.0141
DualQuery 0.2289 0.1908 0.1639 0.1526 0.1086 0.0816

ACS-GA PMWPub 0.0753 0.0523 0.0470 0.0380 0.0244 0.0175
DualQuery 0.2615 0.2117 0.1904 0.1709 0.1212 0.0910

the best mixture error of the public dataset’s support is high, i.e. CA-18).
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Figure 7: Max error on the ACS validation sets for 3-way marginals with a workload size of 4096 with privacy ε ∈
{0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . Results are averaged over 5 runs, and error bars represent one standard error. The
x-axis uses a logarithmic scale. Left: 2014 ACS for Pennsylvania. Right: 2014 ACS for Georgia.

A.4.4. IDENTIFYING PUBLIC DATASETS WITH POOR SUPPORT

In Section 5.5.1, we describe how using Laplace noise, one can get determine the quality of a support by getting a noisy
estimate of the best mixture error for any public dataset. While we emphasize that this strategy is the most principled
approach to ensuring the public data is viable for PMWPub, we note that in settings like ours in which we have a validation
set, one can apply additional sanity checks. For instance, in Figure 7, we observe that PMWPub performs poorly on the
validation set when using CA-14, both in absolute terms and relative to the other public datasets. For demonstration purposes,
we show in Table 3 that if we select the public dataset (at each privacy budget ε) based solely on which public dataset
performed best on the validation set, we achieve very strong results. Thus in practical settings, one can use validation sets in
conjunction with the best mixture error function to find a suitable public dataset (for example, one can first filter out poor
public datasets using a validation set and then find the best mixture error of any remaining candidates).

A.5. Discussion of other baselines

Ji & Elkan (2013). While Ji & Elkan (2013)’s method reweights the support of a public dataset, their goal is not tailored
towards query release. Ji & Elkan (2013) instead measure the success their algorithm by evaluating the parameters learned
from training a support vector machine on the synthetic dataset. Furthermore, they specifically contrast their method’s
goal with that of MWEM, whose objective is to optimize over a set of predefined queries. Thus, one would expect the
method to perform worse than PMWPub for query release. To verify this hypothesis, we implement their algorithm with
hyperparameter λ ∈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.5}. PMWPub outperforms across all metrics (max, mean, and mean
squared error) and privacy budgets on ACS PA-18 and GA-18 using each public dataset used to evaluate PMWPub in Section
5.5.1. For example, w.r.t. max error on PA-18, PMWPub outperforms by between 1.38× and 5.07× (depending on ε) when
using PA-10 as the public dataset.

HDMM. Unlike MWEM and DualQuery, which solve the query release problem by generating synthetic data, the
High-Dimensional Matrix Mechanism (McKenna et al., 2018) is designed to directly answer a workload of queries. By
representing query workloads compactly, HDMM selects a new set of “strategy” queries that minimize the estimated error
with respect to the input workload. The algorithm then answers the “strategy” queries using the Laplace mechanism and
reconstructs the answers to the input workload queries using these noisy measurements.

We had originally evaluated against HDMM. However, having consulted McKenna et al. (2018), we learned that currently,
running HDMM is infeasible for the ACS and ADULT datasets. There does not exist a way to solve the least square problem
described in the paper for domain sizes larger than approximately 109. While a variant of HDMM using local least squares
could potentially circumvent such computational issues, there does not exist support for this version of HDMM for more
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Figure 8: We compare PMWPub with the variant of PMWPub that outputs the last iterate AT for all experiments
(3-way marginals and workload size of 4096) on the (full-sized) 2018 ACS dataset, plotting max error for ε ∈
{0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . Results are averaged over 5 runs, and error bars represent one standard er-
ror. The x-axis uses a logarithmic scale. Given the support of each public dataset, we shade the area below the best
mixture error to represent max error values that are unachievable by PMWPub. Using the last iterate in PMWPub improves
performance across all experiments.

general query workloads outside of those predefined in McKenna et al. (2018)’s codebase. Currently, there is no timeline for
when the authors will begin developing this modification that would allow us to use HDMM as a baseline for the ADULT
and ACS datasets.


